# **10. IC SPEC**

## DVI

# Consumer Component Interfaces

#### DigitalVisual Interface (DVI)

DVI was developed for transferring uncompressed digital video from a computer to a display monitor. It may also be used for interfacing devices such as settop boxes to televisions. DVI enhances the Digital Flat Panel (DFP) Interface by supporting more formats and timings, and supporting the Highbandwidth Digital Content Protection (HDCP) specification to ensure unauthorized copying of material is prevented. The interface supports VESA's Extended Display Identification Data (EDID) standard, Display Data Channel (DDC) standard, and Monitor Timing Specification (DMT). DDC and EDID enable automatic display detection and configuration. "TFT data mapping" is supported as the minimum requirement: one pixel per clock, eight bits per channel, MSB justified.

DVI uses transition-minimized differential signaling (TMDS). Eight bits of video data are converted to a 10-bit transition-minimized, DCbalanced value, which is then serialized. The receiver deserializes the data, and converts it back to eight bits. Thus, to transfer digital R'G'B' or YCbCr data requires three TMDS signals that comprise one TMDS link.

To further enhance DVI for the consumer market, Silicon Image developed a method of transferring digital audio over the existing clock channel.

#### **TMDS** Links

Either one or two TMDS links may be used, as shown in Figures 1. and 2. depending on the formats and timing required. A system supporting two TMDS links must be able to switch dynamically between formats requiring a single link and formats requiring a dual link.

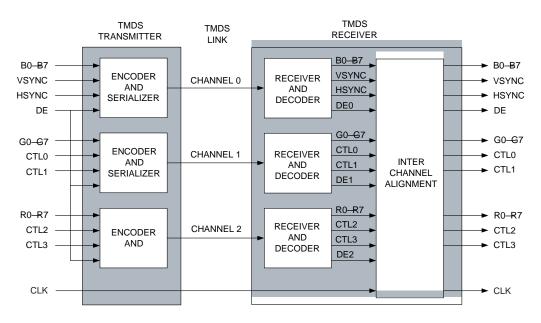



Figure1. DVI Single TMDS Link.

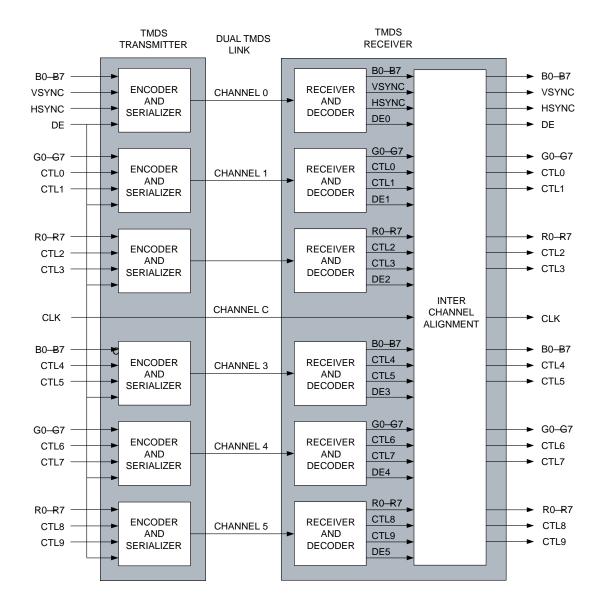



Figure 2. DVI Dual TMDS Link.

A single TMDS link is used to support all formats and timings requiring a clock rate of 25-165 MHz. Formats and timings requiring a clock rate >165 MHz are implemented using two TMDS links, with each TMDS link operating at one-half the frequency. Thus, the two TMDS links share the same clock and the bandwidth is shared evenly between the two links.

#### Video Data Formats

Typically, 24-bit R'G'B' data is transferred over a link, although any data format may be used, including 24-bit YCbCr for consumer applications. For applications requiring more than eight bits per color component, the second TMDS link may be used for the additional least significant bits.

#### **Control Signals**

In addition to the video data, there are up to 14 control signals:

| HSYNC     | horizontal sync   |
|-----------|-------------------|
| VSYNC     | vertical sync     |
| DE        | data enable       |
| CTL0-CTL3 | reserved (link 0) |
| CTL4-CTL9 | reserved (link 1) |
| CLK       | 1x sample clock   |

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |  |
|----|----|----|----|----|----|----|----|--|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |

Figure 3. DVI Digital-Only Connector.

While DE is a "1," active video is processed. While DE is a "0," the HSYNC, VSYNC and CTL0-CTL9 signals are processed. HSYNC and VSYNC may be either polarity.

#### Digital-Only Connector

The digital-only connector, which supports dual link operation, contains 24 contacts arranged as three rows of eight contacts, as shown in Figure 3. Table 5. lists the pin assignments.

#### **Digital-Analog Connector**

In addition to the 24 contacts used by the digital-only connector, the 29-contact digital-analog connector contains five additional contacts to support analog video as shown in Figure 4. Table 6. lists the pin assignments.

| HSYNC | horizontal sync    |
|-------|--------------------|
| VSYNC | vertical sync      |
| RED   | analog red video   |
| GREEN | analog green video |
| BLUE  | analog blue video  |

The operation of the analog signals is the same as for a standard VGA connector.

| $\left[ \right]$ | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |  |
|------------------|----|----|----|----|----|----|----|----|--|
|                  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |
|                  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |

Figure 4. DVI Digital-Analog Connector.

| Pin | Signal   | Pin | Signal          | Pin | Slgnal |
|-----|----------|-----|-----------------|-----|--------|
| 1   | D2-      | 9   | D1-             | 17  | D0-    |
| 2   | D2       | 10  | D1              | 18  | D0     |
| 3   | shield   | 11  | shield          | 19  | shield |
| 4   | D4-      | 12  | D3-             | 20  | D5-    |
| 5   | D4       | 13  | D3              | 21  | D5     |
| 6   | DDC SCL  | 14  | +5V             | 22  | shield |
| 7   | DDC SDA  | 15  | ground          | 23  | CLK    |
| 8   | reserved | 16  | Hot Plug Detect | 24  | CLK-   |

Table 5. DVI Digital-Only Connector Signal Assignments.

| Pin | Signal  | Pin | Signal          | Pin | Slgnal |
|-----|---------|-----|-----------------|-----|--------|
| 1   | D2-     | 9   | D1-             | 17  | D0-    |
| 2   | D2      | 10  | D1              | 18  | D0     |
| 3   | shield  | 11  | shield          | 19  | shield |
| 4   | D4-     | 12  | D3-             | 20  | D5-    |
| 5   | D4      | 13  | D3              | 21  | D5     |
| 6   | DDC SCL | 14  | +5V             | 22  | shield |
| 7   | DDC SDA | 15  | ground          | 23  | CLK    |
| 8   | VSYNC   | 16  | Hot Plug Detect | 24  | CLK-   |
| C1  | RED     | C2  | GREEN           | C3  | BLUE   |
| C4  | HSYNC   | C5  | ground          |     |        |

Table 6. DVI Digital-Analog Connector Signal Assignments.

# PRODUCT OVERVIEW

## **OVERVIEW**

S5H2000X is an HDTV signal processing IC for digital broadcasting. It is also referred to as SAM2K-LITE.For optimum performance, SAM2K-LITE has been designed to work with built-in HDTVs or HD set-top boxes. It contains HDTV signal processing functions in a single unit and thus-allows you to easily construct a set.

This User's Manual is designed to help developers, who have a basic knowledge of MPEG and PCI, to develop STB or HDTV applications using SAM2K-LITE.

This manual contains the following topics.

- General feature
- Block diagram
- System diagram
- Pin & Control register description
- Internal module description
  - TS Demux
  - PCI interface
  - Audio interface
  - MPEG decoder
  - Display processor
  - Graphic processor
  - Memory interface
- Electrical characteristics and timing spec
- PKG information



GENERAL Features

- ARM7TDMI RISC CPU
  - Used for programmable TS demux
  - 67.5MHz speed @ 1.8V ±0.15V
  - 12Kbyte SRAM
- External memory interface
  - 64bit wide SDRAM interface
  - 64Mbit(32bit wide) x 4 or
     64Mbit(32bit wide) x 2 SDRAM support
     @ CAS latency 3
- TS (Transport Stream) Demux engine
  - S/W demux architecture using ARM7TDMI
  - MPEG-2 or DSS TS demux support
  - DVB, ATSC support
  - Built-in DES descrambler
  - Up to 32 PIDs can be received at the same time
  - CRC(MPEG-2 : 32bit, DSS : 16bit) support
  - Video packets are transmitted to external SDRAM via DMA1.
  - Audio packets are transmitted to the host CPU's memory via PCI interface.
  - Allows filtering of desired information from the PSI packet and transmitting to the host CPU.
  - Built-in clock recovery circuit for programmable clock recovery.
- MPEG Video decoder
  - ISO/IEC 11172-2 (MPEG1) format support
  - SO/IEC 13818-2 MP@HL (MPEG2) format support
  - DSS MPEG1 format support
  - DSS MPEG2 SD and HD format support
- Display processor
  - 4 display planes (background, video, OSD, cursor plane)
  - Letter box, pan/scan display

- Pillar-box (side well) / panorama display
- 3D IPC support
- PIP support
- Flexible color space conversion support
- Various video inputs
  - TS stream input
  - Digital HD (RGB) input (24bit)
  - Digital SD input (8bit)
- Various video output formats
  - Digital HD video output (1080i, 720p, 480p, RGB/YCbCr)
  - Analog HD video output (RGB/YPbPr without sync or with 3 level sync)
  - Analog SD video output (CVBS, S-video)
- Graphic processor
  - 4 Graphic windows (on the OSD plane)
  - Blending (window or pixel blending, window and pixel blending)
  - H/W cursor
  - 2D Graphic accelerator
- Audio input
  - Audio stream or PCM input (through PCI bus)
  - External PCM input
- Audio output
  - IEC958 (SPDIF) audio output interface
  - I2S audio output interface
- On-chip peripherals
  - PCI interface (32bit, 66MHz)
  - I2C
- JTAG interface (for ARM7 only)
- Package
  - 352 pin TBGA



# **BLOCK DIAGRAM**

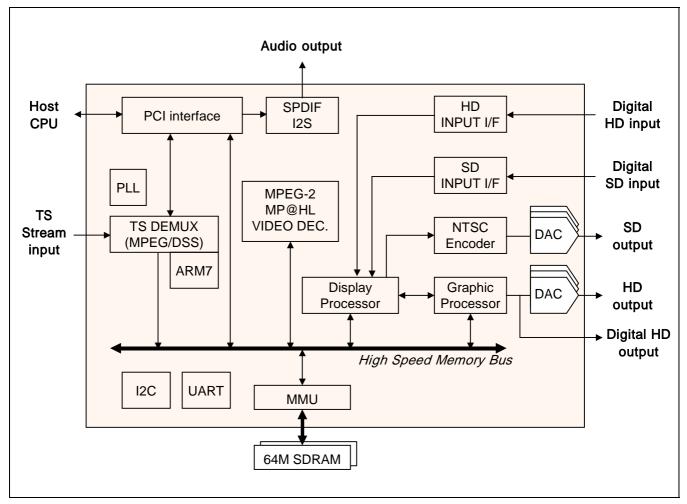



Figure 1-1. S5H2000X Block diagram



#### SYstem diagram



Figure 1-2 system diagram



pin assignments for 352 FBGA

|    | 1               | 2           | 3                | 4              | 5               | 6           | 7      | 8           | 9           | 10          | 11              | 12     | 13          |
|----|-----------------|-------------|------------------|----------------|-----------------|-------------|--------|-------------|-------------|-------------|-----------------|--------|-------------|
| Α  | PVDDOP          | PVSSI       | MDATA7           | MDQM1          | MDATA3          | PVSSI       | PVDDOP | HOB7        | PVSSOP      | PVDDOP      | HOB0            | HOG6   | PVDDOP      |
| В  | MDQM2           | PVDDOP      | MDATA<br>10      | PVDDOP         | MDATA5          | PVSSOP      | PVDDI  | HO<br>VSYNC | HOB5        | новз        | HOB1            | FT24   | HOG3        |
| С  | MDATA<br>18     | MDATA<br>16 | MDATA<br>13      | MDATA<br>11    | MDATA9          | MDATA6      | MDATA1 | MDQM0       | HVID<br>CLK | HOB6        | HOB2            | FT135  | HOG4        |
| D  | MDATA<br>19     | MDATA<br>17 | MDATA<br>14      | MDATA<br>12    | PVDDI           | MDATA8      | MDATA4 | MDATA2      |             | HO<br>HSYNC | HOB4            | HOG7   | HOG5        |
| Е  | PVDDI           | PVSSI       | PVSSOP           | MDATA<br>15    |                 |             |        |             | I           | nonto       |                 | I      |             |
| F  | MDATA           | MDQM3       | MDATA            | MDATA          |                 |             |        |             |             |             |                 |        |             |
| G  | 25<br>MDATA     | MDATA       | 21<br>MDATA      | 20<br>MDATA    |                 |             | 3.3    | 1           |             |             |                 |        |             |
| н  | 26<br>MDATA     | 24<br>MDATA | 23<br>MDATA      | 22<br>PVSSOP   |                 |             | 5.5    | v           |             |             |                 |        |             |
| J  | 31<br>PVSSOP    | 28<br>MDATA | 27<br>PVSSOP     | MDATA          |                 |             | 1.8    | V           |             |             |                 |        |             |
| к  | nMCS1           | 30<br>nMWE  | nMCAS            | 29<br>nMRAS    |                 |             |        |             |             |             |                 |        |             |
| L  | МСКЕ            | nMCS0       | PVDDI            | PVSSI          |                 |             | 0V     |             |             |             |                 |        |             |
| М  | MBA1            | MBA0        | PVDDOP           | MCLK           |                 |             |        |             |             |             |                 |        |             |
| N  | MADDR<br>3      | MADDR<br>2  | MADDR<br>1       | MADDR<br>0     |                 |             |        |             |             |             |                 |        |             |
| Р  | PVDDOP          | ADDR<br>4   | MADDR<br>5       | MADDR<br>6     |                 |             |        |             |             |             |                 |        |             |
| R  | PVSSI           | PVDDI       | MADDR            | MADDR<br>8     |                 |             |        |             |             |             |                 |        |             |
| т  | MADDR<br>9      | PVDDOP      | 7<br>MADDR<br>10 | o<br>MDQM4     |                 |             |        |             |             |             |                 |        |             |
| U  | MDATA<br>32     | MDATA<br>33 | MDATA<br>34      | MDATA<br>35    |                 |             |        |             |             |             |                 |        |             |
| v  | PVSSOP          | PVDDOP      | MDATA<br>36      | MDATA<br>38    |                 |             |        |             |             |             |                 |        |             |
| w  | MDATA<br>37     | PVSSI       | PVDDI            |                |                 |             |        |             |             |             |                 |        |             |
| Y  | MDATA<br>39     | MDATA<br>40 | MDATA<br>42      | MDATA<br>43    |                 |             |        |             |             |             |                 |        |             |
| AA | MDQM5           | MDATA       | MDATA            | MDQM6          |                 |             |        |             |             |             |                 |        |             |
|    | MDATA           | 41<br>MDATA | 46<br>MDATA      | MDATA          |                 |             |        |             |             |             |                 |        |             |
| AB | 44              | 45          | 47<br>MDATA      | 50<br>MDATA    | MDATA           | MDATA       | DVCCOD | MDATA       | DD ATAO     | DD ATA 4    | DDATAO          | PDATA  | PDATA       |
| AC | PVDDOP<br>MDATA | PVSSI       | 51<br>MDATA      | 53<br>MDATA    | 55              | 56<br>MDATA | PVSSOP | 63          | PDATA2      | PDATA4      | PDATA9<br>PDATA | 13     | 14<br>PDATA |
| AD | 48<br>MDATA     | PVDDI       | 52               | 54             | PVDDOP<br>MDATA | 59<br>MDATA | PVSSI  | PDATA1      | PVDDOP      | PDATA8      | 10<br>PDATA     | PVSSOP | 15          |
| AE | 49              | PVSSOP      | PVSSI<br>MDATA   | PVDDI<br>MDATA | 60<br>MDATA     | 61          | PVDDI  | PDATA3      | PDATA7      | nPCBE1      | 11<br>PDATA     | PVSSI  | nPLOCK      |
| AF | PVDDOP          | MDQM7       | 57               | 58             | 62              | nPCBE0      | PDATA0 | PDATA5      | PDATA6      | PVDDOP      | 12              | PVDDI  | PVSSOP      |

SAMSUNG

ELECTRONICS

|    | 14         | 15             | 16             | 17             | 18             | 19             | 20          | 21          | 22          | 23             | 24             | 25           | 26            |
|----|------------|----------------|----------------|----------------|----------------|----------------|-------------|-------------|-------------|----------------|----------------|--------------|---------------|
| Α  | aRPR       | PAVSST<br>_HD1 | aHIRS          | aY             | PVSSOP         | PAVSST<br>_SD2 | aCVBS       | HOG1        | HOG5        | HOR1           | HOR2           | SI<br>VSYNC  | PVDDOP        |
| В  | aBPB       | PAVDDT<br>_HD1 | aGY            | PAVBB<br>_DAC  | PAVSST<br>_SD1 | aSCOM<br>P     | PVSSOP      | HOG0        | HOR4        | SICLK          | SI<br>HSYNC    | PVSSOP       | SIFLD         |
| С  | aHVREF     | PAVDDT<br>_HD2 | PAVDDI<br>_DAC | aSIRS          | PAVDDT<br>_SD2 | aC             | HOR7        | HOR3        | PVDDOP      | SIDATA6        | SIDATA3        | SIDATA2      | SIDATA0       |
| D  | aHCOM<br>P | PAVSST<br>_HD2 | PVSSI<br>_DAC  | PAVDDT<br>_SD1 | aSVREF         | HOG2           | HOR6        | HOR0        | SIDATA7     | SIDATA5        | SIDATA1        | SCANEN       | PVDDI         |
| Е  |            |                | _              |                |                |                |             |             |             | SIDATA4        | TSTON          | PVDDOP       | HIB7          |
| F  |            |                |                |                |                |                |             |             |             | PVSSI          | HI<br>HSYNC    | HI<br>VSYNC  | HIB3          |
| G  |            |                |                |                |                |                |             |             |             | HICLK          | HIB5           | HIB4         | HIB2          |
| н  |            |                |                |                |                |                |             |             |             | HIB6           | HIB1           | HIG7         | HIG5          |
| J  |            |                |                |                |                |                |             |             |             | PVDDOP         | HIB0           | HIG6         | HIG4          |
| к  |            |                |                |                |                |                |             |             |             | HIG3           | HIG2           | HIG1         | HIR7          |
| L  |            |                |                |                |                |                |             |             |             | HIG0           | PVDDI          | PVSSI        | PVDDOP        |
| М  |            |                |                |                |                |                |             |             |             | HIR6           | HIR5           | HIR4         | HIR3          |
| Ν  |            |                |                |                |                |                |             |             |             | HIR2           | HIR1           | HIR0         | PVDDI<br>_PLL |
| Ρ  |            |                |                |                |                |                |             |             |             | PAVDDT<br>_PLL | aPLL2          | aPLL1        | PVSSI<br>_PLL |
| R  |            |                |                |                |                |                |             |             |             | IBCLK          | PAVSST<br>_PLL | PAVBB<br>_PP | aPLL3         |
| т  |            |                |                |                |                |                |             |             |             | OLRCLK         | IPCM           | PVDDOP       | ILRCLK        |
| U  |            |                |                |                |                |                |             |             |             | OHDCL<br>K     | OSPDIF         | OBCLK        | ODCLK         |
| v  |            |                |                |                |                |                |             |             |             | PVDDI          | JTDI           | IVOH         | OADATA        |
| W  |            |                |                |                |                |                |             |             |             | PWM            | JTMS           | nJTRST       | JTDO          |
| Y  |            |                |                |                |                |                |             |             |             | TSCLK          | CLK27M         | nRESET       | JTCK          |
| AA |            |                |                |                |                |                |             |             |             | TSDATA<br>1    | TSDATA<br>7    | PVDDOP       | PVSSI         |
| AB |            | 1              | 1              | 1              |                |                |             |             |             | I2CCLK         | TSDATA<br>4    | TSVLD        | BEND          |
| AC | nPPERR     | nPISEL         | nPSTOP         | nPCBE2         |                | PDATA<br>23    | PVDDOP      | PDATA<br>28 | PDATA<br>31 | I2CDAT         | TSDATA<br>0    | TSDATA<br>3  | TSDATA<br>6   |
| AD | nPSERR     | nPGNT          | PVDDOP         | nPTRDY         | PDATA<br>17    | PDATA<br>18    | PDATA<br>22 | PVDDI       | PDATA<br>27 | PCISEL         | PVSSI          | PVDDI        | TSDATA<br>5   |
| AE | PVDDOP     | PCLK           | nPDSEL         | nPFRM          | PVSSI          | PDATA<br>16    | PDATA<br>21 | PDATA<br>24 | PVSSI       | PDATA<br>25    | PDATA<br>29    | PVSSOP       | TSDATA<br>2   |
| AF | nPINT      | nPRST          | nPREQ          | nPIRDY         | PVDDI          | PPAR           | PDATA<br>19 | PDATA<br>20 | nPCBE3      | PDATA<br>26    | PVSSOP         | PDATA<br>30  | PVDDOP        |

## **PIN DESCRIPTION**

| Pin<br>Name | Pin<br>Type | Pin Description                   | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|-----------------------------------|-----------------|---------------|---------------|
| nRESET      | I           | System Reset (Active Low)         |                 | Y25           | _             |
| CLK27M      | I           | SYSTEM Clock                      |                 | Y24           | _             |
| PWM         | 0           | PWM Output for clock recovery     |                 | W23           | _             |
| BEND        | I           | Big (High) or Little (Low) Endian |                 | AB26          | _             |
| OHDCLK      | 0           | HD clock output                   |                 | U23           | _             |
| IVOH        | I           | TEST PIN                          |                 | V25           | _             |
| TSTON       | I           | TEST PIN                          |                 | E24           | _             |
| SCAN_EN     | I           | TEST PIN                          |                 | D25           | _             |
| FT24        | I           | 24.576MHz Clock Input for TEST    |                 | B12           | _             |
| FT135       | I           | 135MHz Clock Input for TEST       |                 | C12           | _             |
| aPLL1       | AO          | PLL Loop Filter                   |                 | P25           | _             |
| aPLL2       | AO          | PLL Loop Filter                   |                 | P24           | _             |
| aPLL3       | AO          | PLL Loop Filter                   |                 | R26           | _             |

### Table 1-1. S5H2000X Pin Descriptions (System)

#### Table 1-1. S5H2000X Pin Descriptions (Continued: Debugger)

| Pin<br>Name | Pin<br>Type | Pin Description         | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|-------------------------|-----------------|---------------|---------------|
| JTDI        | I           | JTAG Input              |                 | V24           | -             |
| JTDO        | 0           | JTAG Output             |                 | W26           | -             |
| JTCK        | I           | JTAG Clock              |                 | Y26           | -             |
| nJTRST      | I           | JTAG Reset (Active Low) |                 | W25           | -             |
| JTMS        | I           | JTAG Mode Select        |                 | W24           | _             |

## Table 1-1. S5H2000X Pin Descriptions (Continued: I2C)

| Pin<br>Name | Pin<br>Type | Pin Description  | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|------------------|-----------------|---------------|---------------|
| I2CCLK      | 0           | I2C Clock Output |                 | AB23          | _             |
| I2CDATA     | I/O         | I2C DATA         |                 | AC23          | _             |



| Pin<br>Name           | Pin<br>Type | Pin Description                      | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-----------------------|-------------|--------------------------------------|-----------------|---------------|---------------|
|                       |             |                                      |                 | AC22          |               |
|                       |             |                                      |                 | AF25          |               |
| PDATA31               |             |                                      |                 | AE24          |               |
| ~                     | I/O         | 32bit PCI Data and Address (33MHz)   |                 | AC21          |               |
| PDATA24               | ., 0        |                                      |                 | AD22          |               |
|                       |             |                                      |                 | AF23          |               |
|                       |             |                                      |                 | AE23          |               |
|                       |             |                                      |                 | AE21          |               |
|                       |             |                                      |                 | AC19          |               |
|                       |             |                                      |                 | AD20          |               |
| PDATA23               |             |                                      |                 | AE20          |               |
|                       | I/O         | 32bit PCI Data and Address (33MHz)   |                 | AF21          |               |
| PDATA16               | 1/0         | Szbit i Or Data and Address (SSWITZ) |                 | AF20          |               |
|                       |             |                                      |                 | AD19          |               |
|                       |             |                                      |                 | AD18          |               |
|                       |             |                                      |                 | AE19          | _             |
|                       |             |                                      |                 | AD13          |               |
|                       |             |                                      |                 | AC13          |               |
| PDATA15               |             |                                      |                 | AC12          |               |
|                       | I/O         | 32bit PCI Data and Address (33MHz)   |                 | AF11          |               |
| PDATA8                | 1,0         |                                      |                 | AE11          |               |
|                       |             |                                      |                 | AD11          |               |
|                       |             |                                      |                 | AC11          |               |
|                       |             |                                      |                 | AD10          |               |
|                       |             |                                      |                 | AE9           |               |
|                       |             |                                      |                 | AF9           |               |
| PDATA7                |             |                                      |                 | AF8           |               |
| PDATA7<br>~<br>PDATA0 | I/O         | 32bit PCI Data and Address (33MHz)   |                 | AC10          |               |
|                       |             |                                      |                 | AE8           |               |
|                       |             |                                      |                 | AC9           |               |
|                       |             |                                      |                 | AD8           |               |
|                       |             |                                      |                 | AF7           |               |

Table 1-1. S5H2000X Pin Descriptions (Continued: PCI)



| Pin<br>Name | Pin<br>Type | Pin Description                               | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|-----------------------------------------------|-----------------|---------------|---------------|
|             |             |                                               |                 | AF22          |               |
| nPCBE3      | 1/0         | this DCI Due Command and Dute English         |                 | AC17          |               |
| ~<br>nPCBE0 | I/O         | 4bit PCI Bus Commend and Byte Enable          |                 | AE10          | -             |
|             |             |                                               |                 | AF6           |               |
| PPAR        | I/O         | PCI parity                                    |                 | AF19          |               |
| nPFRM       | I/O         | PCI cycle frame (Active LOW)                  |                 | AE17          |               |
| nPTRDY      | I/O         | PCI target ready (Active LOW)                 |                 | AD17          |               |
| nPIRDY      | I/O         | PCI initiator ready (Active LOW)              |                 | AF17          |               |
| nPSTOP      | I/O         | PCI stop (Active LOW)                         |                 | AC16          |               |
| nPDSEL      | I/O         | PCI device select (Active LOW)                |                 | AE16          |               |
| nPREQ       | 0           | PCI Bus request (Active LOW)                  |                 | AF16          |               |
| nPISEL      | I           | PCI initialization device select (Active LOW) |                 | AC15          |               |
| nPGNT       | I           | PCI Bus grant (Active LOW)                    |                 | AD15          |               |
| PCLK        | I           | PCI clock                                     |                 | AE15          |               |
| nPRST       | I           | PCI reset (Active LOW)                        |                 | AF15          |               |
| nPPERR      | I/O         | PCI parity error (Active LOW)                 |                 | AC14          |               |
| nPSERR      | 0           | PCI system error (Active LOW)                 |                 | AD14          |               |
| nPINT       | 0           | PCI interrupt signal (Active LOW)             |                 | AF14          |               |
| nPLOCK      | I/O         | PCI lock signal (Active LOW)                  |                 | AE13          |               |
| PCISEL      | I           | PCI operation voltage selection (fixed 0V)    |                 | AD23          |               |

Table 1-1. S5H2000X Pin Descriptions (Continued: PCI)

## Table 1-1. S5H2000X Pin Descriptions (Continued: TS DEMUX)

| Pin<br>Name  | Pin<br>Type                       | Pin Description                   | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|--------------|-----------------------------------|-----------------------------------|-----------------|---------------|---------------|
|              |                                   |                                   |                 | AA24          |               |
|              |                                   |                                   |                 | AC26          |               |
|              |                                   |                                   |                 | AD26          |               |
| TSDATA7      | Ohit Transport Stream DoMuy Input |                                   | AB24            |               |               |
| ~<br>TSDATA0 | I                                 | 8bit Transport Stream DeMux Input |                 | AC25          |               |
| ISDATA       |                                   |                                   |                 | AE26          |               |
|              |                                   |                                   |                 | AA23          |               |
|              |                                   |                                   |                 | AC24          |               |
| TSCLK        | I                                 | Transport Stream DeMux Clock      |                 | Y23           |               |



#### PRODUCT OVERVIEW

| TSVLD        | I           | Transport Stream DeMux Valid                   |                 | AB25          |               |
|--------------|-------------|------------------------------------------------|-----------------|---------------|---------------|
|              | Tab         | e 1-1. S5H2000X Pin Descriptions (Continued: S | DRAM)           |               |               |
| Pin<br>Name  | Pin<br>Type | Pin Description                                | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|              |             |                                                |                 | AC8           |               |
|              |             |                                                |                 | AF5           |               |
|              |             |                                                |                 | AE6           |               |
| MDATA63      | I/O         | 64bit SDRAM Data                               |                 | AE5           |               |
| ~<br>MDATA56 | ., 0        |                                                |                 | AD6           |               |
|              |             |                                                |                 | AF4           |               |
|              |             |                                                |                 | AF3           |               |
|              |             |                                                |                 | AC6           |               |
|              |             |                                                |                 | AC5           |               |
|              |             |                                                |                 | AD4           |               |
|              |             |                                                |                 | AC4           |               |
| MDATA55<br>~ | I/O         | 64bit SDRAM Data                               |                 | AD3           |               |
| MDATA48      |             |                                                |                 | AC3           |               |
|              |             |                                                |                 | AB4           |               |
|              |             |                                                |                 | AE1           |               |
|              |             |                                                |                 | AD1           |               |
|              |             |                                                |                 | AB3           |               |
|              |             |                                                |                 | AA3           |               |
| MDATA47      |             |                                                |                 | AB2           |               |
| ~            | I/O         | 64bit SDRAM Data                               |                 | AB1           |               |
| MDATA40      |             |                                                |                 | Y4            |               |
|              |             |                                                |                 | Y3            |               |
|              |             |                                                |                 | AA2           |               |
|              |             |                                                |                 | Y2            |               |
|              |             |                                                |                 | Y1            |               |
|              |             |                                                |                 | V4            |               |
| MDATA39      |             |                                                |                 | W1            |               |
| ~            | I/O         | 64bit SDRAM Data                               |                 | V3            |               |
| MDATA32      |             |                                                |                 | U4            |               |
|              |             |                                                |                 | U3            |               |
|              |             |                                                |                 | U2            |               |
|              |             |                                                |                 | U1            |               |



| Pin<br>Name              | Pin<br>Type | Pin Description  | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|--------------------------|-------------|------------------|-----------------|---------------|---------------|
|                          |             |                  |                 | H1            |               |
|                          |             |                  |                 | J2            |               |
|                          |             |                  |                 | J4            |               |
| MDATA31                  | I/O         | 64bit SDRAM Data |                 | H2            |               |
| ~<br>MDATA24             | 1/0         |                  |                 | H3            |               |
|                          |             |                  |                 | G1            |               |
|                          |             |                  |                 | F1            |               |
|                          |             |                  |                 | G2            |               |
|                          |             |                  |                 | G3            |               |
|                          |             |                  |                 | G4            |               |
|                          |             |                  |                 | F3            |               |
| MDATA23                  | I/O         | 64bit SDRAM Data |                 | F4            |               |
| ~<br>MDATA16             | 1/0         |                  |                 | D1            |               |
|                          |             |                  |                 | C1            |               |
|                          |             |                  |                 | D2            |               |
|                          |             |                  |                 | C2            |               |
|                          |             |                  |                 | E4            |               |
|                          |             |                  |                 | D3            |               |
|                          |             |                  |                 | C3            |               |
| MDATA16                  | I/O         | 64bit SDRAM Data |                 | D4            |               |
| ~<br>MDATA8              | 1/0         |                  |                 | C4            |               |
|                          |             |                  |                 | B3            |               |
|                          |             |                  |                 | C5            |               |
|                          |             |                  |                 | D6            |               |
|                          |             |                  |                 | A3            |               |
|                          |             |                  |                 | C6            |               |
|                          |             |                  |                 | B5            |               |
| MDATA7<br>~ I/<br>MDATA0 | I/O         | 64bit SDRAM Data |                 | D7            |               |
|                          | "0          |                  |                 | A5            |               |
|                          |             |                  |                 | D8            |               |
|                          |             |                  |                 | C7            |               |
|                          |             |                  |                 | D9            |               |

Table 1-1. S5H2000X Pin Descriptions (Continued: SDRAM)



| Pin<br>Name | Pin<br>Type | Pin Description                   | Circuit<br>Type | Pin<br>Number | Share<br>Pins |   |   |   |   |                        |  |    |  |
|-------------|-------------|-----------------------------------|-----------------|---------------|---------------|---|---|---|---|------------------------|--|----|--|
|             |             |                                   |                 | Т3            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | T1            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | R4            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | R3            |               |   |   |   |   |                        |  |    |  |
| MADDR10     |             |                                   |                 | P4            |               |   |   |   |   |                        |  |    |  |
| ~           | 0           | 11bit SDRAM Address               |                 | P3            |               |   |   |   |   |                        |  |    |  |
| MADDR0      |             |                                   |                 | P2            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | N1            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | N2            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | N3            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | N4            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | AF2           |               |   |   |   |   |                        |  |    |  |
|             |             |                                   | AA4             |               |               |   |   |   |   |                        |  |    |  |
| MDQM7       |             |                                   |                 | AA1           |               |   |   |   |   |                        |  |    |  |
|             | 0           | 8bit SDRAM Data MASK              |                 | T4            |               |   |   |   |   |                        |  |    |  |
| ~<br>MDQM0  | 0           | 0                                 | 0               | 0             | 0             | 0 | 0 | 0 | 0 | ODIT ODITANI Data MASK |  | F2 |  |
| MDQMO       |             |                                   |                 | B1            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | A4            |               |   |   |   |   |                        |  |    |  |
|             |             |                                   |                 | C8            |               |   |   |   |   |                        |  |    |  |
| MBA1        | 0           | 2bit SDRAM Bank Address           |                 | M1            |               |   |   |   |   |                        |  |    |  |
| MBA0        | U           |                                   |                 | M2            |               |   |   |   |   |                        |  |    |  |
| MCLK        | 0           | SDRAM Clock                       |                 | M4            |               |   |   |   |   |                        |  |    |  |
| MCKE        | 0           | SDRAM Clock Enable                |                 | L1            |               |   |   |   |   |                        |  |    |  |
| nMCS1       | 0           | SDRAM Chip Select 1 (Active LOW)  |                 | K1            |               |   |   |   |   |                        |  |    |  |
| nMCS0       | 0           | SDRAM Chip Select 0 (Active LOW)  |                 | L2            |               |   |   |   |   |                        |  |    |  |
| nMWE        | 0           | SDRAM Write Enable (Active LOW)   |                 | K2            |               |   |   |   |   |                        |  |    |  |
| nMRAS       | 0           | SDRAM Row Address (Active LOW)    |                 | K4            |               |   |   |   |   |                        |  |    |  |
| nMCAS       | 0           | SDRAM Column Address (Active LOW) |                 | K3            |               |   |   |   |   |                        |  |    |  |

## Table 1-1. S5H2000X Pin Descriptions (Continued: SDRAM)



| Pin<br>Type | Pin Description          | Circuit<br>Type                                                                        | Pin<br>Number                                                                                                  | Share<br>Pins                                                                                                                       |
|-------------|--------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|             |                          |                                                                                        | D22                                                                                                            |                                                                                                                                     |
|             | 8bit SD Video Data Input |                                                                                        | C23                                                                                                            |                                                                                                                                     |
|             |                          |                                                                                        | D23                                                                                                            |                                                                                                                                     |
| 1           |                          |                                                                                        | E23                                                                                                            |                                                                                                                                     |
| I           |                          |                                                                                        | C24                                                                                                            |                                                                                                                                     |
|             |                          |                                                                                        | C25                                                                                                            |                                                                                                                                     |
|             |                          |                                                                                        | D24                                                                                                            |                                                                                                                                     |
|             |                          |                                                                                        | C26                                                                                                            |                                                                                                                                     |
| I           | SD Video Data Clock      |                                                                                        | B23                                                                                                            |                                                                                                                                     |
| I           | SD Video H Sync          |                                                                                        | B24                                                                                                            |                                                                                                                                     |
| I           | SD Video V Sync          |                                                                                        | A25                                                                                                            |                                                                                                                                     |
| I           | SD Video Field ID        |                                                                                        | B26                                                                                                            |                                                                                                                                     |
|             |                          | TypeI8bit SD Video Data InputI8bit SD Video Data ClockISD Video H SyncISD Video V Sync | TypeTypeI8bit SD Video Data InputI8bit SD Video Data ClockISD Video Data ClockISD Video H SyncISD Video V Sync | TypeTypeNumberID22C23D23D23Bbit SD Video Data InputE23C24C24C25D24D24C26ISD Video Data ClockIISD Video H SyncB23ISD Video V SyncA25 |

Table 1-1. S5H2000X Pin Descriptions (Continued: External Video data input-SD)

## Table 1-1. S5H2000X Pin Descriptions (Continued: External Video data input-HD)

| Pin<br>Name | Pin<br>Type | Pin Description              | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|------------------------------|-----------------|---------------|---------------|
|             |             |                              |                 | K26           |               |
|             |             |                              |                 | M23           |               |
| HIR7        |             |                              |                 | M24           |               |
| ~           | I           | HD Video <b>R</b> Data Input |                 | M25           |               |
| ~<br>HIR0   | I           |                              |                 | M26           |               |
|             |             |                              |                 | N23           |               |
|             |             |                              |                 | N24           |               |
|             |             |                              |                 | N25           |               |
|             |             |                              |                 | H25           |               |
|             |             |                              |                 | J25           |               |
| HIG7        |             |                              |                 | H26           |               |
|             | I           | HD Video C Data Input        |                 | J26           |               |
| ~<br>HIG0   | 1           | HD Video <b>G</b> Data Input |                 | K23           |               |
|             |             |                              |                 | K24           |               |
|             |             |                              |                 | K25           |               |
|             |             |                              |                 | L23           |               |



| Pin<br>Name | Pin<br>Type | Pin Description              | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|------------------------------|-----------------|---------------|---------------|
|             |             |                              |                 | E26           |               |
|             |             |                              |                 | H23           |               |
| HIB7        |             |                              |                 | G24           |               |
|             | 1           | HD Video <b>B</b> Data Input |                 | G25           |               |
| ~<br>HIB0   | 1           |                              |                 | F26           |               |
|             |             |                              |                 | G26           |               |
|             |             |                              |                 | H24           |               |
|             |             |                              |                 | J24           |               |
| HICLK       | I           | HD Video Data Clock          |                 | G23           |               |
| HIHSYNC     | I           | HD Video H Sync              |                 | F24           |               |
| HIVSYNC     | I           | HD Video V Sync              |                 | F25           |               |

## Table 1-1. S5H2000X Pin Descriptions (Continued: External Video data input-HD)

#### Table 1-1. S5H2000X Pin Descriptions (Continued: Video data output-analog SD)

| Pin<br>Name | Pin<br>Type | Pin Description                  | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|----------------------------------|-----------------|---------------|---------------|
| aCVBS       | AO          | SD Analog Composite Video Output |                 | A20           |               |
| aY          | AO          | SD Analog Luminance Video Output |                 | A17           |               |
| aC          | AO          | SD Analog Chroma Video Output    |                 | C19           |               |
| aSCOMP      | AO          | SD DAC Compensation              |                 | B19           |               |
| aSVREF      | AO          | SD DAC Voltage Reference         |                 | D18           |               |
| aSIRS       | AO          | SD DAC Current Reference         |                 | C17           |               |

#### Table 1-1. S5H2000X Pin Descriptions (Continued: Video data output-analog HD)

| Pin<br>Name | Pin<br>Type | Pin Description          | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|--------------------------|-----------------|---------------|---------------|
| aRPR        | AO          | HD Analog Video R Output |                 | A14           |               |
| aGY         | AO          | HD Analog Video G Output |                 | B16           |               |
| aBPB        | AO          | HD Analog Video B Output |                 | B14           |               |
| aHCOMP      | AO          | HD DAC Compensation      |                 | D14           |               |
| aHVREF      | AO          | HD DAC Voltage Reference |                 | C14           |               |
| aHIRS       | AO          | HD DAC Current Reference |                 | A16           |               |



| Pin<br>Name | Pin<br>Type | Pin Description               | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|-------------------------------|-----------------|---------------|---------------|
|             |             |                               |                 | C20           |               |
|             |             |                               |                 | D20           |               |
| HOR7        |             |                               |                 | A22           |               |
| ~           | 0           | HD Video <b>R</b> Data Output |                 | B22           |               |
| HOR0        | 0           |                               |                 | C21           |               |
|             |             |                               |                 | A23           |               |
|             |             |                               |                 | A24           |               |
|             |             |                               |                 | D21           |               |
|             |             |                               |                 | D12           |               |
|             |             |                               |                 | A12           |               |
| HOG7        |             | O HD Video G Data Output      |                 | D13           |               |
| ~           | 0           |                               |                 | C13           |               |
| HOG0        | 0           |                               |                 | B13           |               |
| 11000       |             |                               |                 | D19           |               |
|             |             |                               |                 | A21           |               |
|             |             |                               |                 | B21           |               |
|             |             |                               |                 | A8            |               |
|             |             |                               |                 | C10           |               |
| HOB7        |             |                               |                 | B9            |               |
| ~           | 0           | HD Video <b>B</b> Data Output |                 | D11           |               |
| HOB0        | 0           |                               |                 | B10           |               |
|             |             |                               |                 | C11           |               |
|             |             |                               |                 | B11           |               |
|             |             |                               |                 | A11           |               |
| HVIDCLK     | Ι           | HD Video Data Clock           |                 | C9            |               |
| HOVSYNC     | 0           | HD Video H Sync Output        |                 | B8            |               |
| HOHSYNC     | 0           | HD Video V Sync Output        |                 | D10           |               |

# Table 1-1. S5H2000X Pin Descriptions (Continued: External Video data output-digital HD)



| Pin<br>Name | Pin<br>Type | Pin Description                    | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|------------------------------------|-----------------|---------------|---------------|
| ILRCLK      | I           | Audio Left/Right Clock Input       |                 | T26           |               |
| IBCLK       | I           | Bit Clock Input                    |                 | R23           |               |
| IPCM        | I           | PCM Data Input                     |                 | T24           |               |
| OBCLK       | 0           | Bit Clock Output                   |                 | U25           |               |
| ODCLK       | 0           | DAC Clock Output                   |                 | U26           |               |
| OLRCLK      | 0           | Left/Right indicate signal         |                 | T23           |               |
| OADATA      | 0           | DATA Output for External audio DAC |                 | V26           |               |
| OSPDIF      | 0           | SPDIF Output                       |                 | U24           |               |

#### Table 1-1. S5H2000X Pin Descriptions (Continued: Audio output)

| Pin<br>Name | Pin<br>Type | Pin Description          | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|--------------------------|-----------------|---------------|---------------|
|             |             |                          |                 | A1            |               |
|             |             |                          |                 | A7            |               |
|             |             |                          |                 | A10           |               |
|             |             |                          |                 | A13           |               |
|             |             |                          |                 | A26           |               |
|             |             |                          |                 | B2<br>B4      |               |
|             |             |                          |                 | Б4<br>C22     |               |
|             |             |                          |                 | E25           |               |
|             |             |                          |                 | J23           |               |
|             |             |                          |                 | L26           |               |
|             |             |                          |                 | M3            |               |
|             |             |                          |                 | P1            |               |
| PVDDOP      |             | Digital PAD Power (3.3V) |                 | T2            |               |
| _           |             |                          |                 | T25           | _             |
|             |             |                          |                 | V2            |               |
|             |             |                          |                 | W4            |               |
|             |             |                          |                 | AA25          |               |
|             |             |                          |                 | AC1           |               |
|             |             |                          |                 | AC18          |               |
|             |             |                          |                 | AC20          |               |
|             |             |                          |                 | AD5           |               |
|             |             |                          |                 | AD9           |               |
|             |             |                          |                 | AD16          |               |
|             |             |                          |                 | AE14          |               |
|             |             |                          |                 | AF1           |               |
|             |             |                          |                 | AF10<br>AF26  |               |
|             |             |                          |                 | AF26<br>A9    |               |
|             |             |                          |                 | A18           |               |
|             |             |                          |                 | B6            |               |
|             |             |                          |                 | B20           |               |
|             |             |                          |                 | B25           |               |
| PVSSOP      |             | Digital PAD Ground       |                 | E3            |               |
|             |             |                          |                 | H4            | -             |
|             |             |                          |                 | J1            |               |
|             |             |                          |                 | J3            |               |
|             |             |                          |                 | V1            |               |
|             |             |                          |                 | AC7           |               |
|             |             |                          |                 | AD12          |               |

Table 1-1. S5H2000X Pin Descriptions (Continued: Power)



| Pin<br>Name | Pin<br>Type | Pin Description               | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|-------------|-------------|-------------------------------|-----------------|---------------|---------------|
|             |             |                               |                 | AE2           |               |
|             |             |                               |                 | AE25          |               |
|             |             |                               |                 | AF13          |               |
|             |             |                               |                 | AF24          |               |
|             |             |                               |                 | B7            |               |
|             |             |                               |                 | D5            |               |
|             |             |                               |                 | D26           |               |
|             |             |                               |                 | E1            |               |
|             |             |                               |                 | L3            |               |
| PVDDI       | _           | Digital Internal Power (1.8V) |                 | L24           | _             |
|             |             |                               |                 | R2            |               |
|             |             |                               |                 | V23           |               |
|             |             |                               |                 | W3            |               |
|             |             |                               |                 | AD2           |               |
|             |             |                               |                 | AD21          |               |
|             |             |                               |                 | AD25<br>AE4   |               |
|             |             |                               |                 | AE4<br>AE7    |               |
|             |             |                               |                 | AF12          |               |
|             |             |                               |                 | AF18          |               |
|             |             |                               |                 | A2            |               |
|             |             |                               |                 | A6            |               |
|             |             |                               |                 | E2            |               |
|             |             |                               |                 | F23           |               |
|             |             |                               |                 | L4            |               |
|             |             |                               |                 | L25           |               |
|             |             |                               |                 | R1            |               |
| PVSSI       |             | Digital Internal Ground       |                 | W2            |               |
|             | _           | 0                             |                 | AA26          | _             |
|             |             |                               |                 | AC2           |               |
|             |             |                               |                 | AD7           |               |
|             |             |                               |                 | AD24          |               |
|             |             |                               |                 | AE3           |               |
|             |             |                               |                 | AE12          |               |
|             |             |                               |                 | AE18          |               |
|             |             |                               |                 | AE22          |               |

Table 1-1. S5H2000X Pin Descriptions (Continued: Power)



| Pin<br>Name              | Pin<br>Type | Pin Description                                  | Circuit<br>Type | Pin<br>Number | Share<br>Pins |
|--------------------------|-------------|--------------------------------------------------|-----------------|---------------|---------------|
|                          |             |                                                  |                 | A2            |               |
|                          |             |                                                  |                 | A6            |               |
|                          |             |                                                  |                 | E2            |               |
|                          |             |                                                  |                 | F23           |               |
|                          |             |                                                  |                 | L4            |               |
|                          |             |                                                  |                 | L25           |               |
|                          |             |                                                  |                 | R1            |               |
| PVSSI                    | _           | Digital Internal Ground                          |                 | W2            |               |
|                          |             |                                                  |                 | AA26          |               |
|                          |             |                                                  |                 | AC2           |               |
|                          |             |                                                  |                 | AD7           |               |
|                          |             |                                                  |                 | AD24          |               |
|                          |             |                                                  |                 | AE3           |               |
|                          |             |                                                  |                 | AE12          |               |
|                          |             |                                                  |                 | AE18          |               |
|                          |             |                                                  |                 | AE22          |               |
|                          | -           | DAC PAD Power (3.3V)                             |                 | B15           |               |
| PAVDDT                   |             |                                                  |                 | C15           | _             |
|                          |             |                                                  |                 | C18           |               |
|                          |             |                                                  |                 | D17           |               |
|                          | -           |                                                  |                 | A15           |               |
| PAVSST                   |             | DAC PAD Ground                                   |                 | A19           | _             |
|                          |             |                                                  |                 | B18           |               |
| PVDDI_DAC                |             | DAC Internel Dewer (2.2)/)                       |                 | D15<br>C16    |               |
| PVDDI_DAC                | -           | DAC Internal Power (3.3V)<br>DAC Internal Ground |                 | D16           | _             |
| PAVBB_DAC                | _           | DAC Internal Ground<br>DAC Bulk Ground           |                 | B17           | -             |
| PAVBB_DAC                | _           |                                                  |                 | P23           | _             |
| PAVDDT_PLL<br>PAVSST_PLL | _           | PLL PAD Power (1.8V) PLL PAD Ground              |                 | P23<br>R24    |               |
| PAVSST_PLL<br>PAVBB_PLL  |             | PLL PAD Ground<br>PLL Bulk Ground                |                 | R24<br>R25    | -             |
| PAVBB_PLL<br>PVDDI_PLL   | -           | PLL Bulk Ground<br>PLL Internal Power (1.8V)     |                 | R25<br>N26    | -             |
| PVSSI_PLL                | -           | PLL Internal Ground                              |                 | P26           | _             |

Table 1-1. S5H2000X Pin Descriptions (Continued: Power)



NOTES



# **2** ADDRESS SPACE

## OVERVIEW

Basically, S5H2000X communicates with external devices through PCI.

S5H2000X requests the required amount of memory (The amount should be previously indicated.) From the host through the base address registers, BAR0 and BAR1, of the PCI configuration registers. All the registers of the S5H2000X have addresses which are determined by offset from BAR0 and BAR1. The address space that the PCI host device allocates to S5H2000X BAR0 and BAR1 exists within the range of the PCI address space (32 bits – 4GB (Giga bytes).

For example, if the S3C2800X is the PCI host device, it detects S5H2000X during PCI scanning upon boot-up and recognizes the requested address space (memory or I/O size) via BAR0and BAR1. S3C2800X is designed to have a maximum PCI address space of 128MB (Mega bytes).

Hence, although the total PCI address space is 4GB because the PCI address bus is 32 bits, the S3C2800X can only use up to 128MB of address space. The S3C2800X has a built-in address conversion logic gate which picks up the desired starting address from the PCI address space of 4GB.

The following example describes in detail the addressing for a device constructed with S5H2000X and S3C2800X.

This device requests from the host 4-MB of memory via BAR0 and 32-MB of memory via BAR1 in accordance with the PCI us 2.1 specification. This request is known to the S3C2800X, which is the PCI host, during PCI scanning.

The PCI start address of the S3C2800X is designed to be 0x2000 0000. If the value of the PCIBATAPM\_[31:27] register of the S3C2800X is set to 0100 0b and you read the momory location of 0x2000 0010 from the S3C2800X, the requested address is 0x4000 0010 on the PCI bus. That is, the address\_[31:27] of 3C2800X is converted the value of PCIBATAPM\_[31:27] and is output on the PCI bus. If 0x4000 0000 is written to-S5H2000X's BAR0, the address is mapped to S5H2000X's BAR0 + 0x000 0010 and the content in the mapped address is read.



#### ADDRESS SPACE

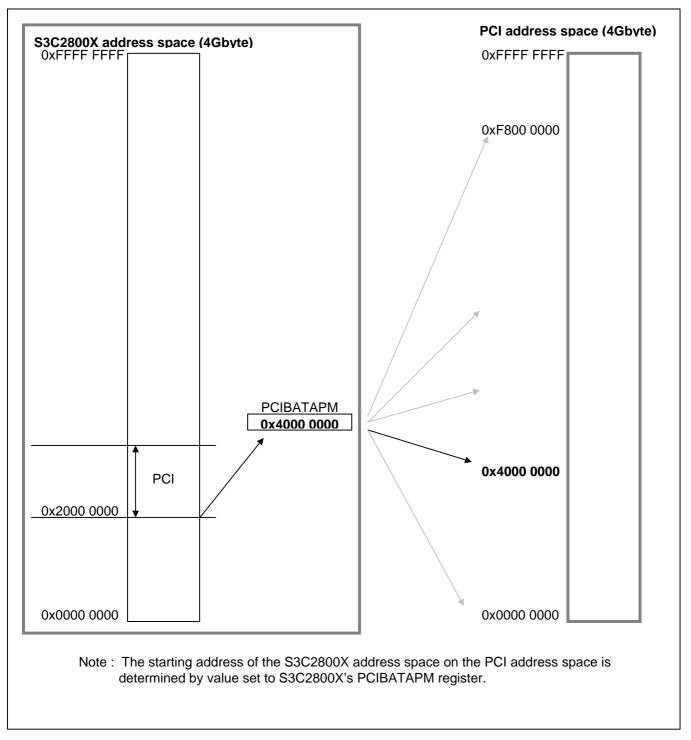



Figure 2-1 Host and S5H2000X address space



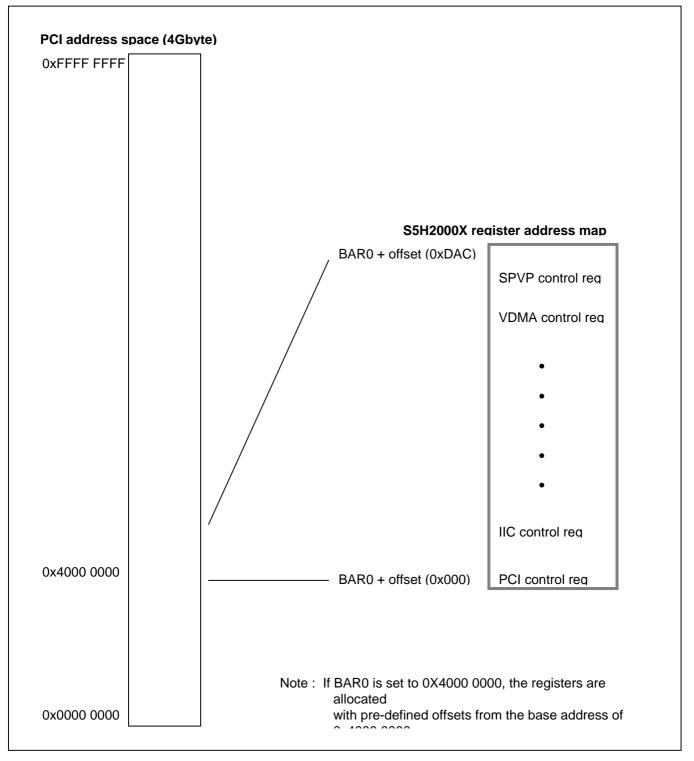



Figure 2-2 S5H2000X PCI memory address space



## **REGISTER MAP**

| Name      | Address  | Description                        | Туре | Reset value |
|-----------|----------|------------------------------------|------|-------------|
| GSCR_AMMR | BAR0+00h | Arbitration Mode of Master         | R/W  | 0           |
| GSCR_IER  | BAR0+04h | Interrupt Enable Register          | R/W  | 0           |
| GSCR_IPCR | BAR0+08h | Interrupt Pending & Clear Register | R/W  | 0           |
| GSCR_MMSR | BAR0+0ch | Master Module Status Register      | R    | 0           |
| GSCR_SRN  | BAR0+14h | Soft Reset_N                       | R/W  | 0           |

#### Table 2-1. S5H2000X Register map (PCI control register)

Table 2-1. S5H2000X Register map (continued: PCI W\_TS\_DPSRAM)

| Name      | Address  | Description            | Туре | Reset value |
|-----------|----------|------------------------|------|-------------|
| LTCR1_PSA | BAR0+c0h | PCI Start Address      | R/W  | 0           |
| LTCR1_LSA | BAR0+c4h | Local Start Address    | R/W  | 0           |
| LTCR1_TBC | BAR0+c8h | Transfer Byte-Count    | R/W  | 0           |
| LTCR1_AxC | BAR0+cch | Auxiliary Control      | R/W  | 0           |
| LTCR1_XBC | BAR0+d0h | Transferred Byte-Count | R    | 0           |
| LTCR1_ESR | BAR0+d4h | Error Status           | R    | 0           |

## Table 2-1. S5H2000X Register map (continued: PCI GP interface register)

| Name     | Address  | Description           | Туре | Reset value |
|----------|----------|-----------------------|------|-------------|
| LGCR_PSA | BAR0+e0h | PCI Start Address     | R    | 0           |
| LGCR_DSR | BAR0+e4h | Data Size             | R    | 0           |
| LGCR_AxC | BAR0+e8h | Auxiliary Control     | R/W  | 0           |
| LGCR_TDS | BAR0+ech | Transferred Data Size | R    | 0           |
| LGCR_ESR | BAR0+f0h | Error Status          | R    | 0           |



| Name        | Address   | Description                   | Туре | Reset value |
|-------------|-----------|-------------------------------|------|-------------|
| LDCR_PSA0   | BAR0+100h | Audio DMA Control Register    | R/W  | 0           |
| LDCR_PSA1   | BAR0+104h | Audio DMA Control Register    | R/W  | 0           |
| LDCR_TWC0   | BAR0+108h | Audio DMA Control Register    | R/W  | 0           |
| LDCR_TWC1   | BAR0+10ch | Audio DMA Control Register    | R/W  | 0           |
| LDCR_AxC    | BAR0+110h | Audio DMA Control Register    | R/W  | 0           |
| LDCR_XWC0   | BAR0+114h | Audio DMA Control Register    | R    | 0           |
| LDCR_XWC1   | BAR0+118h | Audio DMA Control Register    | R    | 0           |
| LDCR_ESR    | BAR0+11ch | Audio DMA Control Register    | R    | 0           |
| LACR_IO     | BAR0+124h | Audio INOUT Setting Register  | R/W  | 0           |
| LACR_VAL    | BAR0+128h | Audio IEC958 Control Register | R/W  | 0           |
| LACR_STATUS | BAR0+12ch | Audio Channel Status Register | R    | 0           |
|             |           |                               |      |             |

Table 2-1. S5H2000X Register map (continued: PCI Audio DMA register)

## Table 2-1. S5H2000X Register map (continued: PCI HSMB register)

| Name     | Address   | Description            | Туре | Reset value |
|----------|-----------|------------------------|------|-------------|
| LHCR_PSA | BAR0+140h | PCI Start Address      | R/W  | 0           |
| LHCR_LSA | BAR0+144h | Local Start Address    | R/W  | 0           |
| LHCR_TBC | BAR0+148h | Transfer Byte-Count    | R/W  | 0           |
| LHCR_AxC | BAR0+14ch | Auxiliary Control      | R/W  | 0           |
| LHCR_XBC | BAR0+150h | Transferred Byte-Count | R    | 0           |
| LHCR_ESR | BAR0+154h | Error Status           | R    | 0           |

## Table 2-1. S5H2000X Register map (continued: PCI SP interface register)

| Name     | Address   | Description            | Туре | Reset value |
|----------|-----------|------------------------|------|-------------|
| LVCR_PHA | BAR0+160h | PCI Head Address       | R/W  | 0           |
| LVCR_CQS | BAR0+164h | Circular Que Size      | R/W  | 0           |
| LVCR_AxC | BAR0+168h | Auxiliary Control      | R/W  | 0           |
| LVCR_WPA | BAR0+16ch | Write Point Address    | R    | 0           |
| LVCR_XBC | BAR0+170h | Transferred Byte-Count | R    | 0           |
| LVCR_ESR | BAR0+174h | Error Status           | R    | 0           |



| Name       | Address   | Description        | Туре | Reset value |
|------------|-----------|--------------------|------|-------------|
| VFRM_REG0  | BAR0+180h | Header Register_0  | R    | 0           |
| VFRM_REG1  | BAR0+184h | Header Register_1  | R    | 0           |
| VFRM_REG2  | BAR0+188h | Header Register_2  | R    | 0           |
| VFRM_REG3  | BAR0+18ch | Header Register_3  | R    | 0           |
| VFRM_REG4  | BAR0+190h | Header Register_4  | R    | 0           |
| VFRM_REG5  | BAR0+194h | Header Register_5  | R    | 0           |
| VFRM_REG6  | BAR0+198h | Header Register_6  | R    | 0           |
| VFRM_REG7  | BAR0+19ch | Header Register_7  | R    | 0           |
| VFRM_REG8  | BAR0+1a0h | Header Register_8  | R    | 0           |
| VFRM_REG9  | BAR0+1a4h | Header Register_9  | R    | 0           |
| VFRM_REG10 | BAR0+1a8h | Header Register_10 | R    | 0           |
| VFRM_REG11 | BAR0+1ach | Header Register_11 | R    | 0           |
| VFRM_REG12 | BAR0+1b0h | Header Register_12 | R    | 0           |
| VFRM_REG13 | BAR0+1b4h | Header Register_13 | R    | 0           |
| VFRM_REG14 | BAR0+1b8h | Header Register_14 | R    | 0           |
| VFRM_REG15 | BAR0+1bch | Header Register_15 | R    | 0           |

Table 2-1. S5H2000X Register map (continued: PCI Header FIFO register)

#### Table 2-1. S5H2000X Register map (continued: PCI Write Pointer for Header register)

| Name     | Address    | Description              | Туре | Reset value |
|----------|------------|--------------------------|------|-------------|
| HDR_WPTR | BA R0+1c0h | Write Pointer for Header | R    | 0           |

## Table 2-1. S5H2000X Register map (continued: PLL Mode register)

| Name         | Address   | Description                 | Туре | Reset value |
|--------------|-----------|-----------------------------|------|-------------|
| RPLL_PLL135  | BAR0+1e0h | 135MHz PLL mode Register    | R/W  | 0x4970      |
| RPLL_PLL38P4 | BAR0+1e4h | 38.4MHz PLL mode Register   | R/W  | 0x6ce0      |
| RPLL_PLL24P5 | BAR0+1e8h | 24.576MHz PLL mode Register | R/W  | 0x5c61      |

| Name       | Address   | Description                      | Туре | Reset value |
|------------|-----------|----------------------------------|------|-------------|
| INTR_QUE0  | BAR0+240h | Interrupt Queue 0 Register       | R/W  | 0           |
| INTR_MASK0 | BAR0+244h | Interrupt Mask 0 Register        | R/W  | 0           |
| INTR_ACK0  | BAR0+248h | Interrupt Acknowledge 0 Register | R/W  | 0           |
| INTR_QUE1  | BAR0+24ch | Interrupt Queue 1 Register       | R/W  | 0           |
| INTR_MASK1 | BAR0+250h | Interrupt Mask 1 Register        | R/W  | 0           |
| INTR_ACK1  | BAR0+254h | Interrupt Acknowledge 1 Register | R/W  | 0           |
| INTR_ARMI  | BAR0+258h | ARM Interrupt Register           | R/W  | 0           |
| INTR_ARMA  | BAR0+25ch | ARM Acknowledge Register         | R/W  | 0           |
| INTR_ARMPR | BAR0+260h | ARM Priority Register            | R/W  | 0           |
| INTR_ARMM  | BAR0+264h | ARM Mask Register                | R/W  | 0           |
| INTR_ARMPD | BAR0+268h | ARM Pending Register             | R/W  | 0           |

| Table 2-1 S5H2000X Register man | (continued: Interrupt control register) |
|---------------------------------|-----------------------------------------|
| Table 2-1. Conzoox Register map | (continued: interrupt control register) |

#### Table 2-1. S5H2000X Register map (continued: IIC control register)

| Name       | Address   | Description                   | Туре | Reset value |
|------------|-----------|-------------------------------|------|-------------|
| I2C_CTRL   | BAR0+280h | I2C Control Register          | R/W  | 0           |
| I2C_ADDR   | BAR0+284h | I2C Address Register          | R/W  | 0           |
| I2C_TXDAT  | BAR0+288h | I2C Transmitted Data Register | R/W  | 0           |
| I2C_RXDAT  | BAR0+28ch | I2C Received Data Register    | R    | 0           |
| I2C_CLK    | BAR0+290h | I2C Clock Register            | R/W  | 0           |
| I2C_STATUS | BAR0+294h | I2C Status Register           | R    | 0           |

#### Table 2-1. S5H2000X Register map (continued: TS DMA1 control register)

| Name          | Address   | Description                  | Туре | Reset value |
|---------------|-----------|------------------------------|------|-------------|
| DMA1_SRC_ADDR | BAR0+400h | DMA1 source address Register | R/W  | 0           |
| DMA1_TAR_ADDR | BAR0+404h | DMA1 target address Register | R/W  | 0           |
| DMA1_CTRL     | BAR0+408h | DMA1 Control Register        | R/W  | 0           |

#### Table 2-1. S5H2000X Register map (continued: TS Buffer control register)

| Name          | Address   | Description                | Туре | Reset value |
|---------------|-----------|----------------------------|------|-------------|
| BUFFER_VALID1 | BAR0+420h | Buffer 1 Validity Register | R    | 0           |



| Name  | Address   | Description             | Туре | Reset value |
|-------|-----------|-------------------------|------|-------------|
| PID0  | BAR0+480h | PID 0 Setting Register  | R/W  | 0           |
| PID1  | BAR0+484h | PID 1 Setting Register  | R/W  | 0           |
| PID2  | BAR0+488h | PID 2 Setting Register  | R/W  | 0           |
| PID3  | BAR0+48ch | PID 3 Setting Register  | R/W  | 0           |
| PID4  | BAR0+490h | PID 4 Setting Register  | R/W  | 0           |
| PID5  | BAR0+494h | PID 5 Setting Register  | R/W  | 0           |
| PID6  | BAR0+498h | PID 6 Setting Register  | R/W  | 0           |
| PID7  | BAR0+49ch | PID 7 Setting Register  | R/W  | 0           |
| PID8  | BAR0+4a0h | PID 8 Setting Register  | R/W  | 0           |
| PID9  | BAR0+4a4h | PID 9 Setting Register  | R/W  | 0           |
| PID10 | BAR0+4a8h | PID 10 Setting Register | R/W  | 0           |
| PID11 | BAR0+4ach | PID 11 Setting Register | R/W  | 0           |
| PID12 | BAR0+4b0h | PID 12 Setting Register | R/W  | 0           |
| PID13 | BAR0+4b4h | PID 13 Setting Register | R/W  | 0           |
| PID14 | BAR0+4b8h | PID 14 Setting Register | R/W  | 0           |
| PID15 | BAR0+4bch | PID 15 Setting Register | R/W  | 0           |
| PID16 | BAR0+4c0h | PID 16 Setting Register | R/W  | 0           |
| PID17 | BAR0+4c4h | PID 17 Setting Register | R/W  | 0           |
| PID18 | BAR0+4c8h | PID 18 Setting Register | R/W  | 0           |
| PID19 | BAR0+4cch | PID 19 Setting Register | R/W  | 0           |
| PID20 | BAR0+4d0h | PID 20 Setting Register | R/W  | 0           |
| PID21 | BAR0+4d4h | PID 21 Setting Register | R/W  | 0           |
| PID22 | BAR0+4d8h | PID 22 Setting Register | R/W  | 0           |
| PID23 | BAR0+4dch | PID 23 Setting Register | R/W  | 0           |
| PID24 | BAR0+4e0h | PID 24 Setting Register | R/W  | 0           |
| PID25 | BAR0+4e4h | PID 25 Setting Register | R/W  | 0           |
| PID26 | BAR0+4e8h | PID 26 Setting Register | R/W  | 0           |
| PID27 | BAR0+4ech | PID 27 Setting Register | R/W  | 0           |
| PID28 | BAR0+4f0h | PID 28 Setting Register | R/W  | 0           |
| PID29 | BAR0+4f4h | PID 29 Setting Register | R/W  | 0           |
| PID30 | BAR0+4f8h | PID 30 Setting Register | R/W  | 0           |
| PID31 | BAR0+4fch | PID 31 Setting Register | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: PID control register)



| Name       | Address   | Description             | Туре | Reset value |
|------------|-----------|-------------------------|------|-------------|
| SCRM_CTRL1 | BAR0+580h | DES Control Register 1  | R/W  | 0           |
| ODD_HIGH1  | BAR0+584h | DES1 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW1   | BAR0+588h | DES1 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH1 | BAR0+58ch | DES1 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW1  | BAR0+590h | DES1 EVEN KEY LSB 32bit | R/W  | 0           |
| SCRM_CTRL2 | BAR0+594h | DES Control Register 2  | R/W  | 0           |
| ODD_HIGH2  | BAR0+598h | DES2 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW1   | BAR0+59ch | DES2 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH2 | BAR0+5a0h | DES2 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW2  | BAR0+5a4h | DES2 EVEN KEY LSB 32bit | R/W  | 0           |
| SCRM_CTRL3 | BAR0+5a8h | DES Control Register 3  | R/W  | 0           |
| ODD_HIGH3  | BAR0+5ach | DES3 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW3   | BAR0+5b0h | DES3 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH3 | BAR0+5b4h | DES3 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW3  | BAR0+5b8h | DES3 EVEN KEY LSB 32bit | R/W  | 0           |
| SCRM_CTRL4 | BAR0+5bch | DES Control Register 4  | R/W  | 0           |
| ODD_HIGH4  | BAR0+5c0h | DES4 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW4   | BAR0+5c4h | DES4 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH4 | BAR0+5c8h | DES4 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW4  | BAR0+5cch | DES4 EVEN KEY LSB 32bit | R/W  | 0           |
| SCRM_CTRL5 | BAR0+5d0h | DES Control Register 5  | R/W  | 0           |
| ODD_HIGH5  | BAR0+5d4h | DES5 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW5   | BAR0+5d8h | DES5 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH5 | BAR0+5dch | DES5 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW5  | BAR0+5e0h | DES5 EVEN KEY LSB 32bit | R/W  | 0           |
| SCRM_CTRL6 | BAR0+5e4h | DES Control Register 6  | R/W  | 0           |
| ODD_HIGH6  | BAR0+5e8h | DES6 ODD KEY MSB 32bit  | R/W  | 0           |
| ODD_LOW6   | BAR0+5ech | DES6 ODD KEY LSB 32bit  | R/W  | 0           |
| EVEN_HIGH6 | BAR0+5f0h | DES6 EVEN KEY MSB 32bit | R/W  | 0           |
| EVEN_LOW6  | BAR0+5f4h | DES6 EVEN KEY LSB 32bit | R/W  | 0           |



| Name      | Address   | Description                    | Туре | Reset value |
|-----------|-----------|--------------------------------|------|-------------|
| PCR_CTRL1 | BAR0+6c0h | System Clock Reference Counter | R/W  | 0           |
| PCR_CTRL2 | BAR0+6c4h | System Clock Reference Counter | R/W  | 0           |
| PWM_CTRL  | BAR0+6c8h | PWM Duty Control               | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: Clock Recovery register)

## Table 2-1. S5H2000X Register map (continued: TS Input Switch register)

| Name     | Address   | Description                      | Туре | Reset value |
|----------|-----------|----------------------------------|------|-------------|
| EXT_CTRL | BAR0+6e0h | TS Input Switch External Control | R/W  | 0           |

#### Table 2-1. S5H2000X Register map (continued: DP control register)

| Name      | Address   | Description                            | Туре | Reset value |
|-----------|-----------|----------------------------------------|------|-------------|
| DP_REG_0  | BAR0+800h | sync on                                | R/W  | 0           |
| DP_REG_1  | BAR0+804h | source on / off                        | R/W  | 0           |
| DP_REG_2  | BAR0+808h | display mode                           | R/W  | 0           |
| DP_REG_3  | BAR0+80ch | display size                           | R/W  | 0           |
| DP_REG_4  | BAR0+810h | hd output h sync location / rate       | R/W  | 0           |
| DP_REG_5  | BAR0+814h | hd output h active                     | R/W  | 0           |
| DP_REG_6  | BAR0+818h | hd output v active                     | R/W  | 0           |
| DP_REG_7  | BAR0+81ch | hd output 656 v active                 | R/W  | 0           |
| DP_REG_8  | BAR0+820h | SP vsync start 0/1                     | R/W  | 0           |
| DP_REG_10 | BAR0+828h | Main / Sub horizontal processing start | R/W  | 0x0101      |
| DP_REG_11 | BAR0+82ch | Main video enable horizontal           | R/W  | 0           |
| DP_REG_12 | BAR0+830h | Main video enable vertical             | R/W  | 0           |
| DP_REG_13 | BAR0+834h | Main2 /PIG / IPC sync                  | R/W  | 0           |
| DP_REG_14 | BAR0+838h | Sub video enable horizontal            | R/W  | 0           |
| DP_REG_15 | BAR0+83ch | Sub video enable vertical 0            | R/W  | 0           |
| DP_REG_18 | BAR0+848h | Display main video enable horizontal   | R/W  | 0           |
| DP_REG_19 | BAR0+84ch | Display main video enable vertical     | R/W  | 0           |
| DP_REG_20 | BAR0+850h | Display sub video enable horizontal    | R/W  | 0           |
| DP_REG_21 | BAR0+854h | Display sub video enable vertical      | R/W  | 0           |
| DP_REG_22 | BAR0+858h | HD sync                                | R/W  | 0           |
| DP_REG_23 | BAR0+85ch | SD sync                                | R/W  | 0           |
| DP_REG_24 | BAR0+860h | External SD sync                       | R/W  | 0x74        |



| Name      | Address   | Description                                                                 | Туре | Reset value |
|-----------|-----------|-----------------------------------------------------------------------------|------|-------------|
| DP_REG_25 | BAR0+864h | External SD horizonal active                                                | R/W  | 0           |
| DP_REG_26 | BAR0+868h | External SD vertical active                                                 | R/W  | 0           |
| DP_REG_27 | BAR0+86ch | External HD sync                                                            | R/W  | 0           |
| DP_REG_28 | BAR0+870h | External HD horizonal active                                                | R/W  | 0           |
| DP_REG_29 | BAR0+874h | External HD vertical active                                                 | R/W  | 0           |
| DP_REG_30 | BAR0+878h | External Base Display Pointer                                               | R/W  | 0           |
| DP_REG_31 | BAR0+87ch | 1h size for External Display Pointer                                        | R/W  | 0           |
| DP_REG_32 | BAR0+880h | Sub sample mode & mmu request length                                        | R/W  | 0           |
| DP_REG_33 | BAR0+884h | Main Vertical filter coefficient<br>Main Video data Vertical start location | R/W  | 0           |
| DP_REG_34 | BAR0+888h | Main Video data horizontal Start/End                                        | R/W  | 0           |
| DP_REG_35 | BAR0+88ch | Main Video data horizontal size<br>Main Horizontal Active Size              | R/W  | 0           |
| DP_REG_37 | BAR0+894h | IPC threshold                                                               | R/W  | 0           |
| DP_REG_38 | BAR0+898h | Pano on & Left/Center region Size                                           | R/W  | 0           |
| DP_REG_39 | BAR0+89ch | Main Horizontal Coefficient                                                 | R/W  | 0           |
| DP_REG_40 | BAR0+8a0h | Pano coefficient A & B                                                      | R/W  | 0           |
| DP_REG_41 | BAR0+8a4h | Polyphase filter coefficient                                                | R/W  | 0x7ff0      |
| DP_REG_42 | BAR0+8a8h | Polyphase filter coefficient                                                | R/W  | 0x66fffa50  |
| DP_REG_43 | BAR0+8ach | Polyphase filter coefficient                                                | R/W  | 0x98764310  |
| DP_REG_44 | BAR0+8b0h | Polyphase filter coefficient                                                | R/W  | 0x35790bba  |
| DP_REG_45 | BAR0+8b4h | Polyphase filter coefficient                                                | R/W  | 0x12348100  |
| DP_REG_46 | BAR0+8b8h | Polyphase filter coefficient                                                | R/W  | 0x2b688dd6  |
| DP_REG_47 | BAR0+8bch | Polyphase filter coefficient                                                | R/W  | 0xffef3adb  |
| DP_REG_48 | BAR0+8c0h | Polyphase filter coefficient                                                | R/W  | 0x078f9fc0  |
| DP_REG_49 | BAR0+8c4h | Polyphase filter coefficient                                                | R/W  | 0x05ac9b3a  |
| DP_REG_50 | BAR0+8c8h | Polyphase filter coefficient                                                | R/W  | 0x030751a8  |
| DP_REG_51 | BAR0+8cch | Polyphase filter coefficient                                                | R/W  | 0x00820692  |
| DP_REG_52 | BAR0+8d0h | Polyphase filter coefficient                                                | R/W  | 0xbba97530  |
| DP_REG_53 | BAR0+8d4h | Polyphase filter coefficient                                                | R/W  | 0x1346789a  |
| DP_REG_54 | BAR0+8d8h | Polyphase filter coefficient                                                | R/W  | 0x166bffa4  |
| DP_REG_55 | BAR0+8dch | Polyphase filter coefficient                                                | R/W  | 0x1ffc      |
| DP_REG_56 | BAR0+8e0h | Main Write 1h size                                                          | R/W  | 0           |
| DP_REG_57 | BAR0+8e4h | Main Color matirx                                                           | R/W  | 0           |
| DP_REG_58 | BAR0+8e8h | Main Color matirx                                                           | R/W  | 0           |

| Table 2-1. S5H2000X Register map (continued: DP control register) | Table 2-1. S5H2000X Register map (continued: DP control register) |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
|-------------------------------------------------------------------|-------------------------------------------------------------------|--|



| Name      | Address   | Description                                          | Туре | Reset value |
|-----------|-----------|------------------------------------------------------|------|-------------|
| DP_REG_59 | BAR0+8ech | Main boundary color                                  | R/W  | 0           |
| DP_REG_60 | BAR0+8f0h | Sub mmu request size                                 | R/W  | 0           |
| DP_REG_61 | BAR0+8f4h | Sub display & video data horizontal size             | R/W  | 0           |
| DP_REG_62 | BAR0+8f8h | Sub horizontal filter coef                           | R/W  | 0           |
| DP_REG_63 | BAR0+8fch | Sub Color matrix                                     | R/W  | 0           |
| DP_REG_64 | BAR0+900h | Sub Color matrix                                     | R/W  | 0           |
| DP_REG_65 | BAR0+904h | Sub vertical filter coef / video data vertical start | R/W  | 0           |
| DP_REG_66 | BAR0+908h | Sub video data horizontal start & end                | R/W  | 0           |
| DP_REG_67 | BAR0+90ch | Sub boundary color                                   | R/W  | 0           |
| DP_REG_68 | BAR0+910h | Display background color                             | R/W  | 0           |
| DP_REG_69 | BAR0+914h | SD output mode                                       | R/W  | 0           |
| DP_REG_70 | BAR0+918h | SD output filter ratio                               | R/W  | 0           |
| DP_REG_71 | BAR0+91ch | Digital Encoder Mode                                 | R/W  | 0           |
| DP_REG_72 | BAR0+920h | Macrovision interface                                | R/W  | 0xd2bd73e   |
| DP_REG_73 | BAR0+924h | Macrovision interface                                | R/W  | 0x90db665b  |
| DP_REG_74 | BAR0+928h | Macrovision interface                                | R/W  | 0x000000ff  |
| DP_REG_75 | BAR0+92ch | Macrovision interface                                | R/W  | 0x020df6f0  |
| DP_REG_76 | BAR0+930h | Macrovision interface                                | R/W  | 0x0000f0cf  |
| DP_REG_77 | BAR0+934h | Macrovision interface                                | R/W  | 0x00000000  |
| DP_REG_78 | BAR0+938h | SD output Caption Control                            | R/W  | 0           |
| DP_REG_79 | BAR0+93ch | DAC Control                                          | R/W  | 0           |
| DP_REG_80 | BAR0+940h | Interrupt event register                             | R/W  | 0           |
| DP_REG_81 | BAR0+944h | Interrupt mask register                              | R/W  | 0           |
| DP_REG_82 | BAR0+948h | SD interrupt input                                   | R/W  | 0           |
| DP_REG_83 | BAR0+94ch | HD interrupt input                                   | R/W  | 0           |
| DP_REG_84 | BAR0+950h | SD toggle count                                      | R    | 0           |
| DP_REG_85 | BAR0+954h | HD progressive & 4line count at 81MHz                | R    | 0           |
| DP_REG_86 | BAR0+958h | HD vertical & horizontal count                       | R    | 0           |
| DP_REG_87 | BAR0+95ch | HD output Analog sync control                        | R/W  | 0           |
| DP_REG_88 | BAR0+960h | HDout & SDout DAC Connection status                  | R    | 0           |
| DP_REG_89 | BAR0+964h | SD horizontal start & end                            | R/W  | 0           |
| DP_REG_90 | BAR0+968h | HD/SD select                                         | R/W  | 0           |
| DP_REG_91 | BAR0+96ch | Polyphase filter sign                                | R/W  | 0           |
| DP_REG_92 | BAR0+970h | Polyphase filter sign                                | R/W  | 0           |
|           |           |                                                      |      |             |

Table 2-1. S5H2000X Register map (continued: DP control register)



| Name      | Address   | Description                 | Туре | Reset value |
|-----------|-----------|-----------------------------|------|-------------|
| DP_REG_93 | BAR0+974h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_94 | BAR0+978h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_95 | BAR0+97ch | SD output vertical position | R/W  | 0           |
| DP_REG_96 | BAR0+980h | SD output vertical position | R/W  | 0           |
| DP_REG_93 | BAR0+974h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_94 | BAR0+978h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_95 | BAR0+97ch | SD output vertical position | R/W  | 0           |

# Table 2-1. S5H2000X Register map (continued: DP control register)

# Table 2-1. S5H2000X Register map (continued: GP control register)

| Name   | Address   | Description                               | Туре | Reset value |
|--------|-----------|-------------------------------------------|------|-------------|
| WHPR_0 | BAR0+a00h | Horizontal position register for window 0 | R/W  | 0           |
| WHPR_1 | BAR0+a04h | Horizontal position register for window 1 | R/W  | 0           |
| WHPR_2 | BAR0+a08h | Horizontal position register for window 2 | R/W  | 0           |
| WHPR_3 | BAR0+a0ch | Horizontal position register for window 3 | R/W  | 0           |
| WVPR_0 | BAR0+a20h | Vertical position register for window 0   | R/W  | 0           |
| WVPR_1 | BAR0+a24h | Vertical position register for window 1   | R/W  | 0           |
| WVPR_2 | BAR0+a28h | Vertical position register for window 2   | R/W  | 0           |
| WVPR_3 | BAR0+a2ch | Vertical position register for window 3   | R/W  | 0           |
| WMR_0  | BAR0+a40h | Mode register for window 0                | R/W  | 0           |
| WMR_1  | BAR0+a44h | Mode register for window 1                | R/W  | 0           |
| WMR_2  | BAR0+a48h | Mode register for window 2                | R/W  | 0           |
| WMR_3  | BAR0+a4ch | Mode register for window 3                | R/W  | 0           |
| WAR_0  | BAR0+a60h | Base address register for window 0        | R/W  | 0           |
| WAR_1  | BAR0+a64h | Base address register for window 1        | R/W  | 0           |
| WAR_2  | BAR0+a68h | Base address register for window 2        | R/W  | 0           |
| WAR_3  | BAR0+a6ch | Base address register for window 3        | R/W  | 0           |
| BCR    | BAR0+a80h | Background color/blink control register   | R/W  | 0           |
| VER    | BAR0+a84h | Video effect register                     | R/W  | 0           |
| PAR    | BAR0+a8ch | Pixel value register                      | R/W  | 0           |
| CHPR   | BAR0+aa4h | Horizontal cursor position register       | R/W  | 0           |
| CVPR   | BAR0+aa8h | Vertical cursor position register         | R/W  | 0           |
| CASR   | BAR0+aach | Cursor address & size register            | R/W  | 0           |
| CCR_0  | BAR0+ab0h | Cursor color register for index 0         | R/W  | 0           |
| CCR_1  | BAR0+ab4h | Cursor color register for index 1         | R/W  | 0           |
| CCR_2  | BAR0+ab8h | Cursor color register for index 2         | R/W  | 0           |



| Name  | Address   | Description                       | Туре | Reset value |
|-------|-----------|-----------------------------------|------|-------------|
| CCR_3 | BAR0+abch | Cursor color register for index 3 | R/W  | 0           |
| CCR_4 | BAR0+ac0h | Cursor color register for index 4 | R/W  | 0           |
| CCR_5 | BAR0+ac4h | Cursor color register for index 5 | R/W  | 0           |
| CCR_6 | BAR0+ac8h | Cursor color register for index 6 | R/W  | 0           |
| CCR_7 | BAR0+acch | Cursor color register for index 7 | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: GP control register)

# Table 2-1. S5H2000X Register map (continued: GA control register)

| Name     | Address   | Description                                     | Туре | Reset value |
|----------|-----------|-------------------------------------------------|------|-------------|
| GA_SIZE  | BAR0+b04h | BLT hor./ver. pixel size register               | R/W  | 0           |
| GA_CS1_0 | BAR0+b10h | Source1 BLT mode register in cpu memory         | R/W  | 0           |
| GA_CS1_1 | BAR0+b14h | Source1 BLT start address in cpu memory         | R/W  | 0           |
| GA_DST_0 | BAR0+b30h | Destination BLT mode register in local memory   | R/W  | 0           |
| GA_DST_1 | BAR0+b34h | Destination window base address in local memory | R/W  | 0           |
| GA_DST_2 | BAR0+b38h | Destination BLT start point in local memory     | R/W  | 0           |
| GA_START | BAR0+ba8h | BLT start register                              | R/W  | 0           |
| GA_RST   | BAR0+bach | GA reset register                               | R/W  | 0           |
| GA_STAT  | BAR0+bb0h | GA status register                              | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: MMU control register)

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_0  | BAR0+c00h | Base address register 0, 1 for MPEG memory   | R/W  | 0x000       |
|              |           | 0: MPEG/T/Y/I, 1: MPEG/T/Y/P                 |      | 0x088       |
| BASE_ADDR_1  | BAR0+c04h | Base address register 2, 3 for MPEG memory   | R/W  | 0x110       |
|              |           | 2: MPEG/T/Y/B0, 3: MPEG/T/Y/B1               |      | 0x198       |
| BASE_ADDR_4  | BAR0+c10h | Base address register 8, 9 for MPEG memory   | R/W  | 0x440       |
|              |           | 8: MPEG/T/C/I, 9: MPEG/T/C/P                 |      | 0x484       |
| BASE_ADDR_5  | BAR0+c14h | Base address register 10, 11 for MPEG memory | R/W  | 0x4C8       |
|              |           | 10: MPEG/T/C/B0, 11: MPEG/T/C/B1             |      | 0x50C       |
| BASE_ADDR_8  | BAR0+c20h | Base address register 16, 17 for MPEG memory | R/W  | 0x220       |
|              |           | 16: MPEG/B/Y/I, 17: MPEG/B/Y/P               |      | 0x2A8       |
| BASE_ADDR_9  | BAR0+c24h | Base address register 18, 19 for MPEG memory | R/W  | 0x330       |
|              |           | 18: MPEG/B/Y/B0, 19: MPEG/B/Y/B1             |      | 0x3B8       |
| BASE_ADDR_12 | BAR0+c30h | Base address register 24, 25 for MPEG memory | R/W  | 0x550       |
|              |           | 24: MPEG/B/C/I, 25: MPEG/B/C/P               |      | 0x594       |



| f             |           | 1                                              |      | i           |
|---------------|-----------|------------------------------------------------|------|-------------|
| Name          | Address   | Description                                    | Туре | Reset value |
| BASE_ADDR_13  | BAR0+c34h | Base address register 26, 27 for MPEG memory   | R/W  | 0x5d8       |
|               |           | 26: MPEG/B/C/B0, 27: MPEG/B/C/B1               |      | 0x61C       |
| BASE_ADDR_32  | BAR0+c80h | Base address register 64, 65 for DP memory     | R/W  | 0           |
|               |           | 64: 0x000, 65: external memory 1               |      |             |
| BASE_ADDR_33  | BAR0+c84h | Base address register 66, 67 for DP memory     | R/W  | 0           |
|               |           | 66: external memory 2, 67: external memory 3   |      |             |
| BASE_ADDR_34  | BAR0+c88h | Base address register 68, 69 for DP memory     | R/W  | 0           |
|               |           | 68: external memory 4, 69: external memory 5   |      |             |
| BASE_ADDR_35  | BAR0+c8ch | Base address register 70, 71 for DP memory     | R/W  | 0           |
|               |           | 70: external memory 6, 71: external memory 7   |      |             |
| BASE_ADDR_36  | BAR0+c90h | Base address register 72, 73 for DP memory     | R/W  | 0           |
|               |           | 72: external memory 8, 73: external memory 9   |      |             |
| BASE_ADDR_37  | BAR0+c94h | Base address register 66, 67 for DP memory     | R/W  | 0           |
|               |           | 74: external memory 10, 75: external memory 11 |      |             |
| REFRESH_COUNT | BAR0+c98h | Refresh Counter                                | R/W  | 0x3FF       |
| MMU_CONF      | BAR0+c9ch | MMU Configuration Register                     | R/W  | 0x18040     |
| REF_CYCLE     | BAR0+ca0h | Refresh Cycle Register                         | R/W  | 0xA         |
| HALT_LIMIT    | BAR0+ca4h | Halt Limit Register                            | R/W  | 0x64        |
| MMU_ERR_INFO  | BAR0+ca8h | MMU Error Status Information Register          | R    | 0           |

# Table 2-1. S5H2000X Register map (continued: VDMA control register)

| Name       | Address   | Description              | Туре | Reset value |
|------------|-----------|--------------------------|------|-------------|
| CVDBUF_ST  | BAR0+d00h | CVD Buffer Start Address | R/W  | 0           |
| CVDBUF_SZ  | BAR0+d04h | CVD Buffer Size          | R/W  | 0           |
| CVD_STATUS | BAR0+d08h | CVD Status Register      | R/W  | 0           |
| CVD_WRPTR  | BAR0+d0ch | CVD Buffer Write Pointer | R/W  | 0           |
| CVD_RDPTR  | BAR0+d10h | CVD Buffer Read Pointer  | R    | 0           |



|           |           |                       | ,    |             |
|-----------|-----------|-----------------------|------|-------------|
| Name      | Address   | Description           | Туре | Reset value |
| SP_CTRL0  | BAR0+d80h | SP Control Register 0 | R/W  | 0           |
| SP_CTRL1  | BAR0+d90h | SP Control Register 1 | R/W  | 0           |
| SP_STATUS | BAR0+d94h | SP Status Register    | R/W  | 0           |
| SP_DECM   | BAR0+da4h | Decimation Register   | R/W  | 0           |
| VP_STATUS | BAR0+da8h | VP Status Register    | R    | 0           |
| VP_TIMER  | BAR0+dach | VP Timer Register     | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: SPVP control register)

Note: Reset value (DP\_REG\_41 ~ DP\_REG55) for DP control register may vary with modes.



NOTE



# 3 TS DEMUX

# **OVERVIEW**

Transport Stream (henceforth, TS) demux has software demux architecture which is executed by a 128-MIPS ARM7TDMI RISC core. Hence, analysis and processing of MPEG 2 or DSS TS video and audio and PSI packet headers such as PAT, PMT, SDT, and EIT are programmable and provide a wide range of applications.

There is only one TS demux input by default. If you need multiple input sources, you should place mux outside the chip.

# The major features of TS are:

- S/W demux architecture using ARM7TDMI
- MPEG-2 or DSS TS demux support
- DVB, ATSC support
- Built-in DES descrambler
- Up to 9 demux modes supported (provided by S/W)
- Up to 32 PIDs can be received at the same time.
- CRC (MPEG-2: 32bit, DSS: 16bit) support
- Video packets are transferred to external SDRAM via DMA1.
- Audio packets are transferred to the memory of the host CPU via a PCI interface.
- Allows extraction of desired information from the PSI packet and transmition to the host CPU.
- Built-in clock recovery circuit for programmable clock recovery



# Architecture

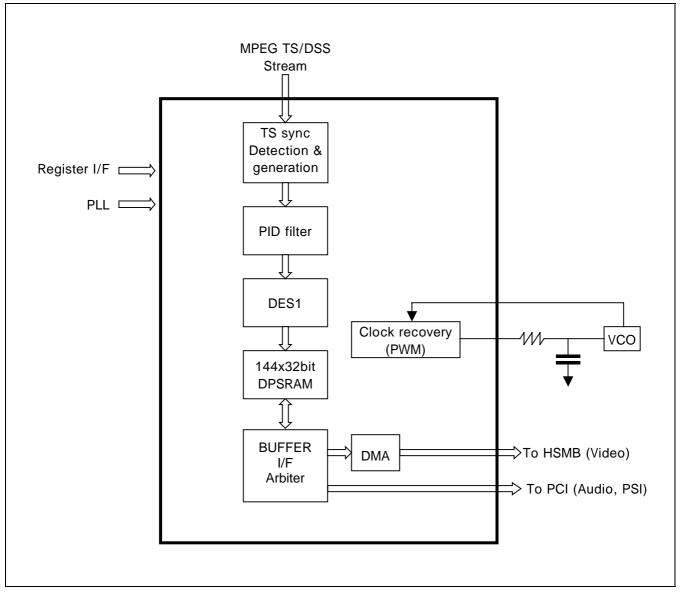



Figure 3-1 TS Demux block diagram



# S/W demux

The TS demux block filters and classifies only the necessary data from the TS (transport stream) and transfers it to the specified location.

S5H2000X TS demux allows you to control this filtering, classification and transfer programmatically (using software). This feature provides great flexibility.

For example, an MPEG TS packet is composed of 188 bytes and each packet has its own PID. The TS demux of the S5H2000X which receives those TS packets has 32 PID filters. By setting the desired PID to these filters, you can select only those packets needed. The same principle is also applied to the DSS.

Those filtered TS packets pass through the DES and are buffered at DPSRAM, and then the desired data is filtered by the specified conditions and then transferred to the S5H2000X's external memory or the PCI.

The conditions to apply for filtering TS packets on DPSRAM can be specified programmatically. The filtering conditions depend entirely on the programmer himself. The demo program provides a demux algorithm you can use, but you can develop and apply completely different or more efficient algorithms.



# **H/W REGISTERS**

The H/W registers used to construct TS demux are:

TS sync detection, PID filtering, DES, DMA, clock recovery, arbiter control, and data registers. These compose all the hardware registers. How to take advantage of them depends on the programmer himself.

# DMA1 FOR VIDEO DATA TRANSPORT

When a valid DPSRAM buffer is filled with a packet (188 bytes for MPEG; 130 bytes for DSS) the corresponding bit of the B\_VALID[2:0] of BUFFER\_VALID register is set to 1. ARM7 poll this bit continually. When it detects that the bit has changed to 1, it begins transmitting the packet data. When DMA1 finishes transmitting the packet data, an interrupt is invoked and ARM7 clears the bit by writing 1 to the corresponding B\_VALID[n] bit during the interrupt service routine.

# Since this product is designed to process audio decoding on external processors, APM7 moves only video data to the external memory via DMA1. Audio and PSI data are transferred to the memory of the external processors via PCI.

#### DMA1\_SRC\_ADDR register

| Name          | Address     | Description            | Туре | Reset value |
|---------------|-------------|------------------------|------|-------------|
| DMA1_SRC_ADDR | BAR0 +0x400 | Source address of DMA1 | R/W  | 0           |

| Bits    | Name        | Description                                                                     | Reset value |
|---------|-------------|---------------------------------------------------------------------------------|-------------|
| [9:0]   | SOURCE_ADDR | Address of the data to be transferred via DMA1. It is an address on the DPSRAM. | 0           |
| [31:10] | _           | Not used                                                                        | _           |

#### DMA1\_TAR\_ADDR register

| Name          | Address     | Description            | Туре | Reset value |
|---------------|-------------|------------------------|------|-------------|
| DMA1_TAR_ADDR | BAR0 +0x404 | Target address of DMA1 | R/W  | 0           |

| Bits    | Name        | Description                                                                                                 | Reset value |
|---------|-------------|-------------------------------------------------------------------------------------------------------------|-------------|
| [23:0]  | SOURCE_ADDR | Address of the location to which the data is transferred via DMA1. It is an address on the external memory. | 0           |
| [31:24] | —           | Not used                                                                                                    | -           |



# DMA1\_CTRL register

| Name      | Address     | Description                                               | Туре | Reset value |
|-----------|-------------|-----------------------------------------------------------|------|-------------|
| DMA1_CTRL | BAR0 +0x408 | Sets the size of the data to transmit and activates DMA1. | R/W  | 0           |

| Bits    | Name       | Description                                                                                                  | Reset value |
|---------|------------|--------------------------------------------------------------------------------------------------------------|-------------|
| [0]     | DMA1_TEN   | Write "1": Starts the data transfer via DMA1. When the transfer is complete, it resets to "0" automatically. | 0           |
| [1]     | —          | Not used                                                                                                     | -           |
| [9:2]   | TRANS_SIZE | The size of the data to transmit (unit: byte)                                                                | 0           |
| [31:10] | _          | Not used                                                                                                     | _           |

\*Note: Both the data size and the start bit can be set at the same time.



#### DPSRAM BUFFER VALID REGISTER

The TS packets that pass through the PID filtering and DES are buffered at the DPSRAM buffer one by one. At this time, the BUFFER\_VALID register indicates whether the packets can be buffered or not.

The size of a buffer is 192 bytes. For MPEG TS, when 188 bytes are buffered the B\_VALID[n] bit is set to "1" and the packet data is buffered by the next buffer. For DSS, the packet data is buffered at the next buffer when 130 bytes have been filled. The 3 buffers repeat, buffering in turn.

ARM7 polls the value of this register continually. When the value is not "0" it begins service, that is, it transfers the packet data to the specified place and clears the B\_VALID[n] bit.

#### **BUFFER\_VALID** register

| Name         | Address     | Description                                  | Туре | Reset value |
|--------------|-------------|----------------------------------------------|------|-------------|
| BUFFER_VALID | BAR0 +0x420 | Indicates the validity of the DPSRAM buffer. | R/W  | 0           |

| Bits   | Name         | Description                         | Reset value |
|--------|--------------|-------------------------------------|-------------|
| [0]    |              | 0 = valid, buffering is enabled     | 0           |
| [0]    | B_VALID0     | 1 = invalid, buffering is disabled. | 0           |
| [4]    | [1] B_VALID1 | 0 = valid, buffering is enabled     | 0           |
| [']    |              | 1 = invalid, buffering is disabled. |             |
| [0]    |              | 0 = valid, buffering is enabled     | 0           |
| [2]    | B_VALID2     | 1 = invalid, buffering is disabled. | 0           |
| [31:3] | _            | Not used                            | -           |



# PID REGISTER FOR PACKET FILTERING

This register is used to filter only the necessary TS packets and then decode them.

When the desired PID values are set in the PID registers, only the packets that have that particular PID value will pass.

There are 32 PID registers, PID1 to PID32.

If the bit[16] of PID1 register is set to 1, all packets will be passed regardless of the PID values.

# **PID1 register**

| Name | Address     |            | Description  | Туре | Reset value |
|------|-------------|------------|--------------|------|-------------|
| PID1 | BAR0 +0x480 | PID filter | PID register | R/W  | 0           |

| Bits    | Name     | Description                                           | Reset value |
|---------|----------|-------------------------------------------------------|-------------|
| [12:0]  | PID      | Sets the PID or SCID for the TS packets to filter.    | 0           |
| [12:0]  | FID      | For SCID, bit[12] is ignored because it is 12 bits.   | 0           |
| [14:13] | _        | Not used                                              | —           |
| [15]    | EN       | 0 = Filtering disable<br>1 = Filtering enable         | 0           |
|         |          | 0 = Performs packet filtering.                        |             |
| [16]    | P_BYPASS | 1 = Bypasses packets without filtering.               | 0           |
|         |          | This flag is valid only if the EN flag is set to "1". |             |
| [31:17] | _        | Not used                                              | _           |



# PID2~PID32 register

| Name         | Address     | Description                    | Туре | Reset value |
|--------------|-------------|--------------------------------|------|-------------|
| PID2 ~ PID32 | BAR0 +0x480 | PID register for PID filtering | R/W  | 0           |
|              | + 4*(n-1)   |                                |      |             |
|              | •           |                                |      |             |

NOTE: n = 2 ~ 32

| Bits       | Name | Description                                            | Reset value |
|------------|------|--------------------------------------------------------|-------------|
| [12:0] PID | PID  | Sets the PID or SCID for the TS packets to filter.     | 0           |
| [12.0]     | FID  | For SCID, bit[12] is ignored because it is of 12 bits. |             |
| [14:13]    | -    | Not used                                               | _           |
| [15]       | EN   | 0 = Filtering disable<br>1 = Filtering enable          | 0           |
| [31:16]    | -    | Not used                                               | -           |



# DES CONTROL REGISTER

This register controls the DES. It sets the necessary conditions and controls whether to execute de-scrambling.

There are 6 registers that have controls and keys. This means that when 32 packets are passed through the PID filtering, they can be de-scrambled with 6 different kinds of scramble data.

Generally, DES control is implemented according to the complexity of encryption so that it works in a specific DES algorithm mode. There are three DES algorithm modes (ECB: Electronic CodeBook, CBC: Cipher Block Chaining, CFB: Cipher FeedBack). This product is configured to work in ECB algorithm mode.

#### SCRM\_CTRL1 ~ SCRM\_CTRL6 register

| Name           | Address                  |            | Description  | Туре | Reset value |
|----------------|--------------------------|------------|--------------|------|-------------|
| SCRM_CTRL1 ~ 6 | BAR0 +0x580<br>+20*(n-1) | PID filter | PID register | R/W  | 0           |

NOTE: n = 1 ~ 6

| Bits   | Name      | Description                                                                                                              | Reset value |
|--------|-----------|--------------------------------------------------------------------------------------------------------------------------|-------------|
| [0]    | KEY       | Don't care                                                                                                               | 0           |
| [1]    | SCRM      | Should be always set to "0".                                                                                             | 0           |
| [2]    | EN        | 0 = De-scramble disable<br>1 = De-scramble enable                                                                        | 0           |
| [7:3]  | QUEUE_NUM | Indicates which of the 32 PID filters to be de-scrambled.<br>For example, "0" indicates PID1 and "31"indicates<br>PID32. | 0           |
| [31:8] | _         | Not used                                                                                                                 | -           |



# ODD\_HIGH1 ~ ODD\_HIGH6 register

| Name                     | Address                  | Description                     | Туре | Reset value |
|--------------------------|--------------------------|---------------------------------|------|-------------|
| ODD_HIGH1 ~<br>ODD_HIGH6 | BAR0 +0x584<br>+20*(n-1) | High 32 bits of the DES odd key | R/W  | 0           |
| NOTE: n = 1 ~ 6          |                          |                                 |      |             |

| Bits   | Name         | Description                             | Reset value |
|--------|--------------|-----------------------------------------|-------------|
| [31:0] | ODD_KEY_HIGH | High 4 bytes [55:24] of the DES odd key | 0           |

# ODD\_LOW1 ~ ODD\_LOW6 register

| Name                   | Address                  | Description                    | Туре | Reset value |
|------------------------|--------------------------|--------------------------------|------|-------------|
| ODD_LOW1 ~<br>ODD_LOW6 | BAR0 +0x588<br>+20*(n-1) | Low 32 bits of the DES odd key | R/W  | 0           |

NOTE: n = 1 ~ 6

| Bits    | Name        | Description                           | Reset value |
|---------|-------------|---------------------------------------|-------------|
| [23:0]  | ODD_KEY_LOW | Low 4 bytes [23:0] of the DES odd key | 0           |
| [31:24] | —           | Not used                              | -           |

#### EVEN\_HIGH1 ~ EVEN \_HIGH6 register

| Name | Address                  | Description                      | Туре | Reset value |
|------|--------------------------|----------------------------------|------|-------------|
| —    | BAR0 +0x58C<br>+20*(n-1) | High 32 bits of the DES even key | R/W  | 0           |

NOTE: n = 1 ~ 6

| Ī | Bits   | Name           | Description                              | Reset value |
|---|--------|----------------|------------------------------------------|-------------|
| Ī | [31:0] | EVEN _KEY_HIGH | High 4 bytes [55:24] of the DES even key | 0           |

#### EVEN \_LOW1 ~ EVEN \_LOW6 register

| Name                   | Address                  | Description                    | Туре | Reset value |
|------------------------|--------------------------|--------------------------------|------|-------------|
| ODD_LOW1 ~<br>ODD_LOW6 | BAR0 +0x590<br>+20*(n-1) | Low 32 bits of the DES odd key | R/W  | 0           |
| _                      |                          |                                |      | 0           |

NOTE: n = 1 ~ 6

| Bits    | Name          | Description                            | Reset value |
|---------|---------------|----------------------------------------|-------------|
| [23:0]  | EVEN _KEY_LOW | Low 4 bytes [23:0] of the DES even key | 0           |
| [31:24] | _             | Not used                               | _           |



#### PCR CONTROL REGISTERS

The Encoder transfers PCR data to the packets or PSI packets that have an adaptation field with which to synchronize them. PCR control registers are used to compare that data with the S5H2000X's SCR registers (in this case the S5H2000X is the decoder).

When PCR data is received for the first time, the H/W writes the data to S5H2000X's SCR registers. SCR is counted with the frequency of 27Mhz. An SCR counter consists of 42 bits. When the low 9-bit counter reaches 300, the high 33-bit counter increases by 1.

#### PCR\_CTRL1 register

| Name      | Address    | Description                              | Туре | Reset value |
|-----------|------------|------------------------------------------|------|-------------|
| PCR_CTRL1 | BAR0+0x6C0 | The System Clock reference counter value | R/W  | 0           |

| Bits   | Name     | Description                            | Reset value |
|--------|----------|----------------------------------------|-------------|
| [21:0] |          | For MPEG2, the TS PCR base[31:0] value | 0           |
| [31:0] | PCR_BASE | For DSS, the SCR[31:10] value          | 0           |

#### PCR\_CTRL2 register

| Name      | Address    | Description                              | Туре | Reset value |
|-----------|------------|------------------------------------------|------|-------------|
| PCR_CTRL2 | BAR0+0x6C4 | The System Clock reference counter value | R/W  | 0           |

| Bits    | Name          | Description                                | Reset value |
|---------|---------------|--------------------------------------------|-------------|
| [9:0]   |               | For MPEG2, the TS PCR extension[8:0] value | 0           |
| [8:0]   | B:0] PCR_EXT  | For DSS, theSCR[8:0] value                 | 0           |
| [0]     |               | 0 = Operates in the PCR mode of MPEG2 TS   | 0           |
| [9]     | CLK_MODE      | 1 = Operates in the SCR mode of DSS        | 0           |
| [14:10] | _             | Not used                                   | _           |
| [45]    |               | For MPEG2, the TS PCR base[32] value       |             |
| [15]    | [15] PCR_BASE | For DSS, the SCR[9] value                  |             |
| [31:16] | _             | Not used                                   | _           |



#### **PWM CONTROL REGISTER**

This register controls the PWM to compensate for the difference between the PCR value and the counter value using a VCO.

If the PCR value is less than the counter value, then the decoder chip counter (S5H2000X) should be operated slowly.

The PWM\_CTRL value should be set to a value more than 0x80 in order to operate the VCO slowly. Then, the counter will operate slowly and the counter value will approach the PCR value. If the PCR value is more than the counter value, then the decoder chip counter should be operated fast. The PWM\_CTRL value should be set to a value less than 0x80 so that the VCO operates fast.

#### PWM\_CTRL register

| Name     | Address     | Description    | Туре | Reset value |
|----------|-------------|----------------|------|-------------|
| PWM_CTRL | BAR0+ 0x6C8 | PWM pulse duty | R/W  | 0x80        |

| Bits   | Name      | Description                                                                | Reset value |
|--------|-----------|----------------------------------------------------------------------------|-------------|
| [7:0]  | PWM_VALUE | Adjustment value for the PWM output duty<br>When set to 0x80, duty is 50%. | 0x80        |
| [31:8] | -         | Not used                                                                   | _           |



# EXTERNAL INTERFACE CONTROL REGISTER

This register controls the TS sync detection block.

It sets the conditions for sync detection and sync missing. It also specifies the type of external stream to accept, and enables/disables the sync detection.

# EXT\_IF\_CTRL register

| Name        | Address     | Description                                     | Туре | Reset value |
|-------------|-------------|-------------------------------------------------|------|-------------|
| EXT_IF_CTRL | BAR0+ 0x6E0 | Controls the TS sync detection block operation. | R/W  | 0           |

| Bits   | Name       | Description                                                                                           | Reset value |
|--------|------------|-------------------------------------------------------------------------------------------------------|-------------|
| [1:0]  | SYNC_LOSS  | Sync is determined to be lost when the sync byte is lost the specified number of times consecutively. | 0           |
|        |            | Valid only in TS input mode.                                                                          |             |
| [4:2]  | SYNC_LOCK  | Sync is accepted when the sync byte occurs the specified number of times consecutively.               | 0           |
|        |            | Valid only in TS input mode.                                                                          |             |
| [5]    | DSSorTS    | 0 = TS input mode                                                                                     | 0           |
| [5]    | 0330113    | 1 = DSS input mode                                                                                    | 0           |
|        |            | 0 = Normal                                                                                            |             |
| [6]    | RESET_SYNC | 1 = TS sync detection block reset                                                                     | 0           |
|        |            | Reverts to "0" after reset.                                                                           |             |
| [7]    |            | 0 = Sync detection block disable                                                                      | 0           |
| [7]    | EN         | 1 = Sync detection block enable                                                                       | 0           |
| [31:8] |            | Not used                                                                                              | _           |

# EXTERNAL INTERFACE STATUS REGISTER

This register indicates the status of the TS sync detection block.

It indicates whether a sync is detected or not, that is, a sync that matches the conditions which are set on the SYNC\_LOCK bits of the EXT\_IF\_CTRL register.

# EXT\_IF\_CTRL register

| Name       | Address   | Description            | Туре | Reset value |
|------------|-----------|------------------------|------|-------------|
| EXT_IF_STS | BAR0+6e0h | TS Input Switch Status | R    | 0           |

| Bits   | Name        | Description                          | Reset value |
|--------|-------------|--------------------------------------|-------------|
| [0]    | SYNC_LOCKED | 0 = Sync unlocked<br>1 = Sync locked | 0           |
| [31:1] | _           | Not used                             | -           |



# S/W REGISTERS

The S/W registers used to construct the TS demux are:

TS demux control, Queue, PCR, command, PTS, and data filtering registers.

These registers are developed and provided by Samsung developers. Users can use them as they are or develop and apply new algorithms if needed.



# PACKET CONTROL REGISTER

The BUFFER\_VALID register is continually polled. When the value is not "0", the service begins. The PCR register contains the content to serve.

The H/W writes the PID filtering value, instead of the PID value, to the header of the packet that passes through the PID filter. For example, if a packet passes through PID filtering which has a PID value matching the value of the PID15 filter, its original PID value (which has been transferred from the broadcasting station) is cleared and changed to "15" which is the value of the PID filter it is currently passing. ARM7 can recognize that the packet has passed through the PID15 filter by reading the PID value set on the packet header and service will begin according to the content contained in the PCONTROL15 register.

#### PCONTROL1 ~ PCONTROL32 registers

| Name                     | Address                 | Description                                                                                                                     | Туре | Reset value |
|--------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| PCONTROL1~<br>PCONTROL32 | S_REG_BASE<br>+ 4*(n-1) | These registers contain information, such as the demux mode, target area, etc, necessary for de-<br>multiplexing the TS packet. | R/W  | 0           |

\*n : 1~32

| Bits    | Name       | Description                                                                                                                                                                                           | Reset value |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [3:0]   | DEMUX_M    | Sets in what format to demux the TS packet.                                                                                                                                                           | 0           |
| [4]     | PTS_ON     | Indicates whether or not to perform A/V synchronization<br>using the PTS information contained in the packet which<br>has the current queue PID. When set to "1",<br>synchronization is performed.    | 0           |
| [8:5]   | NUM_FILTER | Number of section filters. The maximum value is 8. That<br>is, up to 8 section filters can be applied to a PID. When<br>set to "0", section filtering is not used.                                    | 0           |
| [14:9]  | S_FILTER   | The Start Number of the section filter to apply to the packet that will be saved to the queue. The Start Number should be the number of a filter in the section filter bank. The maximum value is 32. | 0           |
| [23:15] | Q_SIZE     | Queue size. Queue_size = Q_size(9bit) X 4096 bytes.<br>Maximum: 2048 K bytes = 16 M bits                                                                                                              | 0           |
| [27:24] | TARGET     | Location of the queue                                                                                                                                                                                 |             |
|         |            | 0: Video buffer on external memory.                                                                                                                                                                   |             |
|         |            | 1: Section data buffer                                                                                                                                                                                |             |
|         |            | 2~13: Reserved                                                                                                                                                                                        |             |
|         |            | 14: Section data buffer on PCI memory                                                                                                                                                                 |             |
| [28]    | Reserved   | Reserved                                                                                                                                                                                              |             |
| [29]    | PCR_EN     | Indicates whether to extract PCR info from the packet that has the PID set to the current queue number. When set to "1", an extraction is performed.                                                  |             |



| [30] | Indicates whether to initialize the STC counter by extracting PCR info from the packet that has the PID set to the current queue number. When set to "1", an |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | initialization is performed.                                                                                                                                 |  |

The following S/W demux modes are provided by developers.

| Mode              | Value | Description                                                                                                                                                                                                                       |
|-------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPEG2_TP          | 0x0   | The 188-byte MPEG 2 transport packet is output as is.                                                                                                                                                                             |
| MPEG2_PES         | 0x1   | Only the PES (Packetized Elementary Stream) is output from the MPEG 2 TP.                                                                                                                                                         |
| MPEG2_PES_payload | 0x2   | Only the elementary stream is output from the MPEG 2 TP.                                                                                                                                                                          |
| MPEG2_section     | 0x3   | Only section data is output from the MPEG 2 TP. A CRC (32-bit) check can be applied optionally. Section filtering can be applied to the output of desired sections only.                                                          |
| MPEG2_adaptation  | 0x4   | Only the adaptation field is output from the MPEG 2 TP.                                                                                                                                                                           |
| DSS_TP            | 0x8   | The 130-byte DSS transport packet is output as is.                                                                                                                                                                                |
| DSS_PES           | 0x9   | The Prefix (2 bytes), CC (Continuity Count), and HD (Header Designator) are removed from the DSS transport packet, and the result is output. For example, the PES is output for DirectTV-HD when the elementary stream is output. |
| DSS_PES_payload   | 0xA   | Used when the MPEG 2 PES packet is carried on payload (the transport block) of the DSS transport packet (DirectTV-HD). The elementary stream is output.                                                                           |
| DSS_CAP           | 0xB   | Used to process DSS CAP (Conditional Access Packet). The Prefix (2 bytes) is removed and the result is output.                                                                                                                    |
| DSS_section       | 0xC   | Only section data is output from the DSS TP. A CRC (16-bit) check can be applied optionally. Section filtering can be applied to the output of the desired sections only.                                                         |
| MPEG2_TP          | 0x0   | The 188-byte MPEG 2 transport packet is output as is.                                                                                                                                                                             |



# **Q ADDRESS REGISTERS**

For video, DPSRAM data is saved to the external SDRAM and then decoded. For audio, it is saved to the host CPU's SDRAM via the PCI and then decoded. The Q address registers indicate those saving addresses.

QSTART\_ADDR: Start address of the de-multiplexed data (That is, the start address of an image block).

QHDR\_ADDR: Start address of the queue to write the data to.

QEND\_ADDR: Used only for section filters. Indicates the end of the section data.

#### QSTART\_ADDR1 ~ QSTART\_ADDR32 registers

| Name          | Address       | Description                             | Туре | Reset value |
|---------------|---------------|-----------------------------------------|------|-------------|
| QSTART_ADDR1~ |               | Start address of the queue in which the | R/W  | 0           |
| QSTART_ADDR32 | +0xC0+4*(n-1) | de-multiplexed TS data will be saved.   |      |             |

\*n : 1~32

| Bits   | Name         | Description                                                                                                                                                             | Reset value |
|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | Q_START_ADDR | Start address of the queue. If the target area is<br>the PCI, it should be a 32-bit value. If the target<br>area is the external SDRAM, it should be a 24-bit<br>value. | 0           |

#### QHDR\_ADDR1 ~ QHDR\_ADDR32 registers

| Name                       | Address                      | Description                         | Туре | Reset value |
|----------------------------|------------------------------|-------------------------------------|------|-------------|
| QHDR_ADDR1~<br>QHDR_ADDR32 | S_REG_BASE<br>+0x180+4*(n-1) | Header pointer to the current queue | R    | 0           |

\*n : 1~32

| Bits   | Name       | Description                                                          | Reset value |
|--------|------------|----------------------------------------------------------------------|-------------|
| [31:0] | Q_HDR_ADDR | Write address of the queue. QSTART_ADDR indicates the start address. | 0           |

#### QEND\_ADDR1 ~ QEND\_ADDR32 registers

| Name                       | Address | Description                                                                 | Туре | Reset value |
|----------------------------|---------|-----------------------------------------------------------------------------|------|-------------|
| QEND_ADDR1~<br>QEND_ADDR32 |         | The Queue end pointer of a section. Valid only if the data is section data. | R    | 0           |
| *n : 1~32                  |         |                                                                             |      |             |



| Bits   | Name       | Description                                                                | Reset value |
|--------|------------|----------------------------------------------------------------------------|-------------|
| [31:0] | Q_END_ADDR | Indicates the end of the section. QSTART_ADDR indicates the start address. | 0           |

#### AUXQ ADDRESS REGISTERS

For video, the DPSRAM data is saved to the external SDRAM and then decoded. For audio, it is saved to the host CPU's SDRAM via the PCI and then decoded. The AUXQ address registers indicate those saving addresses.

AUXQ\_START\_ADDR: Start address of the de-multiplexed data (That is, the start address of an image block).

AUXQ\_END\_ADDR: End address of the de-multiplexed data (That is, the end address of an image block).

#### AUXQ\_START\_ADDR register

| Name                | Address              | Description                                                           | Туре | Reset value |
|---------------------|----------------------|-----------------------------------------------------------------------|------|-------------|
| AUXQ_START_AD<br>DR | S_REG_BASE<br>+0x280 | Start address of the queue in which to save the DSS auxiliary packet. | R/W  | 0           |

| Bits   | Name                | Description                                                                                                                                                                       | Reset value |
|--------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | AUXQ_START_ADD<br>R | Start address of the auxiliary queue. If the target area<br>is the PCI, it should be a 32-bit value. If the<br>target area is the external SDRAM, it should be a<br>24-bit value. | 0           |

#### AUXQ\_WRITE\_ADDR register

| Name                | Address | Description                                                       | Туре | Reset value |
|---------------------|---------|-------------------------------------------------------------------|------|-------------|
| AUXQ_WRITE_AD<br>DR |         | Write address of the queue in which to save DSS auxiliary packet. | R    | 0           |

| Bits   | Name                | Description                          | Reset value |
|--------|---------------------|--------------------------------------|-------------|
| [31:0] | AUXQ_WRITE_ADD<br>R | Write address of the auxiliary queue | 0           |



# PACKET PCR COUNTER REGISTER

The PCR value read from the packet. For TS, it is 42 bits (33 bits + 9 bits). For DSS, it is 32 bits (22 bits + 10 bits).

This register saves the PCR value which was transferred to included an adaptation field or a specific packet in relation to clock recovery. That is, the broadcasting station includes the value based on a 27-MHz clock to the adaptation field of the packet header or a specific PSI packet, during compression of the stream before transfer. The transfer cycle of this information is within 0.1 sec.

The decoding system sets the first OCR value it receives, after initialization, as the counter value of the system reference clock. This counter is operated with the clock (27MHz) of the decoding system, and when a new PCR value is given via a packet, it is compared with the system clock reference counter value to synchronize with the PWM.

The low 9 bits of the system reference clock counter is incremented with the 27-MHz clock, and when the count reaches 300, the high 33-bit counter is increased in increments of one.

#### PKT\_PCR\_COUNTER1 register

| Name                 | Address              | Description                                                                                                | Туре | Reset value |
|----------------------|----------------------|------------------------------------------------------------------------------------------------------------|------|-------------|
| PKT_PCR_COUNT<br>ER1 | S_REG_BASE<br>+0x290 | The PCR value extracted from the packet for which the PCR_EN field of the PCONTROL register is set to "1". | R    | 0           |

| Bits   | Name                     | Description                                                                                                    | Reset value |
|--------|--------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | Q_ PKT_PCR_BASE<br>_ADDR | For MPEG 2 TS, it is the PCR base [0:31] value. For DSS TS, the PCR base [21:0] value is the SCR[31:10] value. | 0           |

#### PKT\_PCR\_COUNTER2 register

| Name                 | Address              | Description                                                                                                | Туре | Reset value |
|----------------------|----------------------|------------------------------------------------------------------------------------------------------------|------|-------------|
| PKT_PCR_COUNT<br>ER1 | S_REG_BASE<br>+0x290 | The PCR value extracted from the packet for which the PCR_EN field of the PCONTROL register is set to "1". | R    | 0           |

| Bits    | Name         | Description                                                               | Reset value |
|---------|--------------|---------------------------------------------------------------------------|-------------|
| [8:0]   | PKT_PCR_EXT  | For MPEG 2 TS, it is the PCR extension value. For DSS TS, it is SCR[8:0]. | 0           |
| [14:9]  | Reserved     | Reserved                                                                  |             |
| [15]    | PKT_PCR_BASE | For MPEG 2 TS, it is the PCR base[32] value. For DSS TS, it is SCR[9].    | 0           |
| [31:16] | Reserved     | Reserved                                                                  |             |



# LATCH PCR COUNTER REGISTER

When extracting the PCR value from the packet, the system clock reference counter value is latched to this register.

This value is compared with the PKT\_PCR\_COUNTER value to perform clock recovery through the PWM.

# LT\_PCR\_COUNTER1 register

| Name                | Address | Description                                                                   | Туре | Reset value |
|---------------------|---------|-------------------------------------------------------------------------------|------|-------------|
| LT_PCR_COUNTE<br>R1 |         | The system clock value latched when extracting the PCR value from the packet. | R    | 0           |

| Bits   | Name                    | Description                                                                                                     | Reset value |
|--------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | Q_PKT_PCR_BASE<br>_ADDR | For MPEG 2 TS, it is the PCR base[0:31] value. For DSS TS, the [31:10] value is the SCR[21:0] value of 32 bits. | 0           |

# PKT\_PCR\_COUNTER2 register

| Name                | Address | Description                                                                   | Туре | Reset value |
|---------------------|---------|-------------------------------------------------------------------------------|------|-------------|
| LT_PCR_COUNTE<br>R1 |         | The system clock value latched when extracting the PCR value from the packet. | R    | 0           |

| Bits    | Name        | Description                                                                         | Reset value |
|---------|-------------|-------------------------------------------------------------------------------------|-------------|
| [8:0]   | LT_PCR_EXT  | For MPEG 2 TS, it is the PCR extension value. For DSS TS, it is the SCR[8:0] value. | 0           |
| [14:9]  | Reserved    | Reserved                                                                            |             |
| [15]    | LT_PCR_BASE | For MPEG 2 TS, it is the PCR base[32] value. For DSS TS, it is the SCR[9] value     | 0           |
| [31:16] | Reserved    | Reserved                                                                            |             |



## **COMMAND REGISTERS**

This register does not have a direct relationship with the TS demux.

This register is used to control system operations. That is, it is used for play, pause, reset, and synchronization.

# COMMAND\_REG register

| Name        | Address              | Description      | Туре | Reset value |
|-------------|----------------------|------------------|------|-------------|
| COMMAND_REG | S_REG_BASE<br>+0x2A0 | Command register | R/W  | 0           |

| Bits    | Name      | Description                                                                                                                                                                                                                                                 | Reset value |
|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [15:0]  | CMD       | Command register. Commands are:                                                                                                                                                                                                                             | 0           |
|         |           | 0x1000 = VIDEO_Play                                                                                                                                                                                                                                         |             |
|         |           | 0x2000 = VIDEO_Pause                                                                                                                                                                                                                                        |             |
|         |           | 0x3000 = VIDEO_Reset                                                                                                                                                                                                                                        |             |
|         |           | 0x4000 = SET_AVsync                                                                                                                                                                                                                                         |             |
| [30:16] | Reserved  |                                                                                                                                                                                                                                                             |             |
| [31]    | CMD_VALID | Command validity. Indicates whether the command set<br>on the CMD field is valid or not. When the CMD field is<br>set to "0", a new command is written and then set to "1".<br>This field is cleared to "0" automatically after SAM2K<br>reads the command. | 0           |

#### CMD\_ARG1 ~ CMD\_ARG4 registers

| Name     | Address                     | Description               | Туре | Reset value |
|----------|-----------------------------|---------------------------|------|-------------|
| CMD_ARG1 | S_REG_BAS+<br>0x2A4+4*(n-1) | Command argument register | R/W  | 0           |

\*n = 1 ~ 4

| Bits   | Name | Description                                                                                                                                                                                    | Reset value |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | ARG  | Arguments used in the command. It indicates the video number, queue number, and whether A/V synchronization is on/off, etc.                                                                    | 0           |
|        |      | Arguments should be used in the order that the command requires. For example, in the case of VIDEO_Pause, the video number should be set on CMD_ARG1 and the On/Off should be set on CMD_ARG2. |             |

\*Note: For example, in the case of VIDEO\_Play (arg1, arg2), appropriate values should be set for ARG1 and ARG2 before calling it and then it should be called.



# CMD\_STATUS register

| Name       | Address              | Description            | Туре | Reset value |
|------------|----------------------|------------------------|------|-------------|
| CMD_STATUS | S_REG_BASE<br>+0x2C0 | Current command status | R    | 0           |

| Bits   | Name  | Description                                                                                                                                                                                       | Reset value |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | CMD_S | Indicates the status of the command currently being performed. Possible command statuses are:                                                                                                     | 0           |
|        |       | 0x00 = IDLE                                                                                                                                                                                       |             |
|        |       | 0x02 = RUNNING                                                                                                                                                                                    |             |
|        |       | 0x04 = FAIL                                                                                                                                                                                       |             |
|        |       | 0x08 = DONE.                                                                                                                                                                                      |             |
|        |       | IDLE indicates the initial state.<br>RUNNING indicates the command is in operation.<br>FAIL indicates the command was not performed.<br>DONE indicates the command was performed<br>successfully. |             |



#### ARM\_INT\_STATUS register

| Name           | Address              | Description                                                                                              | Туре | Reset value |
|----------------|----------------------|----------------------------------------------------------------------------------------------------------|------|-------------|
| ARM_INT_STATUS | S_REG_BASE<br>+0x250 | Flag that indicates the ISR operation status of the ARM7 or external CPU on the SP interrupt generation. | R    | 0           |

| Bits   | Name     | Description                                                                       | Reset value |
|--------|----------|-----------------------------------------------------------------------------------|-------------|
| [0]    | ?        | ?                                                                                 |             |
| [1]    | DEC_INTR | Indicates the ISR operation status of the CPU or ARM7 on the DEC_INTR generation. | 0           |
| [2]    | PIC_INTR | Indicates the ISR operation status of the CPU or ARM7 on the PIC_INTR generation. | 0           |
| [3]    | GOP_INTR | Indicates the ISR operation status of the CPU or ARM7 on the GOP_INTR generation. | 0           |
| [4]    | SEQ_INTR | Indicates the ISR operation status of the CPU or ARM7 on the SQ_INTR generation.  | 0           |
| [31:5] | ?        | ?                                                                                 |             |

# ARM STATUS REGISTER

The current debug status is written to this register when debugging ARM7. Therefore, the content to write to this register will differ depending on how to use it with the debugging S/W you create.

#### **ARM\_STATUS** register

| Name       | Address                    | Description        | Туре | Reset value |
|------------|----------------------------|--------------------|------|-------------|
| ARM_STATUS | S_REG_BASE<br>+0x260~0x26C | For ARM7 debugging | R    | 0           |

| Bits   | Name  | Description                                                                                                                                                                            | Reset value |
|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:0] | ARM_S | When debugging, you can write the value so that you can check out the internal situation of the chip by reading this register externally.                                              | 0           |
|        |       | For example, you can write the timer value to this register when an external interrupt occurs. Then, you let the host CPU read this register to check the current status of the timer. |             |



# VIDEO PTS (Presentation Time Stamp) REGISTER

This register contains the PTS value of the frame currently being decoded. Otherwise, it contains the PTS value of the most recent decoded frame.

#### VIDEO\_PTS0 ~ VIDEO\_PTS2 registers

| Name                      | Address | Description                                                                                        | Туре | Reset value |
|---------------------------|---------|----------------------------------------------------------------------------------------------------|------|-------------|
| VIDEO_PTS0~<br>VIDEO_PTS2 |         | VIDEO_PTS0~1 are the PTS values of the I and P frames. VIDEO_PTS2 is the PTS value of the B frame. | R    | 0           |

| Bits   | Name      | Description                       | Reset value |
|--------|-----------|-----------------------------------|-------------|
| [30:0] | PTS VALUE | High 31 bits [32:2] of video PTS. | 0           |
| [31]   | VALIDITY  | PTS value validity flag           |             |



.

# VIDEO PTS (Presentation Time Stamp) Q REGISTERS

# VIDEO\_PTSQ\_HIGH0 ~ VIDEO\_PTSQ\_HIGH47 registers

| Name                                           | Address                    | Description                           | Туре | Reset value |
|------------------------------------------------|----------------------------|---------------------------------------|------|-------------|
| VIDEO_PTSQ_HIG<br>H0~<br>VIDEO_PTSQ_HIG<br>H47 | S_REG_BASE<br>+0x280~0x33C | PTS queue write pointer on Vbv buffer | R    | 0           |

| Bits    | Name          | Description                                                                                             | Reset value |
|---------|---------------|---------------------------------------------------------------------------------------------------------|-------------|
| [14:0]  | WRITE_POINTER | Write pointer: Q_hdr_addr[23:10]: Because<br>SAM2K's memory is 15 bits, Q_hdr_addr<br>[31:25]becomes 0. | R           |
| [30:15] | -             | Not used                                                                                                | -           |
| [31]    | VALIDITY      | PTS queue value validity flag                                                                           | R           |

# VIDEO\_PTSQ\_LOW0 ~ VIDEO\_PTSQ\_LOW47 registers

| Name                                         | Address                    | Description      | Туре | Reset value |
|----------------------------------------------|----------------------------|------------------|------|-------------|
| VIDEO_PTSQ_LO<br>W0~<br>VIDEO_PTSQ_LO<br>W47 | S_REG_BASE<br>+0x340~0x3EC | PTS value buffer | R    | 0           |

| Bits   | Name      | Description        | Reset value |
|--------|-----------|--------------------|-------------|
| [30:0] | PTS VALUE | Filter byte data 7 | R           |
| [31]   | _         | Not used           | -           |



# FILTER MASK REGISTER

This register contains information for the section of the packet data that passed the PID filter, or the section that controls filtering for the payload.

It has an 8-byte filter depth. With this register, you can control the Filtering Enable/Disable for each byte and point to which position of the packet will be filtered. If filtering is disabled, you should set the POS value to 0.

# FILTER\_MASK1 ~ FILTER\_MASK32 registers

| Name                              | Address                    | Description                                   | Туре | Reset value |
|-----------------------------------|----------------------------|-----------------------------------------------|------|-------------|
| FILTER_MASK 1 ~<br>FILTER_MASK 32 | S_REG_BASE<br>+0x400~0x47C | Set the filter byte mask and the data offset. | R/W  | 0           |

| Bits    | Name    | Description                                                                                                                                                | Reset value |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [2:0]   | POS7    | Relative byte offset of Byte 7 from Byte 6. Therefore, the actual position of Byte 7 is POS1+POS2+POS3+POS7.                                               | R/W         |
| [5:3]   | POS6    | Relative byte offset of Byte 6 from Byte 5. Therefore, the actual position of Byte 6 is POS1+POS2+POS6.                                                    | R/W         |
| [8:6]   | POS5    | Relative byte offset of Byte 5 from Byte 4. Therefore, the actual position of Byte 5 is POS1+POS2+POS5.                                                    | R/W         |
| [11:9]  | POS4    | Relative byte offset of Byte 4 from Byte 3. Therefore, the actual position of Byte 4 is POS1+POS2+POS3+POS4.                                               | R/W         |
| [14:12] | POS3    | Relative byte offset of Byte 3 from Byte 2. Therefore, the actual position of Byte 3 is POS1+POS2+POS3.                                                    | R/W         |
| [17:15] | POS2    | Relative byte offset of Byte 2 from Byte 1. Therefore, the actual position of Byte 2 is POS1+POS2.                                                         | R/W         |
| [20:18] | POS1    | Byte position of Byte 1. The position of the first byte of the section is 0. For MPEG2, POS1 should be equal to or larger than 3.                          | R/W         |
| [22:21] | -       | Reserved                                                                                                                                                   | _           |
| [23]    | F_MODE  | Filter mode bit. Set to "0" to check whether it is the same<br>as the data set on the filter. Otherwise, set to "1". "1"<br>means negative filtering mode. | R/W         |
| [24]    | CRC     | CRC check on/off. Indicates whether to check the CRC.<br>When set to "1", CRC is checked and the section data<br>sis discarded if it does not match.       | R/W         |
| [25]    | BYTE_M7 | Byte 7 enable. "1" means Byte 7 is valid.                                                                                                                  | R/W         |
| [26]    | BYTE_M6 | Byte 6 enable. "1" means Byte 6 is valid.                                                                                                                  | R/W         |
| [27]    | BYTE_M5 | Byte 5 enable. "1" means Byte 5 is valid.                                                                                                                  | R/W         |
| [28]    | BYTE_M4 | Byte 4 enable. "1" means Byte 4 is valid.                                                                                                                  | R/W         |
| [29]    | BYTE_M3 | Byte 3 enable. "1" means Byte 3 is valid. For DSS, this field is ignored.                                                                                  | R/W         |



# FILTER MASK REGISTER (continued)

| Bits | Name    | Description                                                               | Reset value |
|------|---------|---------------------------------------------------------------------------|-------------|
| [30] | BYTE_M2 | Byte 2 enable. "1" means Byte 2 is valid. For DSS, this field is ignored. | R/W         |
| [31] | BYTE_M1 | Byte 1 enable. "1" means Byte 1 is valid. For DSS, this field is ignored. | R/W         |



# FILTER DATA REGISTERS

These registers save the data to the filter.

# FILTER\_DATA\_HIGH1 ~ FILTER\_DATA\_HIGH32 registers

| Name                    | Address                    | Description                 | Туре | Reset value |
|-------------------------|----------------------------|-----------------------------|------|-------------|
| FILTER_DATA_HIG<br>H1~  | S_REG_BASE<br>+0x480~0x4FC | High 4 bytes of filter data | R/W  | 0           |
| FILTER_DATA_HIG<br>H 32 |                            |                             |      |             |

| Bits    | Name     | Description                                                  | Reset value |
|---------|----------|--------------------------------------------------------------|-------------|
| [7:0]   | BYTE3    | Filter byte data 3. For DSS, it is table_id[7:0].            | R/W         |
| [15:8]  | BYTE2    | Filter byte data 2. For DSS, it is table_id[15:8]            | R/W         |
| [23:16] | BYTE1    | Filter byte data 1. For DSS, it is table_id[23:16]           | R/W         |
| [31:24] | TABLE_ID | table_id[7:0] of the section. For DSS, it is table_id[31:24] | R/W         |

# FILTER\_DATA\_LOW1 ~ FILTER\_DATA\_LOW32 registers

| Name                   | Address                    | Description                | Туре | Reset value |
|------------------------|----------------------------|----------------------------|------|-------------|
| FILTER_DATA_LO<br>W1~  | S_REG_BASE<br>+0x500~0x57C | Low 4 bytes of filter data | R/W  | 0           |
| FILTER_DATA_LO<br>W 32 |                            |                            |      |             |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [7:0]   | BYTE7 | Filter byte data 7  | R/W         |
| [15:8]  | BYTE6 | Filter byte data 6. | R/W         |
| [23:16] | BYTE5 | Filter byte data 5. | R/W         |
| [31:24] | BYTE4 | Filter byte data 4  | R/W         |



.

•

.

#### FILTER STATE REGISTERS

#### F\_STATE1 ~ F\_STATE32 registers

| Name       | Address      | Description  | Туре | Reset value |
|------------|--------------|--------------|------|-------------|
| F_STATE 1~ | S_REG_BASE   | Filter state |      |             |
| F_STATE 32 | +0x580~0x5FC |              |      |             |

| Bits   | Name | Description | Reset value |
|--------|------|-------------|-------------|
| [31:0] |      |             |             |

#### FILTER CRC REGISTERS

#### F\_CRC1 ~ F\_ CRC32 registers

| Name      | Address      | Description | Туре | Reset value |
|-----------|--------------|-------------|------|-------------|
| F_CRC 1 ~ | S_REG_BASE   |             |      |             |
| F_CRC 32  | +0x600~0x67C |             |      |             |

| Bits   | Name | Description | Reset value |
|--------|------|-------------|-------------|
| [31:0] |      |             |             |

#### FILTER HEADER ADDRESS REGISTERS

#### F\_HDR\_ADDR1 ~ F\_ HDR\_ADDR32 registers

| Name           | Address      | Description           | Туре | Reset value |
|----------------|--------------|-----------------------|------|-------------|
| F_HDR_ADDR 1 ~ | S_REG_BASE   | Filter header address |      |             |
| F_HDR_ADDR 32  | +0x680~0x6FC |                       |      |             |

| Bits   | Name | Description | Reset value |
|--------|------|-------------|-------------|
| [31:0] |      |             |             |



NOTE



# 4 PCI & DMA

## OVERVIEW

When the PCI block becomes bus master, it can read/write data from/to the memory of the host system. When it becomes the target, the host system controls it and it works as an interface for data transfer. The internal control registers and local memory (SDRAM) area of SAM2K-LITE can be accessed via the PCI bus. SAM2K-LITE's PCI block can be largely divided into the master interface module and the target only interface module. The master interface module has the PCI master/target function and consists of PCI\_GP\_IF, PCI\_AD\_IF, PCI\_TS\_DP\_IF, PCI\_SP\_IF, and PCI\_HSMB\_IF. The PCI target only module can only receive data from the bus in slave mode, and consists of PCI\_TAR\_HSMB\_IF, PCI\_SRAM\_IF, and PCI\_REG\_IF.

For audio data, since it is not decoded by SAM2K-LITE, it is transferred to the host CPU via the PCI. The audio data decoded by the host CPU is then transferred back to SAM2K-LITE via the PCI and output on the dedicated output port. In addition, the PSI (Packet Specific Information) data is transferred to the host CPU via the PCI.

For video data, it is transferred to the external memory via DMA1 as described in Chapter 3.

#### PCI CONTROLLER FEATURES

- PCI Master and target device
- 32-bit up to 33 MHz at 3.3V
- PCI Local Bus Specification Rev. 2.1 compliant
- System clock can run asynchronously to PCI clock
- Supports two base address registers
  - Memory base address 0 : prefetchable, 4MBytes fixed size

Allocated for internal memory used in each PCI interface module like System controller, SP, DPSRAM Memory base address 1 : prefetchable, 32Mbytes fixed size

Allocated for external HSMB for external SDRAM

- Four independent 8-word deep FIFO
- Not supports 64-bit addressing

#### **TERMINOLOGY OF REGISTER GROUPS**

- SFR (Special Function Registers) : There is no PCI specific register
- PCI configuration registers : PCI configuration header (can be accessed by configuration cycle)

# Architecture

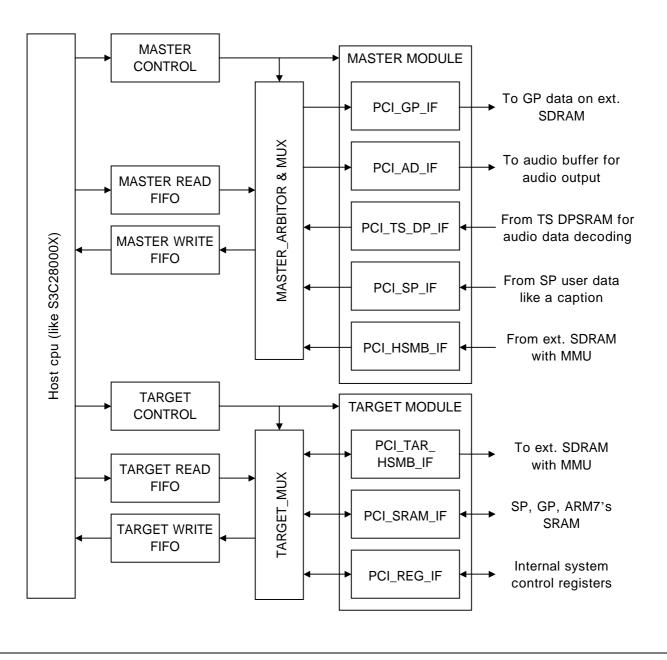



Figure 4-1 PCI block diagram



#### **PCI Configuration Registers**

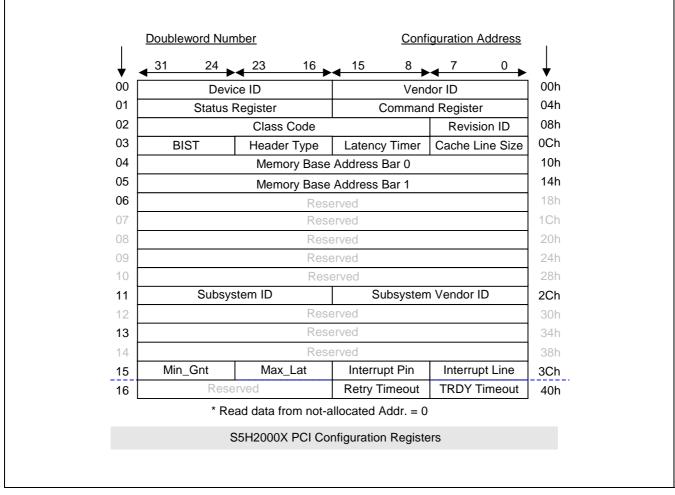



Figure 17-10. PCI Configuration Registers

All configuration registers are described in "PCI Local Bus Specification Revision 2.1".

Because the PCI configuration space of SAM2K-LITE is not connected to the internal bus of SAM2K-LITE, it can be accessed only by an external PCI device. Therefore, the initial value should be set during registration of the device driver or with the host CPU.



| Offset        | Bits    | Name                     | R/V           | <b>V(</b> 1) | Description                                           | Reset Value |  |
|---------------|---------|--------------------------|---------------|--------------|-------------------------------------------------------|-------------|--|
|               |         |                          | <b>LB</b> (2) | PCI          |                                                       |             |  |
| 0x00          | [15:0]  | Vendor ID                | -             | R/O          | Chip vendor identification                            | 0x144D      |  |
|               | [31:16] | Device ID                | -             | R/O          | Chip device identification                            | 0xA010      |  |
| 0x04          | [15:0]  | Command Register         | -             | R/W          | Basic control register to perform PCI access          | 0x0000      |  |
|               | [31:16] | Status Register          | -             | R/W/C        | PCI bus-related status register                       | 0x0280      |  |
| 0x08          | [7:0]   | Revision ID              | -             | R/O          | Identifies the revision number of the device          | 0x00        |  |
|               | [31:8]  | Class Code               | -             | R/O          | Identifies the basic function of the device           | 0x048000    |  |
| 0x0C          | [7:0]   | Cache Line Size          | -             | R/W          | System cache line size                                | 0x00        |  |
|               | [15:8]  | Latency Timer            | -             | R/W          | Maximum clocks that master can own the bus            | 0x00        |  |
|               | [23:16] | Header Type              | -             | R/O          | Indicates a single or multi-function                  | 0x00        |  |
|               | [31:24] | BIST                     | -             | R/O          | Register for built-in self-test                       | 0x00        |  |
| 0x10          | [31:0]  | Memory Base<br>Address 0 | -             | R/O          | Memory bar 0 size and location (of fast decode)       | 0x0000 0000 |  |
| 0x14          | [31:0]  | Memory Base<br>Address 1 | -             | R/O          | Memory bar 1 size and location (of medium decode)     | 0x0000 0000 |  |
| 0x18–<br>0x2B |         | Reserved                 | -             |              | Reserved                                              |             |  |
| 0x2C          | [15:0]  | Subsystem Vendor<br>ID   | -             | R/O          | Add-in card or subsystem vendor identification        | 0x0000      |  |
|               | [31:16] | Subsystem ID             | -             | R/O          | Add-in card or subsystem identification               | 0x0000      |  |
| 0x30–<br>0x3B |         | Reserved                 | -             |              | Reserved                                              |             |  |
| 0x3C          | [7:0]   | Interrupt Line           | -             | R/O          | Interrupt request line routing information            | 0x00        |  |
|               | [15:8]  | Interrupt Pin            | -             | R/O          | Interrupt request pin number (INTA#)                  | 0x01        |  |
|               | [23:16] | Min_Gnt                  | -             | R/O          | Minimum time of how long master needs burst period    | 0x00        |  |
|               | [31:24] | Max_Lat                  | -             | R/O          | Maximum time of how often device needs to gain access | 0x00        |  |
| 0x40          | [7:0]   | TRDY Timeout             | -             | R/W          | Maximum time of master wait for TRDY#                 | 0x80        |  |
|               | [16:8]  | Retyr Timeout            | -             | R/W          | Maximum number of master retry                        | 0x80        |  |
|               | [31:17] | Reserved                 |               |              | Reserved                                              |             |  |

Table 4-2. PCI Configuration Registers Overview

**NOTE:** 1. R/O = Read-only, R/W = Read and Write, R/WC = Read and Write 1 to clear.

2. Cannot be accessed via the LB (Local Bus).



#### PCI Vendor ID & Device ID Register (PCIVDIDR)

This register identifies the manufacture of the device and the particular device.

| Register | Address | R/W | Description                          | Reset Value |
|----------|---------|-----|--------------------------------------|-------------|
| PCIVDIDR | 0x0000  | R   | PCI vendor ID and device ID register | 0xA010144D  |

| PCIVDIDR | Bit     | Description                                                                              | Initial State |
|----------|---------|------------------------------------------------------------------------------------------|---------------|
| DEVID    | [31:16] | Chip device identification (Read-only)                                                   | 0x A010       |
|          |         | This field identifies the particular device. This identifier is allocated by the vendor. |               |
| VENID    | [15:0]  | Chip vendor identification (Read-only)                                                   | 0x144D        |
|          |         | This field identifies the manufacturer of the device.                                    |               |

#### PCI Status & Command Register (PCISCR)

The Status register (PCISCR[31:16]) is used to record status information for PCI bus related events. Reserved bits should be read-only and return zero when read. Reads to this register behave normally. Writes are slightly different in that bits can be reset, but no set. A one bit is reset whenever the register is written, and the write data in the corresponding bit location is a 1.

The Command register (PCISCR[15:0]) provide coarse control over a device's ability to generate and respond to PCI cycles. When a 0 is written to this register, the device is logically disconnected from the PCI bus for all accesses except configuration accesses.

| Register | Address | R/W | Description                     | Reset Value |
|----------|---------|-----|---------------------------------|-------------|
| PCISCR   | 0x0004  | R/W | PCI status and command register | 0x0280 0000 |

| PCISCR                | Bit  | Description                                                                                                                                                                                                                                   | Initial State |
|-----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Detected Parity Error | [31] | Detected parity error status bit (Read or write-1-to-clear)                                                                                                                                                                                   | 0             |
|                       |      | This bit must be set by a device whenever it detects a parity<br>error, regardless of the state of the parity error response bit<br>(PCISCR[6]). This bit is required to be set by the device<br>when any of the following conditions occurs: |               |
|                       |      | <ol> <li>The device's parity checking logic detects an error in a<br/>single address cycle or either address phase of a dual<br/>address cycle.</li> </ol>                                                                                    |               |
|                       |      | 2) The device's parity checking logic detects a data parity error and the device is the target of a write transaction.                                                                                                                        |               |
|                       |      | 3)The device's parity checking logic detects a data parity error and the device is the master of a read transaction.                                                                                                                          |               |
| Signaled System Error | [30] | Signaled system error bit (Read or write-1-to-clear)                                                                                                                                                                                          | 0             |
|                       |      | This bit must be set whenever the device asserts <b>SERR</b> #.                                                                                                                                                                               |               |



| PCISCR                   | Bit     | Description                                                                                                                                                                                                                                 | Initial State |
|--------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Received Master Abort    | [29]    | Received master abort bit (Read or write-1-to-clear)                                                                                                                                                                                        | 0             |
|                          |         | This bit must be set by a master device whenever its transaction (except for Special Cycle) is terminated with Master-Abort.                                                                                                                |               |
| Received Target Abort    | [28]    | Received target abort bit (Read or write-1-to-clear)                                                                                                                                                                                        | 0             |
|                          |         | This bit must be set by a master device whenever its transaction is terminated with Target-Abort.                                                                                                                                           |               |
| Signaled Target Abort    | [27]    | Signaled target abort bit (Read or write-1-to-clear)                                                                                                                                                                                        | 0             |
|                          |         | This bit must be set by a target device whenever it terminates a transaction with Target-Abort.                                                                                                                                             |               |
| DEVSEL timing            | [26:25] | DEVSEL# response timing bits (Read or write-1-to-clear)                                                                                                                                                                                     | 01            |
|                          |         | These bits encode the timing of <b>DEVSEL#</b> . A specifies three allowable timings for assertion of <b>DEVSEL#</b> .                                                                                                                      |               |
|                          |         | 00 = fast timing 01 = medium timing                                                                                                                                                                                                         |               |
|                          |         | 10 = slow timing 11 = reserved                                                                                                                                                                                                              |               |
|                          |         | It asserts DEVSEL# on the second clock after FRAME# is assert by a PCI master attempting to access memory.                                                                                                                                  |               |
|                          |         | These bits are read-only and must indicate the slowest time that a device asserts <b>DEVSEL#</b> for any bus command except Configuration Read and Configuration Write.                                                                     |               |
| Master Data Parity Error | [24]    | Master data parity error status bit (Read or write-1-to-clear)                                                                                                                                                                              | 0             |
|                          |         | If the parity response bit(PCISCR[6] is cleared, the master<br>must not set this bit, even if the master detects a parity error<br>or the target asserts PERR#. Targets never set this bit. This<br>bit is only implemented by bus masters. |               |
|                          |         | It is set when three conditions are met:                                                                                                                                                                                                    |               |
|                          |         | <ol> <li>the bus agent asserted <b>PERR#</b> itself (on a read) or<br/>observed <b>PERR#</b> asserted (on a write);</li> </ol>                                                                                                              |               |
|                          |         | 2) the agent setting the bit acted as the bus master for the operation in which the error occurred;                                                                                                                                         |               |
|                          |         | 3) the Parity Error Response bit (PCISCR[6]) is set.                                                                                                                                                                                        |               |
| Fast Back-to-Back        | [23]    | Fast back to back capable bit (Read or write-1-to-clear)                                                                                                                                                                                    | 1             |
| Capable                  |         | This bit indicates whether or not the target is capable of accepting fast back-to-back transactions when the transactions are not to the same agent.                                                                                        |               |
|                          |         | 0 = Not capable the fast back-to-back transaction.                                                                                                                                                                                          |               |
|                          |         | 1 = Capable the fast back-to-back transaction.                                                                                                                                                                                              |               |
| Reserved                 | [22]    | Reserved                                                                                                                                                                                                                                    | 0             |



| PCISCR                   | Bit     | Description                                                                                                                                                                                         | Initial State |
|--------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 66MHz Capable            | [21]    | This bit indicates whether or not this device is capable of running at 66 MHz. (Read only)                                                                                                          | 0             |
|                          |         | 0 = Capable 33 MHz.                                                                                                                                                                                 |               |
|                          |         | 1 = capable 66 MHz                                                                                                                                                                                  |               |
|                          |         | <b>NOTE</b> : S5H2000X support only 33MHz capable.                                                                                                                                                  |               |
| Capabilities List        | [20]    | Capabilities list pointer bit (Read only)                                                                                                                                                           | 0             |
|                          |         | This bit indicates whether or not this device implements the pointer for a New Capabilities linked list at offset 34h.                                                                              |               |
|                          |         | 0 = No available New Capabilities linked list.                                                                                                                                                      |               |
|                          |         | 1 = Available New Capabilities linked list.                                                                                                                                                         |               |
| Reserved                 | [19:10] | Reserved                                                                                                                                                                                            |               |
| Fast Back-to-Back Enable | [9]     | Fast back-to-back write enable bit                                                                                                                                                                  | 0             |
|                          |         | This bit controls whether or not a master can do fast back-to-<br>back transactions to different devices. Initialization software<br>will set the bit if all targets are fast back-to-back capable. |               |
|                          |         | 0 = The master is allowed to generate fast back-to-back transactions to the same agent.                                                                                                             |               |
|                          |         | 1 = The master is allowed to generate fast back-to-back transactions to different agents.                                                                                                           |               |
| SERR# Enable             | [8]     | This bit is an enable bit for the <b>SERR#</b> driver.                                                                                                                                              | 0             |
|                          |         | 0 = disables the <b>SERR#</b> driver when a PCI bus address parity error is detected.                                                                                                               |               |
|                          |         | 1 = enables the <b>SERR#</b> driver when a PCI bus address parity error is detected.                                                                                                                |               |
|                          |         | All devices that have an <b>SERR#</b> pin must implement this bit.<br>Address parity errors are reported only if this bit and parity<br>error response bit (PCISCR[6]) are 1.                       |               |
| Stepping Control         | [7]     | This bit is used to control whether or not a device does address/data stepping.                                                                                                                     | 0             |
|                          |         | 0 = Devices that never do stepping.                                                                                                                                                                 |               |
|                          |         | 1 = Devices that always do stepping.                                                                                                                                                                |               |
|                          |         | NOTE : S5H2000X is not supported.                                                                                                                                                                   |               |



| PCISCR                                | Bit | Description                                                                                                                                                                                          | Initial State |
|---------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Parity Error Response                 | [6] | This bit controls the device's response to parity errors.                                                                                                                                            | 0             |
|                                       |     | 0 = The device sets its Detected Parity Error status bit<br>(PCISCR[31]) when an error is detected, but does not assert<br><b>PERR#</b> and continues normal operation.                              |               |
|                                       |     | 1 = The device must take its normal action when a parity error is detected.                                                                                                                          |               |
| VGA Palette Snoop                     | [5] | This bit controls how VGA compatible and graphics devices handle accesses to VGA palette registers.                                                                                                  | 0             |
|                                       |     | 0 = Disable palette snooping.<br>(The device should treat palette write accesses like all other accesses.)                                                                                           |               |
|                                       |     | <ul><li>1 = Enable palette snooping.</li><li>(The device does not respond to palette register writes and snoops the data.)</li></ul>                                                                 |               |
|                                       |     | <b>NOTE</b> : S5H2000X is not supported.                                                                                                                                                             |               |
| Memory Write and<br>Invalidate Enable | [4] | This is an enable bit for using the Memory Write and Invalidate command.                                                                                                                             | 0             |
|                                       |     | 0 = Disable the command (Memory Write command is used).                                                                                                                                              |               |
|                                       |     | 1 = Enable the memory write and invalidate command.                                                                                                                                                  |               |
|                                       |     | NOTE : S5H2000X is not supported.                                                                                                                                                                    |               |
| Special Cycle                         | [3] | Controls a device's action on Special Cycle operations.                                                                                                                                              | 0             |
|                                       |     | 0 = Disable Special Cycle operations.                                                                                                                                                                |               |
|                                       |     | 1 = Enable Special Cycle operations.                                                                                                                                                                 |               |
|                                       |     | NOTE : S5H2000X is not supported                                                                                                                                                                     |               |
| Bus Master                            | [2] | Controls a device's ability to act as a master on the PCI bus.                                                                                                                                       | 0             |
|                                       |     | 0 = Disables the device from generating PCI accesses.                                                                                                                                                |               |
|                                       |     | 1 = Enable the device to behave as a bus master.                                                                                                                                                     |               |
| Memory space                          | [1] | Controls a device's response to Memory Space accesses.                                                                                                                                               | 0             |
|                                       |     | 0 = Disable master to respond as a PCI memory target.<br>1 = Enable master to respond as a PCI memory target.                                                                                        |               |
|                                       |     | If this bit is "1", S5H2000X Memory Space cannot be<br>accessed by a different PCI device. S5H2000X memory<br>space is a type that is set in the Memory Base Address<br>Register(BAR) 0/1,PCIBAR0/1. |               |
| IO space                              | [0] | Controls a device's response to I/O Space accesses.                                                                                                                                                  | 0             |
|                                       |     | 0 = Disable master to respond as a PCI I/O target.<br>1 = Enable master to respond as a PCI I/O target.                                                                                              |               |
|                                       |     | NOTE : S5H2000X is not supported                                                                                                                                                                     |               |

## PCI Class Code & Revision ID Register (PCICRIDR)

The Class Code register (PCICRIDR[31:8]) is read-only and is used to identify the generic function of the device



and, in some case, a specific register-level programming interface, The register is broken into three byte-size fields. The upper byte is a base class code. The middle byte is a sub-class code. The lower byte identifies a specific register-level programming interface.

| Register | Address | R/W | Description                             | Reset Value |
|----------|---------|-----|-----------------------------------------|-------------|
| PCICRIDR | 0x0008  | R/W | PCI class code and revision ID register | 0x0480 0000 |

| PCICRIDR | Bit     | Description                                                                                                                                            | Initial State |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| BASCLS   | [31:24] | Base class code bits                                                                                                                                   | 0x04          |
|          |         | These bits indicate that it broadly classifies the type of function the device performs.                                                               |               |
| SUBCLS   | [23:16] | Sub-class code bits                                                                                                                                    | 0x80          |
|          |         | These bits indicate that it identifies more specifically the function of device.                                                                       |               |
| SRLPI    | [15:8]  | Specific register-level programming interface bits                                                                                                     | 0x00          |
|          |         | These bits indicate that it identifies a specific register-level programming interface so that device dependent software can interact with the device. |               |
| REVID    | [7:0]   | Revision ID bits                                                                                                                                       | 0x00          |
|          |         | These bits are used to specifies a device specific revision identifier. The value is chosen by the vendor. Zero is acceptable value.                   |               |



## PCI General Control Register (PCIGCONR)

| Register | Address | R/W | Description                  | Reset Value |
|----------|---------|-----|------------------------------|-------------|
| PCIGCONR | 0x000C  | R/W | PCI general control register | 0x0000 0000 |

| PCIGCONR  | Bit     | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial State |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SUPBIST   | [31]    | BIST (Built-in Self Test) capable bit (Read-only)<br>0 = Not BIST capable<br>1 = Support BIST                                                                                                                                                                                                                                                                                                                                  | 0             |
|           |         | NOTE: S5H2000X is not supported.                                                                                                                                                                                                                                                                                                                                                                                               |               |
| STRBIST   | [30]    | BIST (Bulit-in Self Test) start bit (Read-only)                                                                                                                                                                                                                                                                                                                                                                                | 0             |
|           |         | Write a 1 to invoke BIST. Device resets the bit when BIST is complete. Software should fail the device if BIST is not complete after 2 seconds.                                                                                                                                                                                                                                                                                |               |
|           |         | NOTE: S5H2000X is not supported.                                                                                                                                                                                                                                                                                                                                                                                               |               |
| _         | [29:28] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                       | 00            |
| COMCODE   | [27:24] | Completion code bits (Read-only)<br>Device-specific failure codes can be encoded in the non-zero<br>value.<br>0 = The device has passed its test.<br>Non zero values = The device failed.                                                                                                                                                                                                                                      | 0x0           |
|           |         | NOTE: S5H2000X is not supported.                                                                                                                                                                                                                                                                                                                                                                                               |               |
| HDTYPFUNC | [23]    | Multi-function device select bit(Header Type) (Read-only)<br>0 = single function device<br>1 = multi function device                                                                                                                                                                                                                                                                                                           | 0             |
| PREDHD    | [22:16] | The layout of the 2nd part of predefined header bits.(Read-only)<br>00 = Type 00h configuration space header<br>01 = PCI-to-PCI bridges<br>1x = Reserved                                                                                                                                                                                                                                                                       | 0x00          |
| LATTIME   | [15:8]  | Latency timer bits                                                                                                                                                                                                                                                                                                                                                                                                             | 0x00          |
|           |         | Maximum clocks that master can own the bus.<br>These bits specifies the value of the latency timer for this PCI<br>bus master in units of PCI bus clocks                                                                                                                                                                                                                                                                       |               |
| CACHELSIZ | [7:0]   | System Cache Line size bits                                                                                                                                                                                                                                                                                                                                                                                                    | 0x00          |
|           |         | These bits specifies the system cache size in units of DWORDs. These bits is used by master devices to determine whether to use Read, Read Line, or Read Multiple commands for accessing memory. A device may limit the number of cache line sizes that it can support. If an unsupported value is written to these bits, the device should behaves as if a value of 0 was written.<br><b>NOTE:</b> S5H2000X is not supported. |               |



| Register | Address | R/W | Description                                       | Reset Value |
|----------|---------|-----|---------------------------------------------------|-------------|
| PCIBAR0  | 0x0010  | R/W | Memory bar 0 size and location (of fast decode)   | 0x0000 0000 |
| PCIBAR1  | 0x0014  | R/W | Memory bar 1 size and location (of medium decode) | 0x0000 0000 |

## PCI Base Address Registers (PCIBARN)

| PCIBARn  | Bit    | Description                                                                                                  | Initial State |
|----------|--------|--------------------------------------------------------------------------------------------------------------|---------------|
| BASEADDR | [31:4] | PCI base address bits                                                                                        | 0x000 0000    |
| ADPREFT  | [3]    | Prefetchable bit(In case of memory space) (Read-only)                                                        | 0             |
|          |        | 0 = Not prefetchable data<br>1 = Pre-fetchable data                                                          |               |
|          |        | In case of I/O space, this bit is used to base address.                                                      |               |
| ADDRSPS  | [2:1]  | Base address space select bits (In case of memory space) (Read-only)                                         | 00            |
|          |        | 00 = Base register is 32 bits wide and can be mapped anywhere in the 32-bit memory space.                    |               |
|          |        | 10 = Base register is 64 bits wide and can be mapped<br>anywhere in the 64-bit memory space. (Not supported) |               |
|          |        | Other values = Reserved                                                                                      |               |
|          |        | In case of I/O space, Bit 2 is used to base address and Bit 1 is always 0.                                   |               |
|          |        | <b>NOTE</b> : S5H2000X is not support I/O space.                                                             |               |
| ADMAPSEL | [0]    | Address map select bit. (Read-only)                                                                          | 0             |
|          |        | 0 = Memory space indicator (PCIBAR0, PCIBAR1)                                                                |               |
|          |        | 1 = I/O space indicator                                                                                      |               |
|          |        | NOTE: S5H2000X is not support I/O space.                                                                     |               |



#### PCI Subsystem & Subsystem Vendor ID Register (PCISSVIDR)

This register is used to uniquely identify the expansion board or subsystem where the PCI device resides.

| Register  | Address | R/W | Description                                    | Reset Value |
|-----------|---------|-----|------------------------------------------------|-------------|
| PCISSVIDR | 0x002C  | R/W | PCI subsystem and subsystem vendor ID register | 0x0000 0000 |

| PCISUBSYSIDR | Bit     | Description                                                                                 | Initial State |
|--------------|---------|---------------------------------------------------------------------------------------------|---------------|
| SUBSYSID     | [31:16] | PCI subsystem ID bits.<br>These bits are used to uniquely identify the subsystem            | 0x0000        |
|              |         | where the PCI device resides.                                                               |               |
|              |         | <b>NOTE</b> : S5H2000X is not support subsystem ID.                                         |               |
| SUBSYSVENID  | [15:0]  | PCI subsystem vendor ID bits.<br>These bits can be obtained from the PCI signal and used to | 0x0000        |
|              |         | identify the vendor of the expansion board or subsystem.<br>The values are vendor specific. |               |
|              |         | <b>NOTE</b> : S5H2000X is not support subsystem vendor ID.                                  |               |

## PCI Miscellaneous Register (PCIMISCR)

| Register | Address | R/W | Description               | Reset Value |
|----------|---------|-----|---------------------------|-------------|
| PCIMISCR | 0x003C  | R/W | PCI miscelaneous register | 0x0000 0100 |

| PCIMISCR | Bit     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial State |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| MAX_LAT  | [31:24] | Maximum latency timer value bits<br>These bits are used for specifying how often the device needs to<br>gain access to PCI bus.<br>The value specifies a period of time in units of 0.25µs (at 33MHz).<br>Values of 0 indicate that the device has no major requirements for<br>the settings of the latency timers. Values should be chosen<br>assuming that the target does not insert any wait-states.                                                                                          | 0x00          |
| MIN_GNT  | [23:16] | Minimum grant timer value bits<br>These bits are used for specifying how long a burst period the<br>device needs assuming a clock rate of 33MHz.<br>The value specifies a period of time in units of 0.25µs. Values of 0<br>indicate that the device has no major requirements for the settings<br>of the latency timers. Values should be chosen assuming that the<br>target does not insert any wait-states.                                                                                    | 0x00          |
| INT_PIN  | [15:8]  | Interrupt pin select bits(Read only)<br>0x00 = No use interrupt pin 0x01 = INTA#<br>Other values = Reserved                                                                                                                                                                                                                                                                                                                                                                                       | 0x01          |
| INT_LINE | [7:0]   | Interrupt line bits<br>The value of these bits tells which input of the system interrupt<br>controller the device's interrupt pin is connected to. The device<br>itself does not use this value, rather it is used by device drivers<br>and operating systems. Device drivers and operating systems can<br>use this information to determine priority and vector information.<br>POST software will write the routing information into these bits as<br>it initializes and configures the system. | 0x00          |

## PCI Target Ready & Retry Timeout Register (PCITOR)

| Register | Address     | R/W | Description                                 | Reset Value |
|----------|-------------|-----|---------------------------------------------|-------------|
| PCITOR   | 0x1008 0040 | R/W | PCI target ready and retry timeout register | 0x0000 8080 |

| PCITOR    | Bit    | Description                                                         | Initial State |
|-----------|--------|---------------------------------------------------------------------|---------------|
| RETRYTOUT | [15:8] | Maximum times of master retry                                       | 0x80          |
|           |        | The value specifies a period of time in frame units.                |               |
| TRDYTOUT  | [7:0]  | Maximum time of master wait for TRDY#                               | 0x80          |
|           |        | The value specifies a period of time in units of 30.3ns (at 33MHz). |               |



#### MASTER MODULE STATUS REGISTER (MMSR)

This register gives information on which of the 5 modules (that can operate as the bus master) is currently performing a PCI operation with the DMA, when the PCI block operates as the PCI bus master. When the relevant bit is set to 1, it means that the module is currently performing a PCI operation.

| GSCR_MMSR | register | (Global | Status & | Control | Register) |
|-----------|----------|---------|----------|---------|-----------|
|           |          |         |          |         |           |

| Name      | Address  | Description                   | Туре | Reset value |
|-----------|----------|-------------------------------|------|-------------|
| GSCR_MMSR | BAR0+0ch | Master Module Status Register | R    | 0           |

| Bits   | Name | Description                                                                    | Reset value |
|--------|------|--------------------------------------------------------------------------------|-------------|
| [0]    | DMA1 | PCI operating status of pci_w_ts_dpsram<br>0 = Not operating<br>1 = Operating  | 0           |
| [1]    | DMA2 | PCI operating status of pci_gp_if<br>0 = Not operating<br>1 = Operating        | 0           |
| [2]    | DMA3 | PCI operating status of pci_hsmb_if<br>0 = Not operating<br>1 = Operating      | 0           |
| [3]    | DMA4 | PCI operating status of pci_audio_pcm<br>0 = Not operating<br>1 = Operating    | 0           |
| [4]    | DMA5 | PCI operating status of pci_audio_stream<br>0 = Not operating<br>1 = Operating | 0           |
| [31:5] | -    | Reserved                                                                       | _           |



# SOFT RESET REGISTER (SRN)

The setting of this register could reset each peripheral.

| GSCR_SRN register (Global Status & Control Register) |
|------------------------------------------------------|
|------------------------------------------------------|

| Name     | Address  | Description  | Туре | Reset value |
|----------|----------|--------------|------|-------------|
| GSCR_SRN | BAR0+14h | Soft Reset_N | R/W  | 0           |

| Bits    | Name       | Description                                                | Reset value |
|---------|------------|------------------------------------------------------------|-------------|
| [0]     | PCI_RESET  | PCI Reset (Power On Reset), read only                      | 0           |
| [1]     | ARM_RESET  | ARM Reset<br>0 = Reset asserted<br>1 = Reset Not asserted  | 0           |
| [5]     | SP_HALT    | SP Reset<br>0 = Reset asserted<br>1 = Reset Not asserted   | 0           |
| [7]     | MMU_RESET  | MMU Reset<br>0 = Reset asserted<br>1 = Reset Not asserted  | 0           |
| [8]     | MPEG_RESET | MPEG Reset<br>0 = Reset asserted<br>1 = Reset Not asserted | 0           |
| [9]     | DP_RESET   | DP Reset<br>0 = Reset asserted<br>1 = Reset Not asserted   | 0           |
| [10]    | GA_RESET   | GA Reset<br>0 = Reset asserted<br>1 = Reset Not asserted   | 0           |
| [11]    | GP_RESET   | GP Reset<br>0 = Reset asserted<br>1 = Reset Not asserted   | 0           |
| [31:12] | -          | Reserved                                                   | -           |



# TS\_DPSRAM DMA

TS\_DPSRAM consists of three 188-byte buffers and saves the TS stream input from external sources. Then, SAM2K-LITE TS-demux transfers the data to the destination block according to data type by recognizing whether it is section, audio or video data. Section and audio data are transferred to the system memory via the PCI bus so that the CPU can process them. Video data is transferred to the local memory of the S5H2000X via the DMA1. The local TS\_DPSRAM control block saves the TS stream and transfers the data via the PCI using the DMA operation.



## LTCR1 PCI START ADDRESS REGISTER (PSA)

This register specifies the destination (system memory) address to which the TS stream is transferred. The specified address should be a PCI address. The addressing unit is a byte.

#### LTCR1\_PSA register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description       | Туре | Reset value |
|-----------|----------|-------------------|------|-------------|
| LTCR1_PSA | BAR0+c0h | PCI Start Address | R/W  | 0           |

| Bits   | Name | Description                                           | Reset value |
|--------|------|-------------------------------------------------------|-------------|
| [21:0] | PSA  | Target start address in the PCI memory                | 0           |
| [31:0] |      | System memory address. The addressing unit is a byte. | 0           |

## LTCR1 LOCAL START ADDRESS REGISTER (LSA)

This register specifies the address of the source which will be transferred to the destination (system memory) via DMA. The source address should be the start address of a TS\_DPSRAM buffer. There are three DPSRAMs and their address can be a location within the addressing space of 0 ~ 188\*3. That is, the addressing space of DPSRAM 0 is 0 ~ 187; DPSRAM 1, 188 ~ 375; DPSRAM 2, 376 ~ 563. The addresses of LTCR\_LSA should be specified within the above ranges.

#### LTCR1\_PSA register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description         | Туре | Reset value |
|-----------|----------|---------------------|------|-------------|
| LTCR1_LSA | BAR0+c4h | Local Start Address | R/W  | 0           |

| Bits   | Name | Description                             | Reset value |
|--------|------|-----------------------------------------|-------------|
| [31:0] | LSA  | Local start address in TS_DPSRAM memory | 0           |



# TRANSFER BYTE COUNTER REGISTER (TBC)

#### LTCR1\_TBC register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description         | Туре | Reset value |
|-----------|----------|---------------------|------|-------------|
| LTCR1_TBC | BAR0+c8h | Transfer Byte-Count | R/W  | 0           |

| Bits    | Name | Description         | Reset value |
|---------|------|---------------------|-------------|
| [9:0]   | ТВС  | Transfer byte-count | 0           |
| [31:10] | —    | Reserved            | -           |

# AUXILIARY CONTROL REGISTER (AxC)

#### LTCR1\_AxC register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description       | Туре | Reset value |
|-----------|----------|-------------------|------|-------------|
| LTCR1_AxC | BAR0+cch | Auxiliary Control | R/W  | 0           |

The Transfer Data Type Selection Bit (LTCR1\_AxC[0]) gives the interrupt block the information for the type of data to be transferred and generates the interrupt of the audio DMA done or the section DMA done by differentiating the interrupt source when the data transfer finishes. This bit is set when the DMA transfer finishes. Therefore be careful to note that once a DMA operation has begun, if you select a different data type from the current data type before it finishes, the wrong interrupt will be generated.

The DPSRAM buffer selection should be used with the value fixed to "0".

| Bits   | Name        | Description                                        | Reset value |
|--------|-------------|----------------------------------------------------|-------------|
| [0]    | SECTION_SEL | Trasnfer data type selection:                      |             |
|        |             | 0 = section data                                   | 0           |
|        |             | 1 = audio data                                     |             |
| [1]    | MUX_SEL     | DPSRAM Buffer selection:                           | 0           |
|        |             | $0 = $ select buff_0                               |             |
|        |             | 1 = select buff_1                                  |             |
|        |             | Should be used with the value fixed to "0".        |             |
| [6:2]  | -           | Reserved                                           | —           |
| [7]    | -           | For test only, always "0"                          | 0           |
| [8]    | START_DMA   | DMA start enable:                                  | 0           |
|        |             | 0 = no effect                                      |             |
|        |             | 1 = start DMA when write "1" and be cleared by H/W |             |
| [31:9] | _           | Reserved                                           | -           |



## **TRANSFERED BYTE COUNTER REGISTER (XBC)**

#### LTCR1\_XBC register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description            | Туре | Reset value |
|-----------|----------|------------------------|------|-------------|
| LTCR1_XBC | BAR0+d0h | Transferred Byte-Count | R    | 0           |

| Bits    | Name | Description            | Reset value |
|---------|------|------------------------|-------------|
| [9:0]   | XBC  | Transferred byte-count | 0           |
| [31:10] | -    | Reserved               | _           |

## ERROR STATUS REGISTER (ESR)

#### LTCR1\_ESR register (Local TS\_DPSRAM Control Register 1)

| Name      | Address  | Description  | Туре | Reset value |
|-----------|----------|--------------|------|-------------|
| LTCR1_ESR | BAR0+d4h | Error Status | R    | 0           |

| Bits   | Name  | Description                                      | Reset value |
|--------|-------|--------------------------------------------------|-------------|
| [0]    | FATAL | Access out of memory (BARs) bound (master abort) | 0           |
| [1]    | PERR  | Parity error                                     | 0           |
| [31:2] | _     | Reserved                                         | _           |



# **GP DMA**

# PCI START ADDRESS REGISTER (PSA)

#### LGCR\_PSA register (Local GP Control Register)

| Name     | Address  | Description       | Туре | Reset value |
|----------|----------|-------------------|------|-------------|
| LGCR_PSA | BAR0+e0h | PCI Start Address | R    | 0           |

| Bits   | Name | Description                 | Reset value |
|--------|------|-----------------------------|-------------|
| [31:0] | PSA  | Start address of PCI memory | 0           |

# DATA SIZE REGISTER (DSR)

## LGCR\_DSA register (Local GP Control Register)

| Name     | Address  | Description | Туре | Reset value |
|----------|----------|-------------|------|-------------|
| LGCR_DSR | BAR0+e4h | Data Size   | R    | 0           |

| Bits    | Name | Description             | Reset value |
|---------|------|-------------------------|-------------|
| [15:0]  | DSR  | Word (32bits) data size | 0           |
| [31:16] | _    | Reserved                | -           |



.

# AUXILIARY CONTROL REGISTER (AxC)

#### LGCR\_AxC register (Local GP Control Register)

| Name     | Address  | Description       | Туре | Reset value |
|----------|----------|-------------------|------|-------------|
| LGCR_AxC | BAR0+e8h | Auxiliary Control | R/W  | 0           |

| Bits   | Name      | Description                                        | Reset value |
|--------|-----------|----------------------------------------------------|-------------|
| [7:0]  | MBS       | Minimum block size (for wcount 1)                  | 0           |
| [0]    | START_DMA | 0 = no effect                                      | 0           |
| [8]    |           | 1 = start DMA when write "1" and be cleared by H/W | 0           |
| [31:9] | _         | Reserved                                           | -           |

## TRANSFERRED DATA SIZE REGISTER (TDS)

#### LGCR\_TDS register (Local GP Control Register)

| Name     | Address  | Description           | Туре | Reset value |
|----------|----------|-----------------------|------|-------------|
| LGCR_TDS | BAR0+ech | Transferred Data Size | R    | 0           |

| Bits    | Name | Description                       | Reset value |
|---------|------|-----------------------------------|-------------|
| [15:0]  | TDS  | Minimum block size (for wcount 1) | 0           |
| [31:16] | _    | Reserved                          | -           |



# ERROR STATUS REGISTER (ESR)

## LGCR\_ESR register (Local GP Control Register)

| Name     | Address  | Description  | Туре | Reset value |
|----------|----------|--------------|------|-------------|
| LGCR_ESR | BAR0+f0h | Error Status | R    | 0           |

| Bits   | Name  | Description                                      | Reset value |
|--------|-------|--------------------------------------------------|-------------|
| [0]    | FATAL | Access out of memory (BARs) bound (master abort) | 0           |
| [1]    | PERR  | Parity error                                     | 0           |
| [31:2] | _     | Reserved                                         | -           |



•

## AUDIO DMA

## PCI START ADDRESS REGISTER 0 (PSA0)

#### LDCR\_PSA0 register (Local audio DMA Control Register)

| Name      | Address   | Description                  | Туре | Reset value |
|-----------|-----------|------------------------------|------|-------------|
| LDCR_PSA0 | BAR0+100h | Audio DMA Control Register 0 | R/W  | 0           |

| Bits   | Name | Description                         | Reset value |
|--------|------|-------------------------------------|-------------|
| [31:0] | PSA0 | Start address of PCI memory for PCM | 0           |

## PCI START ADDRESS REGISTER 1 (PSA1)

#### LDCR\_PSA1 register (Local audio DMA Control Register)

| Name      | Address   | Description                  | Туре | Reset value |
|-----------|-----------|------------------------------|------|-------------|
| LDCR_PSA1 | BAR0+104h | Audio DMA Control Register 1 | R/W  | 0           |

| l | Bits   | Name | Description                            | Reset value |
|---|--------|------|----------------------------------------|-------------|
|   | [31:0] | PSA1 | Start address of PCI memory for stream | 0           |



#### DATA SIZE REGISTER 0(DSA0)

#### LDCR\_DSA0 register (Local audio DMA Control Register)

| Name      | Address   | Description                  | Туре | Reset value |
|-----------|-----------|------------------------------|------|-------------|
| LDCR_TWC0 | BAR0+108h | Audio DMA Control Register 0 | R/W  | 0           |

| Bits    | Name | Description                     | Reset value |
|---------|------|---------------------------------|-------------|
| [15:0]  | TWC0 | Word (32bits) data size for PCM | 0           |
| [31:16] | _    | Reserved                        | -           |

#### DATA SIZE REGISTER 1(DSA1)

## LDCR\_DSA1 register (Local audio DMA Control Register)

| Name      | Address   | Description                  | Туре | Reset value |
|-----------|-----------|------------------------------|------|-------------|
| LDCR_TWC1 | BAR0+10ch | Audio DMA Control Register 1 | R/W  | 0           |

| Bits    | Name | Description                        | Reset value |
|---------|------|------------------------------------|-------------|
| [15:0]  | TWC1 | Word (32bits) data size for stream | 0           |
| [31:16] | _    | Reserved                           | _           |



.

•

## AUXILIARY CONTROL REGISTER (AxC)

#### LDCR\_AxC register (Local audio DMA Control Register)

| Name     | Address   | Description                          | Туре | Reset value |
|----------|-----------|--------------------------------------|------|-------------|
| LDCR_AxC | BAR0+110h | Audio DMA auxiliary Control Register | R/W  | 0           |

| Bits    | Name        | Description                                                | Reset value |
|---------|-------------|------------------------------------------------------------|-------------|
| [7:0]   | MIN_BS_P    | Minimum block size for PCM (for <b>wcount</b> : default=8) | 0           |
| [15:8]  | MIN_BS_S    | Minimum block size for stream                              | 0           |
| [16]    | START_DMA_P | Start DMA for PCM                                          | 0           |
| [17]    | START_DMA_S | Start DMA for stream                                       | 0           |
| [31:18] | _           | Reserved                                                   | _           |

## TRANSFERRED DATA SIZE REGISTER 0(XWC0)

#### LDCR\_XWC0 register (Local audio DMA Control Register)

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| LDCR_XWC0 | BAR0+114h | Transferred Data Size for PCM | R    | 0           |

| Bits    | Name | Description                                                                                                                                                                                       | Reset value |
|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |      | Transferred word count register for the PCM.                                                                                                                                                      |             |
| [15:0]  | XWC0 | The transferred data size is accumulated by the H/W<br>whenever the DMA transfers a unit size, until the total<br>DMA transfer size has been transferred. The S/W can<br>only read this register. | 0           |
| [31:16] | _    | Reserved                                                                                                                                                                                          | _           |



# TRANSFERRED DATA SIZE REGISTER 1(XWC1)

#### LDCR\_XWC1 register (Local audio DMA Control Register)

| Name      | Address   | Description                      | Туре | Reset value |
|-----------|-----------|----------------------------------|------|-------------|
| LDCR_XWC1 | BAR0+118h | Transferred Data Size for stream | R    | 0           |

| Bits    | Name                                           | Description                                                                                                                                                                                       | Reset value |
|---------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         | Transferred word count register for streaming. |                                                                                                                                                                                                   |             |
| [15:0]  | XWC1                                           | The transferred data size is accumulated by the H/W<br>whenever the DMA transfers a unit size, until the total<br>DMA transfer size has been transferred. The S/W can<br>only read this register. | 0           |
| [31:16] | _                                              | Reserved                                                                                                                                                                                          | _           |

## ERROR STATUS REGISTER (ESR)

#### LDCR\_ESR register (Local audio DMA Control Register)

| Name     | Address   | Description           | Туре | Reset value |
|----------|-----------|-----------------------|------|-------------|
| LDCR_ESR | BAR0+11ch | Error Status Register | R    | 0           |

| Bits   | Name        | Description         | Reset value |
|--------|-------------|---------------------|-------------|
| [0]    | host1_fatal | host1_fatal for PCM | 0           |
| [1]    | host1_perr  | host1_perr for PCM  | 0           |
| [31:2] | -           | Reserved            | -           |

# **HSMB DMA**

.

## PCI START ADDRESS REGISTER (PSA)

#### LHCR\_PSA register (Local HSMB Control Register)

| Name     | Address   | Description       | Туре | Reset value |
|----------|-----------|-------------------|------|-------------|
| LHCR_PSA | BAR0+140h | PCI Start Address | R/W  | 0           |

| Bits   | Name | Description                 | Reset value |
|--------|------|-----------------------------|-------------|
| [31:0] | PSA  | Start address in PCI memory | 0           |

# LOCAL START ADDRESS REGISTER (LSA)

#### LHCR \_LSA register (Local HSMB Control Register)

| Name     | Address   | Description         | Туре | Reset value |
|----------|-----------|---------------------|------|-------------|
| LHCR_LSA | BAR0+144h | Local Start Address | R/W  | 0           |

| Bits    | Name | Description                 | Reset value |
|---------|------|-----------------------------|-------------|
| [15:0]  | LSA  | Local start address in HSMB | 0           |
| [31:16] | _    | Reserved                    | -           |



# TRANSFER BYTE COUNT REGISTER (TBC)

#### LHCR\_TBC register (Local HSMB Control Register)

| Name     | Address   | Description         | Туре | Reset value |
|----------|-----------|---------------------|------|-------------|
| LHCR_TBC | BAR0+148h | Transfer Byte-Count | R/W  | 0           |

| Bits    | Name | Description                 | Reset value |
|---------|------|-----------------------------|-------------|
| [1:0]   | _    | Always 00, read only        | 0           |
| [22:2]  | TDC  | Transfer data (8bits)-count | 0           |
| [31:23] | _    | Reserved                    | _           |

# AUXILIARY CONTROL REGISTER (AxC)

#### LHCR\_AxC register (Local HSMB Control Register)

| Name     | Address   | Description       | Туре | Reset value |
|----------|-----------|-------------------|------|-------------|
| LHCR_AxC | BAR0+14ch | Auxiliary Control | R/W  | 0           |

| Bits   | Name      | Description                                        | Reset value |
|--------|-----------|----------------------------------------------------|-------------|
| [7:0]  | -         | Reserved                                           | -           |
| [0]    | START_DMA | 0 = no effect                                      | 0           |
| [8]    |           | 1 = start DMA when write "1" and be cleared by H/W | 0           |
| [31:9] | -         | Reserved                                           | -           |



## **TRANSFERRED DATA SIZE REGISTER (XBC)**

#### LHCR\_XBC register (Local HSMB Control Register)

| Name     | Address   | Description            | Туре | Reset value |
|----------|-----------|------------------------|------|-------------|
| LHCR_XBC | BAR0+150h | Transferred Byte-Count | R    | 0           |

| Bits    | Name | Description            | Reset value |
|---------|------|------------------------|-------------|
| [22:0]  | XBC  | Transferred byte-count | 0           |
| [31:23] | —    | Reserved               | -           |

## ERROR STATUS REGISTER (ESR)

#### LHCR\_ESR register (Local HSMB Control Register)

| Name     | Address   | Description  | Туре | Reset value |
|----------|-----------|--------------|------|-------------|
| LHCR_ESR | BAR0+154h | Error Status | R    | 0           |

| Bits   | Name  | Description                                      | Reset value |
|--------|-------|--------------------------------------------------|-------------|
| [0]    | FATAL | Access out of memory (BARs) bound (master abort) | 0           |
| [1]    | PERR  | Parity error                                     | 0           |
| [31:2] | _     | Reserved                                         | _           |



# **VIDEO DMA**

# PCI HEAD ADDRESS REGISTER (PSA)

#### LVCR\_PHA register (Local VIDEO Control Register)

| Name     | Address   | Description      | Туре | Reset value |
|----------|-----------|------------------|------|-------------|
| LVCR_PHA | BAR0+160h | PCI Head Address | R/W  | 0           |

| Bits   | Name | Description                        | Reset value |
|--------|------|------------------------------------|-------------|
| [31:0] | PHA  | Target start address in PCI memory | 0           |

# CIRCULAR QUEUE SIZE REGISTER (CQS)

#### LVCR \_CQS register (Local VIDEO Control Register)

| Name     | Address   | Description         | Туре | Reset value |
|----------|-----------|---------------------|------|-------------|
| LVCR_CQS | BAR0+164h | Circular Queue Size | R/W  | 0           |

| Bits   | Name | Description                              | Reset value |
|--------|------|------------------------------------------|-------------|
| [31:0] | CQS  | Circular queue size for PCI tail address | 0           |

# AUXILIARY CONTROL REGISTER (AxC)

#### LVCR\_AxC register (Local VIDEO Control Register)

| Name     | Address   | Description       | Туре | Reset value |
|----------|-----------|-------------------|------|-------------|
| LVCR_AxC | BAR0+168h | Auxiliary Control | R/W  | 0           |

| Bits   | Name      | Description                                                         | Reset value |
|--------|-----------|---------------------------------------------------------------------|-------------|
| [0]    | CC_IND    | Channel change indicator                                            | _           |
| [7:1]  | _         | Reserved                                                            | _           |
| [8]    | START_DMA | 0 = no effect<br>1 = start DMA when write "1" and be cleared by H/W | 0           |
| [31:9] | _         | Reserved                                                            | _           |

## WRITE POINT ADDRESS REGISTER (WPA)

#### LVCR\_XBC register (Local VIDEO Control Register)

| Name     | Address   | Description           | Туре | Reset value |
|----------|-----------|-----------------------|------|-------------|
| LVCR_WPA | BAR0+16ch | Write Pointer Address | R    | 0           |

| Bits   | Name | Description           | Reset value |
|--------|------|-----------------------|-------------|
| [31:0] | WPA  | Write pointer address | 0           |



# TRANSFERRED DATA SIZE REGISTER (XBC)

#### LVCR\_XBC register (Local VIDEO Control Register)

| Name     | Address   | Description            | Туре | Reset value |
|----------|-----------|------------------------|------|-------------|
| LVCR_XBC | BAR0+170h | Transferred Byte-Count | R    | 0           |

| Î | Bits   | Name | Description            | Reset value |
|---|--------|------|------------------------|-------------|
| Ī | [31:0] | XBC  | Transferred byte-count | 0           |

# **ERROR STATUS REGISTER (ESR)**

#### LHCR\_ESR register (Local HSMB Control Register)

| Name     | Address   | Description  | Туре | Reset value |
|----------|-----------|--------------|------|-------------|
| LVCR_ESR | BAR0+174h | Error Status | R    | 0           |

| Bits   | Name  | Description                                      | Reset value |
|--------|-------|--------------------------------------------------|-------------|
| [0]    | FATAL | Access out of memory (BARs) bound (master abort) | 0           |
| [1]    | PERR  | Parity error                                     | 0           |
| [31:2] | _     | Reserved                                         | _           |



[31:<mark>19</mark>]

# PCI HEADER FIFO REGISTERS (REGn)

\_

#### VFRM\_REG register 0 ~ VFRM\_REG register 15 (PCI Header FIFO register)

Reserved

| Name          | Address              | Description                   | Туре | Reset value |
|---------------|----------------------|-------------------------------|------|-------------|
| VFRM_REGn     | BAR0+180h<br>+ 4*(n) | Header Register_n             | R    | 0           |
| NOTE: n = 0 ~ | 15                   |                               |      |             |
| Bits          | Name                 | Description                   |      | Reset value |
| [18:0]        | VFRM_REGn            | Local Video header FIFO value |      | 0           |

## PCI WRITE POINTER FOR HEADER REGISTER (WPTR)

#### HDR\_WPTR register (PCI Write Pointer for Header register)

| Name     | Address    | Description              | Туре | Reset value |
|----------|------------|--------------------------|------|-------------|
| HDR_WPTR | BA R0+1c0h | Write Pointer for Header | R    | 0           |

| Bits                  | Name     | Description              | Reset value |
|-----------------------|----------|--------------------------|-------------|
| [3:0]                 | HDR_WPTR | Write Pointer for Header | 0           |
| [31: <mark>4</mark> ] | _        | Reserved                 | _           |



\_

NOTE



# 5 MPEG VIDEO DECODER

#### **OVERVIEW**

The video packet data that passes through the TS demux are buffered by the DPSRAM and saved to the external SDRAM via DMA1. Then, that data is transferred to the MPEG video decoder via DMA3. This SDRAM area is called the video stream buffer or the CVD (compressed video data) buffer. The MPEG video decoder consists of two large parts, a syntax processor (henceforth, SP) and a video processor (henceforth, VP). The SP parses the transferred MPEG video data into the necessary format and the VP decodes that parsed data. Then, the decoded data is saved again to the external SDRAM.

The MPEG video decoder supports decoding for MPEG-1, MPEG-2, DSS MPEG-1, and DSS MPEG-2, and also supports all ATSC video formats, DSS SD, and HD video format.



#### Architecture

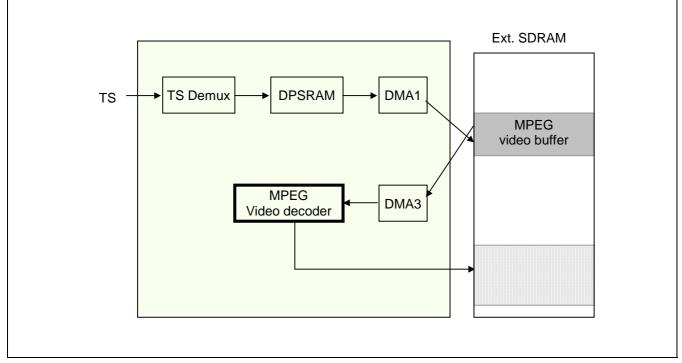



Figure 5-1 Video data flow block diagram

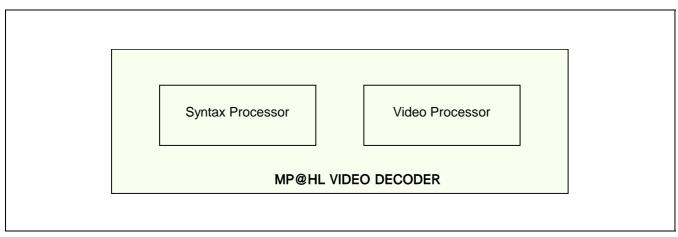



Figure 5-2 MPEG video decoder block diagram



# SYNTAX PROCESSOR (SP)

The SP performs three main operations.

First, it decodes compressed video bit streams, extracting the header information, the motion vector, the zero run-length, the DC count, and the AC count and then it transfers that information to the ARM7 system, the CPU and the VP.

Second, it controls the timing operations of the video decoder and the display processor (henceforth, DP) with operation control information such as: 3:2 full-down, frame/field control, and decoding/display timing control (which are transferred on bit stream in accordance with MPEG video specifications).

Third, it performs services for the control commands such as: skip/repeat frame, header scanning, and blocking which have been transferred from the system CPU.



# CVD (Compressed Video Data) BUFFER START ADDRESS REGISTER

This register sets the start address offset for the CVD buffer in the memory. The address is a (128bit) word address and should be a location within the 32 MB address space.

#### CVDBUF\_ST

| Name      | Address   | Description              | Туре | Reset value |
|-----------|-----------|--------------------------|------|-------------|
| CVDBUF_ST | BAR0+d00h | CVD Buffer Start Address | R/W  | 0           |

| Bits    | Name         | Description              | Reset value |
|---------|--------------|--------------------------|-------------|
| [20:0]  | CVDBUF_START | CVD Buffer Start Address | 0           |
| [31:21] | _            | Reserved                 | _           |

# CVD (Compressed Video Data) BUFFER SIZE REGISTER

This register sets the CVD buffer size. It supports up to 18 bits, but because the MSB is needed to present a maximum of 2 MB of data, the maximum value should be limited to 2 MB to ensure normal operation of the VDMA.

#### CVDBUF\_SZ

| Name      | Address   | Description     | Туре | Reset value |
|-----------|-----------|-----------------|------|-------------|
| CVDBUF_SZ | BAR0+d04h | CVD Buffer Size | R/W  | 0           |

| Bits    | Name        | Description | Reset value |
|---------|-------------|-------------|-------------|
| [17:0]  | CVDBUF_SIZE |             | 0           |
| [31:18] | -           | Reserved    | _           |



#### **CVD CONTROL AND STATUS REGISTER**

This register controls some operations of the MPEG video decoder and indicates its status.

#### CVDBUF\_STATUS

| Name       | Address   | Description         | Туре | Reset value |
|------------|-----------|---------------------|------|-------------|
| CVD_STATUS | BAR0+d08h | CVD Status Register | R/W  | 0           |

| Bits   | Name      | Description                                                                                                                                                                                                                                             | Reset value |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [0]    | VDMA_EN   | VDMA (= DMA3) Enable.<br>The corresponding VDMA should also be enabled or<br>disabled according to enabling/disabling of the video<br>operation. Before enabling (disabling) the VDMA, ensure<br>that the video decoding is enabled (disabled).         | 0           |
| [1]    | VDMA_CLEN | Set this flag when the VDMA needs to be initialized due<br>to channel switching or other reasons. Because it is<br>cleared automatically after the initialization of the VDMA,<br>it needs not be reset again by the CPU                                | 0           |
| [2]    | CVDBUF_UF | CVD buffer underflow flag                                                                                                                                                                                                                               | 0           |
| [3]    | EX_WPF    | Excessive Write Pointer Flag.<br>This flag is set when the write pointer is out of range on<br>the CVD buffer due to an error of the host CPU S/W or<br>ARM firmware. The corresponding interrupt can be<br>generated by using the interrupt mask flag. | 0           |
| [4]    | UIM       | Underflow interrupt mask                                                                                                                                                                                                                                | 0           |
| [5]    | EX_WPIM   | Excessive write pointer interrupt mask                                                                                                                                                                                                                  | 0           |
| [31:6] | _         | Reserved                                                                                                                                                                                                                                                | _           |



# CVD BUFFER WRITE POINTER REGISTER

The ARM parses the TS packet and then writes the result to the CVD buffer. It also writes the write pointer to this register. Because TS data is made of byte units, the address to write is a 25-bit byte address. The ARM is responsible for the wrap-around of the write pointer on the CVD buffer (which is a circular buffer).

#### CVDBUF\_WRPTR

| Name      | Address   | Description              | Туре | Reset value |
|-----------|-----------|--------------------------|------|-------------|
| CVD_WRPTR | BAR0+d0ch | CVD Buffer Write Pointer | R/W  | 0           |

| Bits    | Name      | Description              | Reset value |
|---------|-----------|--------------------------|-------------|
| [24:0]  | CVD_WRPTR | CVD Buffer Write Pointer | 0           |
| [31:25] | _         | Reserved                 | -           |

# **CVD BUFFER READ POINTER REGISTER**

This register indicates the location from which the SP starts to read the bit stream. The VDMA checks the underflow using both this register and the write pointer written by ARM7. It is a 21-bit word address.

#### CVDBUF\_WRPTR

| Name      | Address   | Description             | Туре | Reset value |
|-----------|-----------|-------------------------|------|-------------|
| CVD_RDPTR | BAR0+d10h | CVD Buffer Read Pointer | R    | 0           |

| Bits    | Name       | Description             | Reset value |
|---------|------------|-------------------------|-------------|
| [20:0]  | CVD_ RDPTR | CVD Buffer Read Pointer | 0           |
| [31:21] | —          | Reserved                | -           |



#### **SP CONTROL REGISTER 0**

The host CPU controls the SP through this control register.

#### SP\_CTRL0

| Name     | Address   | Description           | Туре | Reset value |
|----------|-----------|-----------------------|------|-------------|
| SP_CTRL0 | BAR0+d80h | SP Control Register 0 | R/W  | 0           |

| Bits | Name         | Description                                                                                                                                                                                                                                                   | Reset value      |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| [0]  | DISCARD_UD   | Discard User Data                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0 |
| [0]  | DISCARD_0D   | Discards the user data without transferring it to the CPU.                                                                                                                                                                                                    |                  |
|      |              | Block Picture                                                                                                                                                                                                                                                 |                  |
| [1]  | BLOCK_PIC    | Blocks decoding for the picture header. Video decoding is stopped until this field is reset by the CPU.                                                                                                                                                       | 0                |
|      |              | Block GOP                                                                                                                                                                                                                                                     |                  |
| [2]  | BLOCK_GOP    | Blocks decoding for the GOP header. Video decoding is stopped until this field is reset by the CPU.                                                                                                                                                           | 0                |
|      |              | Block Sequence                                                                                                                                                                                                                                                |                  |
| [3]  | [3] BLOCK_SQ | Blocks decoding for the sequence header. Video decoding is stopped until this field is reset by the CPU.                                                                                                                                                      | 0                |
|      |              | Scan I Picture                                                                                                                                                                                                                                                |                  |
| [4]  | SCAN_IP      | Scans the I picture header and starts decoding from the I picture found. Upper level headers of the picture that can appear during scanning are decoded. The SP generates a start picture signal for the picture header and this flag is reset automatically. | 0                |
|      |              | Scan GOP Header                                                                                                                                                                                                                                               |                  |
| [5]  | SCAN_GOPH    | Scans the GOP header and starts decoding from the<br>new GOP found. Upper level headers of the GOP that<br>can appear during scanning are decoded. The SP<br>generates a start GOP signal for the GOP header and<br>this flag is reset automatically.         | 0                |
|      |              | Scan Sequence Header                                                                                                                                                                                                                                          |                  |
| [6]  | SCAN_SQH     | Scans the sequence header and starts decoding from<br>the new sequence found. The SP generates a start<br>sequence signal for the sequence header and this flag is<br>reset automatically.                                                                    | 0                |



| [7] | REPEAT_F | Repeat_Frame<br>Slows down the decoding speed by stopping the<br>decoding for a time interval of 1 frame. Because this flag<br>is reset automatically when the SP sets repeat<br>acknowledgment during command execution command,<br>it need not be reset by the CPU. | 0 |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|

# SP CONTROL REGISTER 0 (Continued)

| Bits    | Name    | Description                                                                                                                                                                                                                                                                | Reset value |
|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |         | Skip Frame                                                                                                                                                                                                                                                                 |             |
| [8]     | SKIP_F  | Speeds up the decoding speed by discarding the bit<br>stream of 1 frame. Because this flag is reset<br>automatically when the SP sets skips acknowledgment<br>during command execution, it need not be reset by the<br>CPU.                                                | 0           |
|         |         | Decoding Pause                                                                                                                                                                                                                                                             |             |
|         |         | Used to stop the video decoding temporarily.                                                                                                                                                                                                                               | 0           |
| [9]     | D_PAUSE | Different from the repeat frame, this flag has the advantage that the decoding is stopped until it is reset by the CPU.                                                                                                                                                    |             |
|         |         | Video Enable                                                                                                                                                                                                                                                               |             |
| [10]    | D_EN    | Enables video decoding. When the video is enabled and<br>operated normally, the video enabled flag for the<br>VIDEO_STAT_n register is set. The CPU must check<br>whether the video is enabled normally by checking the<br>VIDEO_STAT_n register after enabling the video. | 0           |
| [31:11] | _       | Reserved                                                                                                                                                                                                                                                                   | _           |



#### **SP CONTROL REGISTER 1**

The host CPU controls the SP through this control register.

### SP\_CTRL1

|                             | Description    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Reset value |
|-----------------------------|----------------|-----------------------------------------|-------------|
| SP_CTRL1 BAR0+d90h SP Contr | rol Register 1 | R/W                                     | 0           |

| Bits    | Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reset value |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |              | Double Buffer for B Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| [0]     | DBLBUFF_BP   | While implementing SAM2K_LITE features, you may<br>encounter a situation where the screen is non-functioning<br>due to the difference between the decoding and the<br>display speeds for the B picture which uses only 1 frame<br>buffer. This problem can be solved by using this flag.<br>When enabled, this flag generates two display pointers<br>on the basis of two frame buffers for the B picture. In this<br>case, DP and MMU should use two display pointers<br>accordingly. | 0           |
|         |              | DSS Video Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| [1]     | DSS_VF       | This flag should be enabled for DSS video decoding so<br>that the video control parameters transferred on user<br>data are processed by the video decoder.                                                                                                                                                                                                                                                                                                                             | 0           |
|         |              | Freeze Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| [2]     | FREEZE_EN    | Fixes the display pointer to transfer to the DP and continues decoding. The situation is maintained until this flag is reset by the CPU.                                                                                                                                                                                                                                                                                                                                               | 0           |
|         |              | Uni-Directional Motion Compensation Enable                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| [3]     | UDMC_EN      | Enables the function that allows motion compensation to<br>be performed using only the forward motion vector when<br>the macro block of the B picture has a bi-directional<br>motion vector.                                                                                                                                                                                                                                                                                           | 0           |
|         |              | Decoding Slice End Address                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| [11:4]  | DS_END_ADD   | Sets the end slice address of the decoding range in slice selective decoding.                                                                                                                                                                                                                                                                                                                                                                                                          | 0           |
|         |              | Decoding Slice Begin Address                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| [19:12] | DS_START_ADD | Sets the start slice address of the decoding range in slice selective decoding.                                                                                                                                                                                                                                                                                                                                                                                                        | 0           |
|         |              | Slice Selective Decoding Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| [20]    | SSD_END      | Enables the function that decodes only a portion of the slice range for the B picture.                                                                                                                                                                                                                                                                                                                                                                                                 | 0           |



| Bits    | Name        | Description                                                                                                    | Reset value |
|---------|-------------|----------------------------------------------------------------------------------------------------------------|-------------|
|         |             | Decoding mode                                                                                                  |             |
| [22:24] |             | 0 = Normal decoding                                                                                            | 0           |
| [22:21] | DECODE_MODE | 1 = I/P pictures only                                                                                          | 0           |
|         |             | 2 = I picture only                                                                                             |             |
| [23]    |             | VP Time Out Interrupt Enable                                                                                   |             |
|         | VP_TOI_EN   | Enables the VP time out interrupt that notifies the CPU when the VP is stopped for more than a specific cycle. | 0           |
| [31:24] | -           | Reserved                                                                                                       | _           |



# **SP STATUS REGISTER**

The host CPU can get SP status information through this register.

#### SP\_STATUS

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| SP_STATUS | BAR0+d94h | SP Status Register | R/W  | 0           |

| Bits | Name        | Description                                                                                                            | Reset value |
|------|-------------|------------------------------------------------------------------------------------------------------------------------|-------------|
|      |             | SP Error Interrupt Mask                                                                                                |             |
| [0]  | SP_EIM      | When set to 1, an interrupt is generated to the CPU at the SP error.                                                   | 0           |
|      |             | Start Picture Interrupt Mask                                                                                           |             |
| [1]  | START_PIM   | When set to 1, an interrupt is generated to the CPU at the picture start.                                              | 0           |
|      |             | Start GOP Interrupt Mask                                                                                               |             |
| [2]  | START_GOPIM | When set to 1, an interrupt is generated to the CPU at the GOP start.                                                  | 0           |
|      |             | Start Sequence Interrupt Mask                                                                                          |             |
| [3]  | START_SIM   | When set to 1, an interrupt is generated to the CPU at the sequence start.                                             | 0           |
|      |             | Repeat Ack Interrupt Mask                                                                                              |             |
| [4]  | REPEAT_AIM  | When set to 1, an interrupt is generated to the CPU at the repeat acknowledgment.                                      | 0           |
|      |             | Skip Ack Interrupt Mask                                                                                                |             |
| [5]  | SKIP_AIM    | When set to 1, an interrupt is generated to the CPU at the skip acknowledgment.                                        | 0           |
|      |             | Decoding Sync Interrupt Mask                                                                                           |             |
| [6]  | DECODE_SIM  | When set to 1, an interrupt is generated to the CPU at the decoding sync.                                              | 0           |
|      |             | Picture Level Error Flag                                                                                               |             |
|      |             | Indicates an SP error occurred within the macroblock or                                                                |             |
|      |             | in its upper level header. If the SP error has occurred in a upper level header, the SP discards all slices and starts |             |
| [7]  | PLE F       | decoding from the next higher header. If the SP error has                                                              | 0           |
|      |             | occurred within the macroblock, or a VP error occurs, the                                                              |             |
|      |             | SP starts decoding again from the next header including                                                                |             |
|      |             | the slice header.                                                                                                      |             |



# SP STATUS REGISTER (Continued)

| Bits    | Name       | Description                                                                                                                                                                                                                                                                                              | Reset value |
|---------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [8]     | SP_ERROR   | SP Error<br>Sets to 1 when a VLD error or a VP error occurs. This<br>flag is reset when the CPU writes 1 again.                                                                                                                                                                                          | 0           |
| [9]     | START_P    | Start Picture<br>Sets to 1 when the SP starts decoding the picture start<br>header. This flag is reset when the CPU writes 1 again.                                                                                                                                                                      | 0           |
| [10]    | START_GOP  | Start GOP<br>Sets to 1 when the SP starts decoding the GOP start<br>header. This flag is reset when the CPU writes 1 again.                                                                                                                                                                              | 0           |
| [11]    | START_SQ   | Start Sequence<br>Sets to 1 when the SP starts decoding the sequence<br>start header. This flag is reset when the CPU writes 1<br>again.                                                                                                                                                                 | 0           |
| [12]    | REPEAT_ACK | Repeat Ack<br>Sets to 1 when the CPU writes the frame repeat<br>command to the video control register and the SP starts<br>the command. This flag is reset when the CPU writes 1<br>again.                                                                                                               | 0           |
| [13]    | SKIP_ACK   | Skip Ack<br>Sets to 1 when the CPU writes the frame skip command<br>to the video control register and the SP starts the<br>command. This flag is reset when the CPU writes 1<br>again.                                                                                                                   | 0           |
| [14]    | DECODE_SNC | Decoding Sync<br>Sets to 1 when SP starts slice decoding. This flag is<br>reset when the CPU writes 1 again.                                                                                                                                                                                             | 0           |
| [16:15] | DISPLY_PNT | Display Pointer<br>The display pointer to transfer to the DP. It is also<br>referenced by the CPU. 0 and 1 are used by the<br>reference frame buffer. 2 and 3 are used by the B frame<br>buffer. If two B frame buffers are used, both 2 and 3 are<br>used. If one frame buffer is used, only 2 is used. | 0           |
| [17]    | MPEG2_F    | MPEG2 Flag<br>Indicates whether the current input video stream is<br>MPEG1 or MPEG2. When set to 1, it means an MPEG2<br>stream.                                                                                                                                                                         | 0           |



| [18]    | VEN_ACK | Video Enable Acknowledge<br>The video enable flag set with the video control register<br>is not sent directly to the video decoder and is only sent<br>when the video process is not being decoded. If the<br>video process which is being decoded is enabled or<br>disabled, the change is transferred to this flag when the<br>decoding finishes. Hence, when the CPU has enabled or<br>disabled video, it should enable or disable the VDMA<br>after checking whether the operation is reflected by this<br>flag. | 0 |
|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| [20:19] | DP_TYPE | Decoding Picture Type<br>0 = I-picture, 1 = P-picture, 2 = B-picture                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 |
| [31:19] | _       | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ |



# **SP DECIMATION REGISTER**

The host CPU controls the SP decimation through this register.

#### SP\_DECM

| Name    | Address   | Description         | Туре | Reset value |
|---------|-----------|---------------------|------|-------------|
| SP_DECM | BAR0+da4h | Decimation Register | R/W  | 0           |

| Bits    | Name       | Description                 | Reset value |
|---------|------------|-----------------------------|-------------|
| [11:0]  | -          | Reserved                    | -           |
|         |            | Decimation decoding         |             |
| [12]    | DECIMATION | 0 = decimation decoding off | 0           |
|         |            | 1 = decimation decoding on  |             |
|         |            | Circular/Fixe buffer        |             |
| [13]    | CF_BUF     | 0 = fixed buffer            | 0           |
|         |            | 1 = circular buffer         |             |
| [31:19] | -          | Reserved                    | _           |



# **VP STATUS REGISTER**

The host CPU checks the VP status through this register.

#### **VP\_STATUS**

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| VP_STATUS | BAR0+da8h | VP Status Register | R    | 0           |

| Bits    | Name        | Description                      | Reset value |
|---------|-------------|----------------------------------|-------------|
| [0]     | VP_ERROR    | VP error                         | 0           |
| [1]     | HM_ERROR    | 0 = Header error<br>1 = MB error | 0           |
| [7:2]   | IQ_STATUS   | IQ block state                   | 0           |
| [12:8]  | IDCT_STATUS | IDCT block state                 | 0           |
| [31:13] | _           | Reserved                         | _           |

# **VP TIME OUT REGISTER**

This register is a kind of watch dog timer and safeguards the VP operation against time-out.

#### **VP\_TIMER**

| Name     | Address   | Description       | Туре | Reset value |
|----------|-----------|-------------------|------|-------------|
| VP_TIMER | BAR0+dach | VP Timer Register | R/W  | 0           |

| Bits   | Name      | Description                                                                                                                                                             | Reset value |
|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [00.0] |           | VP Time Out Counter                                                                                                                                                     |             |
| [29:0] | VP_TO_CNT | Sets the VP time-out cycle.                                                                                                                                             |             |
|        |           | VP Time-Out Interrupt                                                                                                                                                   |             |
| [30]   | VP_TOI    | This flag is set when the VP is stopped for more than the time interval specified in VP_TO_CNT. It is reset when the VP timer is disabled with the SP control register. |             |
| [31]   | VP_TOIM   | VP Time-Out Interrupt Mask<br>When this flag is set, VP time-out interrupt is enabled.                                                                                  |             |



NOTE



# **6** DISPLAY PROCESSOR

# 6.1 OVERVIEW

The Display Processor (henceforth, DP) converts MPEG decoded video and HD and SD video input from an external source in accordance with the output video format and generates the display video that is displayed on display device. Therefore, the DP consists of an Input part that processes the external input and the decoded MPEG input, a Converter part (FCO, FC1) that converts the format of the video saved in the memory into the display format, an Output part that generates the converted video in accordance with the display environment, and a Control part that supports the signals and values for their operation and control.



# 6.2 Input Part

The input video that the DP processes is largely divided into external video (which is input from the external input port) and the MPEG video (which is decoded by the video processor) (henceforth, VP). The DP has two types of external video input ports to support various PIP formats. An HD video input port is provided to support the DTV ready function. An SD video input port is provided to receive SD video broadcasted in an analog signal. In the Input part, the HD/SD input video is saved to an external memory, in real time, by the HD/SD Input I/F Module. The DP processes all types of output video generated by the VP. However, for MPEG video, it differs from the external input in that the memory write operation does not occur in the Input part because a pointer to the memory space is transferred from the Syntax Processor (henceforth, SP). Table 6-1 shows the input types that are supported by the DP and their characteristics.

| loout | Format          | Eromo roto | Color (data) format            | Description                                                                          |
|-------|-----------------|------------|--------------------------------|--------------------------------------------------------------------------------------|
| Input | Format          | Frame rate | Color (data) format            | Description                                                                          |
| SD0   | 720x480 i       | 59.94      | CCIR656 / CCIR656like          | - Uses the external sync and the                                                     |
| SD1   | 720x576 i       | 50         | CCIR656 / CCIR656like          | clock - Saves to memory in 4:2:2 format.                                             |
|       |                 | 50.04/00   | RGB (4:4:4)                    |                                                                                      |
|       | 1920x1080 i     | 59.94/60   | YCbCr (4:4:4, 4:2:2)           |                                                                                      |
| HD    | 1280x720 P      | 59.94/60   | RGB (4:4:4)                    | - Uses the external sync and the                                                     |
| (DTV) | 12008720 P      | 59.94/60   | YCbCr (4:4:4, 4:2:2)           | clock                                                                                |
|       | 700 400 5       |            | RGB (4:4:4)                    | - Supports the CCIR656 format                                                        |
|       | 720x480 P       | 59.94      | YCbCr (4:4:4, 4:2:2)           | <ul> <li>For unsupported VGA input<br/>formats, a dedicated external chip</li> </ul> |
|       | XGA (60~90 Hz)  | 60.70      |                                | should be used.                                                                      |
|       | 1024x768P       | 60~72      | RGB (4:4:4)                    | - Horizontal 1/2 decimation                                                          |
|       | SVGA (56~90 Hz) | 60.70      |                                | - Saves to memory in 4:2:2                                                           |
| HD    | 800x600P        | 60~72      | RGB (4:4:4)                    | format.                                                                              |
| (VGA) | VGA (60~90 Hz)  | 00.70      |                                |                                                                                      |
|       | 640x480P        | 60~72      | RGB (4:4:4)                    |                                                                                      |
|       | 640x352P        | 60~72      | RGB (4:4:4)                    |                                                                                      |
| MPEG  |                 | Su         | pports ATSC 18 format. (See Ta | able 6-2)                                                                            |

#### Table 6-1 Input Types Supported by the DP



|                  |        |                                         | -2 AISC 101 OI         |                     |                     |         |
|------------------|--------|-----------------------------------------|------------------------|---------------------|---------------------|---------|
|                  |        | Screen Count per Second/Scanning Method |                        |                     |                     |         |
| Resolution       | Aspect | 60 Screens                              | 60 Screens             | 30 Screens          | 24 Screens          | Screen  |
| (Width x Height) | Ratio  | Twofold<br>Scanning                     | Interlaced<br>Scanning | Twofold<br>Scanning | Twofold<br>Scanning | Quality |
| 1920 x 1080      | 16:9   | Х                                       | 0                      | 0                   | 0                   | HD      |
| 1280 x 720       | 16:9   | 0                                       | Х                      | 0                   | 0                   | HD      |
| 704 x 480        | 16:9   | 0                                       | 0                      | 0                   | 0                   | SD      |
| 704 x 480        | 4:3    | 0                                       | 0                      | 0                   | 0                   | SD      |
| 640 x 480        | 4:3    | 0                                       | 0                      | 0                   | 0                   | SD      |
| Format co        | ount   | 4                                       | 4                      | 5                   | 5                   | 18      |

#### Table 6-2 ATSC 18 FORMATS



# 6.3 Format Convert Part(FC0, FC1)

The Format Converter part consisting of the FCO and FC1 modules, converts the format of the video saved in the external memory in accordance with various display features such as PIP support, and transfers it to the Graphic Processor (henceforth, GP) using Disp\_Mux\_Ctrl. It also receives OSG (On-Screen Graphic) data from the GP as overlay HD video and outputs it to the Output part. On the basis of this data flow, the Format Converter part provides various display features. The following table summarizes the features supported by the Format Converter part.

| Feature                                      | Description                                                                                                                                          |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Letter box / pan-scan display                | - Supports letter-box and pan-scan display when a 16:9 format video source is displayed in the 4:3 display mode.                                     |
| Pillar-box (side-wall) / panorama<br>display | <ul> <li>Supports pillar-box and panorama display when a 4:3 format video<br/>source is displayed in the 16:9 display mode.</li> </ul>               |
|                                              | <ul> <li>For panorama display, 2nd order scaling is supported. Linear-<br/>scaling and non-linear scaling areas are selected dynamically.</li> </ul> |
| PIP support                                  | - Supports various formats of PIP features for all video.                                                                                            |
| Flexible video scaling                       | - Main picture scaling ratio (FC0):                                                                                                                  |
|                                              | Horizontal: 16 ~ 1/4 Vertical: 256 ~ 1/4                                                                                                             |
|                                              | - Sub picture scaling ratio (FC1):                                                                                                                   |
|                                              | Horizontal: 4 ~ 1/4 Vertical: 256 ~ 1/4                                                                                                              |
| Poly-phase filtering for horizontal scaling  | - Supports 8-tab/16-phase poly-phase filters to provide more enhanced screen quality for the main picture.                                           |
| Anti-aliasing filter for horizontal scaling  | - Enhances video quality by applying an anti-aliasing filter to the 7-tab if the sub-sampling rate is high when implementing PIP features.           |
| 3-D IPC for 480I video                       | <ul> <li>Interlace to progressive conversion using motion detection and<br/>directional 2-D filtering.</li> </ul>                                    |
| Flexible color space conversion              | - Supports various color space converters to match the color space of all DTV video sources and external HD video input.                             |

#### Table 6-3 Format-converting features



#### Architecture

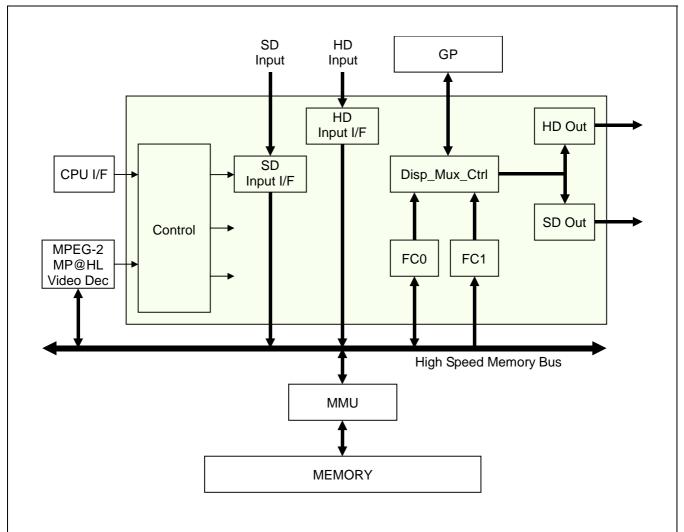



Figure 6-1 Display Processor block diagram



# DISPLAY CONTROL REGISTERS: DP\_REG\_0, DP\_REG\_1, DP\_REG\_2, DP\_REG\_3, DP\_REG\_4

Display control registers set: video on, video off, display mode, and display size settings.

| Name     | Address   | Description | Туре | Reset value |
|----------|-----------|-------------|------|-------------|
| DP_REG_0 | BAR0+800h | Sync on     | R/W  | 0           |

| Bits   | Name    | Description                                                                                                                                                                                                                                                                                                                   | Reset value |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [0]    | SYNC_ON | <ul> <li>0 = sync generation disable</li> <li>1 = sync generation enable</li> <li>This bit enables/disables the DP operation. If the sync generation is disabled, all video is off on the DP, and the screen is recognized as an H/V blank interval and the blank color (changes green to black on Rev) is output.</li> </ul> | 0           |
|        |         | The ground plane, video plane, OSD plane, and cursor plane are also off.                                                                                                                                                                                                                                                      |             |
| [31:1] | -       | Reserved                                                                                                                                                                                                                                                                                                                      | _           |



| Name     | Address   | Description     | Туре | Reset value |
|----------|-----------|-----------------|------|-------------|
| DP_REG_1 | BAR0+804h | Source on / off | R/W  | 0           |

| Bits   | Name        | Description                                                                                                                                                                                                                                                                           | Reset value |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|        |             | Video Mute Enable                                                                                                                                                                                                                                                                     |             |
|        |             | 0 = video mute enable (video off)                                                                                                                                                                                                                                                     |             |
|        |             | 1 = video mute disable (video on)                                                                                                                                                                                                                                                     |             |
| [0]    | MAIN_ON     | This bit enables/disables only the video output. The purpose of video mute is not only to turn off the video plane but also to operate the OSD and cursor plane. For S5H2000X, all planes are turned off and the following operations are also performed: sync off and DP_REG_0[0]=0. | 0           |
|        |             | External SD Operation Enable                                                                                                                                                                                                                                                          |             |
| [4]    | SD0_ON      | 0 = external SD (SD0) operation disable                                                                                                                                                                                                                                               | 0           |
| [1]    |             | 1 = external SD (SD0) operation enable                                                                                                                                                                                                                                                | 0           |
|        |             | SD1, is controlled with DP_REG90[1].                                                                                                                                                                                                                                                  |             |
|        |             | External HD operation enable                                                                                                                                                                                                                                                          |             |
| [2]    | HD_ON       | 0 = external HD operation disable                                                                                                                                                                                                                                                     | 0           |
|        |             | 1 = external HD operation enable                                                                                                                                                                                                                                                      |             |
| [4:3]  | _           | Reserved                                                                                                                                                                                                                                                                              | -           |
|        |             | Main picture display on/off                                                                                                                                                                                                                                                           |             |
| [5]    | MAIN_MUX_ON | 0 = main picture display off                                                                                                                                                                                                                                                          | 0           |
|        |             | 1 = main picture display on                                                                                                                                                                                                                                                           |             |
|        |             | Sub picture display on/off                                                                                                                                                                                                                                                            |             |
| [6]    | SUB_MUX_ON  | 0 = sub picture display off                                                                                                                                                                                                                                                           | 0           |
|        |             | 1 = sub picture display on                                                                                                                                                                                                                                                            |             |
| [31:7] | -           | Reserved                                                                                                                                                                                                                                                                              | -           |



#### PRODUCT OVERVIEW

| DP_REG_1[6] determines whether the sub picture display is on/off. The following table shows the comparison |
|------------------------------------------------------------------------------------------------------------|
| between DP_REG_1[6] and DP_REG_2[2].                                                                       |

|               | DP_REG_1[6]=0                                                                                                                                                                                                                              | DP_REG_1[6]=1                                                                                                                 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| DP_REG_2[2]=0 | DP_REG_2[2] turns the sub picture off.                                                                                                                                                                                                     | DP_REG_2[2] turns the sub picture off.                                                                                        |
| DP_REG_2[2]=1 | DP_REG_2[2] turns the sub picture on,<br>but, DP_REG_1[6] turns the sub picture<br>display off.                                                                                                                                            | DP_REG_2[2] turns the sub picture on and DP_REG_1[6] turns the sub picture display on, so, the sub picture operates normally. |
|               | The main picture is not displayed in the<br>sub picture area and the sub picture area<br>remains. But, since the sub picture display<br>is off, the sub picture screen will be filled<br>with the previous sub picture or unknown<br>data. |                                                                                                                               |



# DISPLAY MODE CONTROL REGISTER

Description

| Name     | Address   | Description  | Туре | Reset value |
|----------|-----------|--------------|------|-------------|
| DP_REG_2 | BAR0+808h | Display mode | R/W  | 0           |

| Bits   | Name           | Description                             | Reset value |
|--------|----------------|-----------------------------------------|-------------|
|        |                | Main picture display mode               |             |
| [0]    | MAIN_DISP_MODE | 0 = normal operation mode               | 0           |
|        |                | 1 = IPC operation mode                  |             |
| [1]    | -              | Reserved                                | _           |
|        |                | Sub picture display mode                |             |
| [2]    | SUB_DISP_MODE  | 0 = sub picture off                     | 0           |
|        |                | 1 = sub picture on (normal PIP)         |             |
|        |                | Main picture source                     |             |
|        |                | 0 = MPEG                                |             |
| [5:4]  | MAIN_SOURCE    | 1 = external HD or external SD1         | 0           |
|        |                | 2 = external SD0                        |             |
|        |                | 3 = prohibited                          |             |
|        |                | Sub picture source                      |             |
|        |                | 0 = MPEG                                |             |
| [7:6]  | SUB_SOURCE     | 1 = external HD or external SD1         | 0           |
|        |                | 2 = external SD0                        |             |
|        |                | 3 = prohibited                          |             |
|        |                | Progressive MPEG Video                  |             |
| [8]    | MPEG_PROG      | 0 = When MPEG video is non progressive. | 0           |
|        |                | 1 = When MPEG video is progressive.     |             |
| [19:9] | -              | Reserved                                | -           |
| [20]   | 3D_IPC_OFF     | $0 = 3D_{IPC}$ on                       | 0           |
| [20]   |                | 1 = 3D_IPC off (2D IPC on)              | 0           |
| [31:1] | _              | Reserved                                | _           |



# DISPLAY SIZE CONTROL REGISTER

Description

DP\_REG\_3

| Name     | Address   | Description  | Туре | Reset value |
|----------|-----------|--------------|------|-------------|
| DP_REG_3 | BAR0+80ch | Display size | R/W  | 0           |

| Bits    | Name        | Description                  | Reset value |
|---------|-------------|------------------------------|-------------|
|         | DISP_PROG   | 0 = display with interlace   | 0           |
| [0]     | DISP_FROG   | 1 = display with progressive |             |
| [12:1]  | DISP_SIZE_H | Display horizontal size      | 0           |
| [12:1]  | DISP_SIZE_H | (2200, 1650, 858 pixels)     |             |
| [00:40] |             | Display vertical size        | 0           |
| [23:13] | DISP_SIZE_V | (1125, 750, 525 lines)       | 0           |
| [31:24] | _           | Reserved                     | -           |

# HD OUTPUT H SYNC CONTROL REGISTER

Description

| Name     | Address   | Description                      | Туре | Reset value |
|----------|-----------|----------------------------------|------|-------------|
| DP_REG_4 | BAR0+810h | HD output H sync location / rate | R/W  | 0           |

| Bits    | Name           | Description                | Reset value |
|---------|----------------|----------------------------|-------------|
| [8:0]   | DISP_HSYNC_POS | Horizontal H sync position |             |
|         |                | Display rate               |             |
|         |                | 0 = normal                 |             |
| [10:9]  | DISP_4X        | 1 = x 2                    |             |
|         |                | 2 = x 4                    |             |
|         |                | 3 = prohibited             |             |
| [31:11] | _              | Reserved                   | _           |



# HD OUTPUT H ACTIVE CONTROL REGISTER

Description

DP\_REG\_5

| Name     | Address   | Description        | Туре | Reset value |
|----------|-----------|--------------------|------|-------------|
| DP_REG_5 | BAR0+814h | HD output H active | R/W  | 0           |

| Bits    | Name         | Description                                                                    | Reset value |
|---------|--------------|--------------------------------------------------------------------------------|-------------|
| [8:0]   | DISP_START_H | Display active horizontal start                                                | 0           |
| [20:9]  | DISP_END_H   | Display active horizontal end<br>(DISP_END_H - DISP_START_H = 1920, 1280, 720) | 0           |
| [31:21] | —            | Reserved                                                                       | —           |

# HD OUTPUT V ACTIVE CONTROL REGISTER

Description

| Name     | Address   | Description        | Туре | Reset value |
|----------|-----------|--------------------|------|-------------|
| DP_REG_6 | BAR0+818h | HD output v active | R/W  | 0           |

| Bits    | Name         | Description                                                                | Reset value |
|---------|--------------|----------------------------------------------------------------------------|-------------|
| [6:0]   | DISP_START_V | Display active vertical start                                              | 0           |
| [16:7]  | DISP_END_V   | Display active vertical end<br>(DISP_END_V - DISP_START_V = 720, 540, 480) | 0           |
| [31:17] | _            | Reserved                                                                   | -           |



# HD OUTPUT 656 V ACTIVE CONTROL REGISTER

Description

DP\_REG\_7

| Name     | Address   | Description            | Туре | Reset value |
|----------|-----------|------------------------|------|-------------|
| DP_REG_7 | BAR0+81ch | HD output 656 v active | R/W  | 0           |

| Bits    | Name         | Description                       | Reset value |
|---------|--------------|-----------------------------------|-------------|
| [6:0]   | DISP_V_START | 656 display active vertical start | 0           |
| [16:7]  | DISP_V_END   | 656 display active vertical end   | 0           |
| [31:17] | _            | Reserved                          | _           |

# SP V SYNC START REGISTER

Description

| Name     | Address   | Description        | Туре | Reset value |
|----------|-----------|--------------------|------|-------------|
| DP_REG_8 | BAR0+820h | SP vsync start 0/1 | R/W  | 0           |

| Bits    | Name        | Description                               | Reset value |
|---------|-------------|-------------------------------------------|-------------|
| [9:0]   | VSYNC_START | DS_VSYNC_START. Vsync start line for MPEG | 0           |
| [31:10] | _           | Reserved                                  | -           |



#### **RESERVED REGISTER**

Description

DP\_REG\_9

| Name     | Address   | Description | Туре | Reset value |
|----------|-----------|-------------|------|-------------|
| DP_REG_8 | BAR0+824h | Reserved    | -    | 0           |

| Bits   | Name | Description | Reset value |
|--------|------|-------------|-------------|
| [31:0] | _    | Reserved    | -           |

# MAIN / SUB HORIZONTAL PROCESSING CONTROL REGISTER

Description

| Name      | Address   | Description                            | Туре | Reset value |
|-----------|-----------|----------------------------------------|------|-------------|
| DP_REG_10 | BAR0+828h | Main / Sub horizontal processing start | R/W  | 0x0101      |

| Bits    | Name        | Description                        | Reset value |
|---------|-------------|------------------------------------|-------------|
| [7:0]   | MAIN_RD_POS | Main picture read initial position | 0           |
| [15:8]  | SUB_RD_POS  | Sub picture read initial position  | 0           |
| [31:16] | _           | Reserved                           | _           |



# MAIN / SUB HORIZONTAL PROCESSING CONTROL REGISTER

Description

DP\_REG\_10

| Name      | Address   | Description                            | Туре | Reset value |
|-----------|-----------|----------------------------------------|------|-------------|
| DP_REG_10 | BAR0+828h | Main / Sub horizontal processing start | R/W  | 0x0101      |

| Bits    | Name        | Description                        | Reset value |
|---------|-------------|------------------------------------|-------------|
| [7:0]   | MAIN_RD_POS | Main picture read initial position | 1           |
| [15:8]  | SUB_RD_POS  | Sub picture read initial position  | 1           |
| [31:16] | _           | Reserved                           | -           |

# MAIN / SUB HORIZONTAL PROCESSING CONTROL REGISTER

Description.

| Name      | Address   | Description                  | Туре | Reset value |
|-----------|-----------|------------------------------|------|-------------|
| DP_REG_11 | BAR0+82ch | Main video enable horizontal | R/W  | 0           |

| Bits    | Name        | Description                        | Reset value |
|---------|-------------|------------------------------------|-------------|
| [7:0]   | MAIN_RD_POS | Main picture read initial position | 0           |
| [15:8]  | SUB_RD_POS  | Sub picture read initial position  | 0           |
| [31:16] | _           | Reserved                           | _           |

#### MAIN / SUB HORIZONTAL PROCESSING CONTROL REGISTER

Description

DP\_REG\_12

| Name      | Address   | Description                | Туре | Reset value |
|-----------|-----------|----------------------------|------|-------------|
| DP_REG_12 | BAR0+830h | Main video enable vertical | R/W  | 0           |

| Bits    | Name         | Description                                | Reset value |
|---------|--------------|--------------------------------------------|-------------|
| [9:0]   | MAIN_START_V | Main picture video vertical start position | 0           |
| [19:10] | SUB_END_V    | Sub picture video vertical end position    | 0           |
| [31:20] | —            | Reserved                                   | -           |

# **?? CONTROL REGISTER**

Description

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_13 | BAR0+834h | Main2 /PIG / IPC sync | R/W  | 0           |

| Bits    | Name        | Description                                 | Reset value |
|---------|-------------|---------------------------------------------|-------------|
| [8:0]   | PIG_SIZE_H  | Display IPC Horizontal Sync                 | 0           |
| [18:9]  | PIG_START_V | Vertical active start of source at Main IPC | 0           |
| [28:19] | PIG_END_V   | Vertical active end of source at Main IPC   | 0           |
| [31:29] | _           | Reserved                                    | -           |



# SUB VIDEO HORIZONTAL CONTROL REGISTER

Description

DP\_REG\_14

| Name      | Address   | Description                 | Туре | Reset value |
|-----------|-----------|-----------------------------|------|-------------|
| DP_REG_14 | BAR0+838h | Sub video enable horizontal | R/W  | 0           |

| Bits    | Name        | Description                         | Reset value |
|---------|-------------|-------------------------------------|-------------|
| [11:0]  | SUB_START_H | PIG or Sub picture horizontal start | 0           |
| [23:12] | SUB_END_H   | PIG or Sub picture horizontal end   | 0           |
| [31:24] | _           | Reserved                            | _           |

# SUB VIDEO VERTICAL CONTROL REGISTER

Description

| Name      | Address   | Description                 | Туре | Reset value |
|-----------|-----------|-----------------------------|------|-------------|
| DP_REG_15 | BAR0+83ch | Sub video enable vertical 0 | R/W  | 0           |

| Bits    | Name        | Description                  | Reset value |
|---------|-------------|------------------------------|-------------|
| [9:0]   | SUB_START_H | Sub picture vertical start 0 | 0           |
| [19:10] | SUB_END_H   | Sub picture vertical end 0   | 0           |
| [31:20] | _           | Reserved                     | _           |



# MAIN VIDEO HORIZONTAL DISPLAY CONTROL REGISTER

Description

DP\_REG\_18

| Name      | Address   | Description                          | Туре | Reset value |
|-----------|-----------|--------------------------------------|------|-------------|
| DP_REG_18 | BAR0+848h | Display main video enable horizontal | R/W  | 0           |

| Bits    | Name                  | Description                                           | Reset value |
|---------|-----------------------|-------------------------------------------------------|-------------|
| [11:0]  | DISP_MAIN_START_<br>H | Main picture display horizontal active start position | 0           |
| [23:12] | DISP_MAIN_END_H       | Main picture display horizontal active end position   | 0           |
| [31:24] | —                     | Reserved                                              | -           |

# MAIN VIDEO VERTICAL DISPLAY CONTROL REGISTER

Description

| Name      | Address   | Description                        | Туре | Reset value |
|-----------|-----------|------------------------------------|------|-------------|
| DP_REG_19 | BAR0+84ch | Display main video enable vertical | R/W  | 0           |

| Bits    | Name                  | Description                                         | Reset value |
|---------|-----------------------|-----------------------------------------------------|-------------|
| [9:0]   | DISP_MAIN_START_<br>V | Main picture display vertical active start position | 0           |
| [19:10] | DISP_MAIN_END_V       | Main picture display vertical active end position   | 0           |
| [31:20] | -                     | Reserved                                            | _           |



# SUB VIDEO HORIZONTAL DISPLAY CONTROL REGISTER

Description

DP\_REG\_20

| Name      | Address   | Description                         | Туре | Reset value |
|-----------|-----------|-------------------------------------|------|-------------|
| DP_REG_20 | BAR0+850h | Display sub video enable horizontal | R/W  | 0           |

| Bits    | Name             | Description                                          | Reset value |
|---------|------------------|------------------------------------------------------|-------------|
| [11:0]  | DISP_SUB_START_H | Sub picture display horizontal active start position | 0           |
| [23:12] | DISP_SUB_END_H   | Sub picture display horizontal active end position   | 0           |
| [31:24] | —                | Reserved                                             | _           |

# SUB VIDEO VERTICAL DISPLAY CONTROL REGISTER

Description

| Name      | Address   | Description                       | Туре | Reset value |
|-----------|-----------|-----------------------------------|------|-------------|
| DP_REG_21 | BAR0+854h | Display sub video enable vertical | R/W  | 0           |

| Bits    | Name             | Description                                        | Reset value |
|---------|------------------|----------------------------------------------------|-------------|
| [9:0]   | DISP_SUB_START_V | Sub picture display vertical active start position | 0           |
| [19:10] | DISP_SUB_END_V   | Sub picture display vertical active end position   | 0           |
| [31:20] | _                | Reserved                                           | _           |



# HD SYNC CONTROL REGISTER

Description

| Name      | Address   | Description | Туре | Reset value |
|-----------|-----------|-------------|------|-------------|
| DP_REG_22 | BAR0+858h | HD sync     | R/W  | 0           |

| Bits    | Name            | Description                                       | Reset value |
|---------|-----------------|---------------------------------------------------|-------------|
| [0]     | HDOUT_HSYNC_PO  | Hsync polarity selection for HD out               |             |
|         | LARITY          | 0=Hsync is HIGH active (LOW in horizontal active) | 0           |
|         |                 | 1=Hsync is LOW active (HIGH in horizontal active) |             |
|         | HDOUT_VSYNC_POL | Vsync polarity selection for HD out               |             |
| [4]     | ARITY           | 0=Vsync is HIGH active (LOW in vertical active)   | 0           |
| [1]     |                 | 1=Vsync is LOW active (HIGH in vertical active)   | 0           |
|         |                 | Valid only if HDout_Vsync_type=0.                 |             |
|         | HDOUT_VSYNC_TYP | Vsync type selection for HD out                   |             |
| [2]     | E               | 0=Sync (Pulse) type                               | 0           |
|         |                 | 1=Toggle type (Field type)                        |             |
| [9:3]   | HDOUT_V_SIZE    | Size of vertical sync interval (7bit)             | 0           |
| [21:10] | HDOUT_H_START   | Horizontal sync start position (12bit=0~2047)     | 0           |
| [30:22] | HDOUT_H_END     | Horizontal sync end position (12bit=0~2047)       | 0           |
| [31:29] | _               | Reserved                                          | _           |



# SD SYNC CONTROL REGISTER

### Description

| Name      | Address   | Description | Туре | Reset value |
|-----------|-----------|-------------|------|-------------|
| DP_REG_23 | BAR0+85ch | SD sync     | R/W  | 0           |

| Bits    | Name            | Description                                         | Reset value |
|---------|-----------------|-----------------------------------------------------|-------------|
| [0]     | SDOUT_MODE_0    | SD output mode for last line                        |             |
|         |                 | 0 = last line fit                                   | 0           |
|         |                 | 1 = V blank fit                                     |             |
|         | SDOUT_MODE_1    | Output type                                         |             |
| [1]     |                 | 0 = NTSC                                            | 0           |
|         |                 | 1 = PAL                                             |             |
|         | SDOUT_SYNC_TYPE | Hsync polarity selection for SD out                 |             |
| [2]     | _0              | 0 = Hsync is HIGH active (LOW in horizontal active) | 0           |
|         |                 | 1 = Hsync is LOW active (HIGH in horizontal active) |             |
|         | SDOUT_SYNC_TYPE | Vsync polarity selection for SD out                 |             |
| [3]     | _1              | 0 = Hsync is HIGH active (LOW in horizontal active) | 0           |
| [3]     |                 | 1 = Hsync is LOW active (HIGH in horizontal active) | 0           |
|         |                 | SDout_sync_type_2=0 (?)                             |             |
|         | SDOUT_SYNC_TYPE | Vsync type selection for SD out                     |             |
| [4]     | _2              | 0 = Sync (Pulse) type                               | 0           |
|         |                 | 1 = Toggle type (Field type)                        |             |
| [12:5]  | SDOUT_H_START   | Horizontal sync start position (8bit=0~255)         | 0           |
| [20:13] | SDOUT_H_END     | Horizontal sync end position (8bit=0~255)           | 0           |
| [25:21] | SDOUT_V_START   | Vertical sync start position (5bit=0~31)            | 0           |
| [30:26] | SDOUT_V_SIZE    | Size of vertical sync interval (5bit=0~31)          | 0           |
| [31:29] | -               | Reserved                                            | _           |

# EXTENAL SD SYNC CONTROL REGISTER

Description

| Name      | Address   | Description      | Туре | Reset value |
|-----------|-----------|------------------|------|-------------|
| DP_REG_24 | BAR0+860h | External SD sync | R/W  | 0x74        |

| Bits    | Name          | Description                            | Reset value |
|---------|---------------|----------------------------------------|-------------|
| [0]     |               | External SD sub sample                 |             |
| [0]     | SD0_SAMPLE    | 0 = 1:1                                | 0           |
|         |               | 1 = 2:1                                |             |
| [6:1]   | SD0_SYNC_TYPE | External SD sync type                  | 111010      |
| [7]     | SD0_CCIR656   | External SD 656 type                   | 0           |
| [11:8]  | SD0_BASE_PTR  | External SD base frame pointer         | 0           |
| [20:12] | SD0_FLUSH_CNT | External SD FIFO flush indication      | 0           |
|         |               | External SD sync detection enable      |             |
| [21]    | SD0_SYNC_ON   | 0 = External SD sync detection disable | 0           |
|         |               | 1 = External SD sync detection enable  |             |
|         |               | SD input muxing                        |             |
| [22]    | SD0_MUX_ON    | 0 = external input                     | 0           |
|         |               | 1 = test pattern                       |             |
| [31:20] | _             | Reserved                               | _           |

# EXTENAL SD HORIZONTAL ACTIVE CONTROL REGISTER

Description

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| DP_REG_25 | BAR0+864h | External SD horizontal active | R/W  | 0           |

| Bits    | Name       | Description                                  | Reset value |
|---------|------------|----------------------------------------------|-------------|
| [8:0]   | SD_h_start | External SD Horizontal Active Start Position | 0           |
|         |            | (9bit=0 ~ 511)                               | 0           |
| [40:0]  | SD_h_end   | External SD Horizontal Active End Position   | 0           |
| [19:9]  |            | (11bit=0~2043)                               | 0           |
| [31:20] | -          | Reserved                                     | -           |



# **EXTENAL SD VERTICAL ACTIVE CONTROL REGISTER**

Description

| Name      | Address   | Description                 | Туре | Reset value |
|-----------|-----------|-----------------------------|------|-------------|
| DP_REG_26 | BAR0+868h | External SD vertical active | R/W  | 0           |

| Bits    | Name         | Description                                                        | Reset value |
|---------|--------------|--------------------------------------------------------------------|-------------|
| [5:0]   | SD_v_start_o | External SD vertical active start position (odd field) (6bit) ???  | 0           |
| [11:6]  | SD_v_start_e | External SD vertical active start position (even field) (6bit) ??? | 0           |
| [20:12] | SD_v_size    | External SD vertical active size(8bit)???                          | 0           |
| [31:21] | _            | Reserved                                                           | -           |



## EXTENAL HD SYNC CONTROL REGISTER

Description.

## DP\_REG\_27(if external SD1 input enable, DP\_REG\_89[0]=0)

| Name      | Address   | Description      | Туре | Reset value |
|-----------|-----------|------------------|------|-------------|
| DP_REG_27 | BAR0+86ch | External HD sync | R/W  | 0           |

| Bits    | Name             | Description                                                                             | Reset value |
|---------|------------------|-----------------------------------------------------------------------------------------|-------------|
| [1:0]   | -                | Reserved                                                                                | _           |
|         | EXT_SD1_cpu_mode | External SD1 CPU Mode                                                                   |             |
|         |                  | 00=Normal 3D-IPC                                                                        |             |
| [3:2]   |                  | 01=Normal 2D-IPC                                                                        | 0           |
|         |                  | 10=2D-IPC(EOSI)                                                                         |             |
|         |                  | 11=SD1 I/F Auto Detection                                                               |             |
| [8:4]   | -                | Reserved                                                                                | _           |
| [0]     | EXT_ccir656      | External SD1 input Format                                                               |             |
| [9]     |                  | 0 = Not CCIR-656 Format                                                                 | 0           |
|         |                  | 1 = CCIR-656 Format                                                                     |             |
|         | EXT_base_ptr     | External SD1 Base Frame Pointer (4bti=0~15)                                             |             |
|         |                  | Specifies the external memory set by the MMU base register (BASE_ADDR_32~ 37).          |             |
|         |                  | 0000 = BASE_ADDR_32[11:0] area of memory                                                |             |
|         |                  | 0001 = BASE_ADDR_32[23:12] area of memory                                               |             |
| [13:10] |                  | 0010 = BASE_ADDR_33[11:0] area of memory                                                | 0           |
|         |                  | 1011 = BASE_ADDR_37[11:0] area of memory                                                |             |
|         |                  | 1100 = BASE_ADDR_37[23:12] area of memory                                               |             |
|         |                  | 1101 - 1111 = Not used                                                                  |             |
| [22:14] | EXT_flush_cnt    | External SD1 FIFO flush indication(9bit=0~511)                                          | 0           |
| [22.14] |                  | ???                                                                                     | 0           |
|         | EXT_sync_on      | External SD1 Sync Detection Enable                                                      |             |
|         |                  | 0=Disable SD1 sync detection                                                            |             |
| [23]    |                  | 1=Enable SD1 sync detection                                                             | 0           |
| [=0]    |                  | Extracts/creates a sync signal from the sync decoder.                                   | · ·         |
|         |                  | For CCIR 656 format, creates a sync signal by extracting sync data from the input data. |             |
| [31:24] | -                | Reserved                                                                                | -           |



## EXTENAL HD SYNC CONTROL REGISTER

Description.

## DP\_REG\_27 (if external HD input enable, DP\_REG\_89[0]=1)

| Name      | Address   | Description      | Туре | Reset value |
|-----------|-----------|------------------|------|-------------|
| DP_REG_27 | BAR0+86ch | External HD sync | R/W  | 0           |

| Bits    | Name             | Description                                                                    | Reset value |
|---------|------------------|--------------------------------------------------------------------------------|-------------|
| [0]     | -                | Reserved                                                                       | -           |
|         | HD_sample        | External HD subsample                                                          |             |
| [1]     |                  | 0=2:1                                                                          | 0           |
|         |                  | 1=Normal                                                                       |             |
|         | EXT_color_format | External HD color format                                                       |             |
|         |                  | 00=YCbCr(4:4:4)                                                                |             |
| [3:2]   |                  | 01=YCbCr(4:2:2)                                                                | 0           |
|         |                  | 10=:RGB                                                                        |             |
|         |                  | 11=Not used                                                                    |             |
| [7:4]   | -                | Reserved                                                                       | -           |
|         | HD_progressive   | External HD input Progressive selection                                        |             |
| [8]     |                  | 0=Not progressive(=Interlaced)                                                 | 0           |
|         |                  | 0=Progressive                                                                  |             |
|         | EXT_ccir656      | External HD input Format                                                       |             |
| [9]     |                  | 0=Not CCIR-656 Format                                                          | 0           |
|         |                  | 1=CCIR-656 Format                                                              |             |
|         | EXT_base_ptr     | External HD Base Frame Pointer (4bti=0~15)                                     |             |
|         |                  | Specifies the external memory set by the MMU base register (BASE_ADDR_32~ 37). |             |
|         |                  | 0000 = BASE_ADDR_32[11:0] area of memory                                       |             |
| [13:10] |                  | 0001 = BASE_ADDR_32[23:12] area of memory                                      | 0           |
|         |                  | 0010 = BASE_ADDR_33[11:0] area of memory                                       |             |
|         |                  | 1011 = BASE_ADDR_37[11:0] area of memory                                       |             |
|         |                  | 1100 = BASE_ADDR_37[23:12] area of memory                                      |             |
|         |                  | 1101 - 1111 = Not used                                                         |             |
| [22:14] | EXT_flush_cnt    | External HD FIFO flush indication(9bit=0~511)                                  | 0           |
| [22.14] |                  | ???                                                                            | 0           |



| Bits    | Name             | Description                                                                             | Reset value |
|---------|------------------|-----------------------------------------------------------------------------------------|-------------|
|         | EXT_sync_on      | External HD Sync Detection Enable                                                       |             |
|         |                  | 0=Disable HD sync detection                                                             |             |
| [23]    |                  | 1=Enable HD sync detection                                                              | 0           |
| [20]    |                  | Extracts/creates a sync signal from the sync decoder.                                   | Ũ           |
|         |                  | For CCIR 656 format, creates a sync signal by extracting sync data from the input data. |             |
| [25:24] | HD_3frame_buffer | 3frame buffer indicator                                                                 | 0           |
| [26]    | HD_mux_on        | HD Input Muxing<br>0=External input<br>1=Test pattern                                   | 0           |
| [31:27] | _                | Reserved                                                                                | _           |

## DP\_REG\_27 (if external HD input enable,DP\_REG\_89[0]=1) (Continued)

# EXTENAL HD HORIZONTAL ACTIVE CONTROL REGISTER

Description.

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| DP_REG_28 | BAR0+870h | External HD horizontal active | R/W  | 0           |

| Bits    | Name                                     | Description                                         | Reset value |
|---------|------------------------------------------|-----------------------------------------------------|-------------|
| [9:0]   | EXT_h_start                              | - Horizontal Active Start Position for External HD  | 0           |
| [8:0]   |                                          | - Horizontal Active Start Position for External SD1 | 0           |
|         | - Horizontal Active Size for External HD | 0                                                   |             |
| [19:9]  |                                          | - Horizontal Active End Position for External SD1   | 0           |
| [31:20] | _                                        | Reserved                                            | _           |



# EXTENAL HD VERTICAL ACTIVE CONTROL REGISTER

Description

| Name      | Address   | Description                 | Туре | Reset value |
|-----------|-----------|-----------------------------|------|-------------|
| DP_REG_29 | BAR0+874h | External HD vertical active | R/W  | 0           |

| Bits    | Name       | Description                                | Reset value |
|---------|------------|--------------------------------------------|-------------|
| [7:0]   | HD_v_start | External HD vertical active start position | 0           |
| [47.0]  | EXT_v_size | Vertical Active Size for External HD       | 0           |
| [17:8]  |            | Vertical Active Size for External SD1      | 0           |
| [31:18] | _          | Reserved                                   | -           |

# EXTENAL BASE DISPLAY POINTER REGISTER

Description.

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| DP_REG_30 | BAR0+878h | External Base Display Pointer | R/W  | 0           |

| Bits    | Name       | Description                        | Reset value |
|---------|------------|------------------------------------|-------------|
| [3:0]   | I_base_ptr | Delay processor base frame pointer | 0           |
| [7:4]   | R_base_ptr | Read base frame pointer            | 0           |
| [11:8]  | W_base_ptr | Write base frame pointer           | 0           |
| [31:12] | -          | Reserved                           | -           |



## **1Hz SIZE FOR EXTENAL DISPLAY POINTER REGISTER**

h\_size: means the space occupied by one horizontal line in the memory. It is an integer multiple of 128. 128 is denoted as 0x01. For example, if the input video is 704x480i, 128 \* 5 < 704 < 128 \* 6, 1h\_size = 0x06

(Note: When writing with MMU at each module in the DP, it will always be performed in 4:2:2 mode regardless of the display mode.)

| DP_REG_31 |           |                                      |      |             |  |  |
|-----------|-----------|--------------------------------------|------|-------------|--|--|
| Name      | Address   | Description                          | Туре | Reset value |  |  |
| DP_REG_31 | BAR0+87ch | 1h size for External Display Pointer | R/W  | 0           |  |  |

| Bits    | Name           | Description                                        | Reset value |
|---------|----------------|----------------------------------------------------|-------------|
| [5:0]   | sub_rd_1h_size | 1H size for sub read pointer                       | 0           |
| [11:6]  | EXT_1h_size    | 1H Size External HD or External SD1                | 0           |
| [11:6]  |                | (Set by 64-bit units) (6bit: 0~63 * 64 = 0 ~ 4095) | 0           |
| [17:10] | SD_1h_size     | 1H Size for External SD0                           | 0           |
| [17:12] |                | (6bit=0~63)                                        | 0           |
| [23:18] | rd_1h_size     | 1H Size for FC0 (Reading Motion Data)              | 0           |
| [29:24] | I_wr_1h_size   | 1H Size for Delay processor (Writing Delayed MPEG) | 0           |
| [31:30] | _              | Reserved                                           | _           |

## SUB SAMPLE MODE AND MMU REQ LENGTH CONTROL REGISTER

**A\_req\_length**, **B\_req\_length**: Determines the transfer unit of the data to read from the MMU to line memory. Different transfer units are set according to the format of the saved data. In Req\_manager, it means the mmu\_length to input to the MMU for the mmu\_request. If the addr\_diff (rd\_addr - wr\_addr) is large enough, the corresponding value given in the table below will be transferred. But, for the request at which the addr\_diff becomes less than the corresponding value in the table, the remaining value (the value less than the Burst\_Length) will be transferred. \*addr\_diff: FIFO read address - FIFO write address.

|              | 4:2:0 Normal | 4:2:2 Normal | 4:2:2 IPC |
|--------------|--------------|--------------|-----------|
| req_length=0 | 8            | 8            | 8         |
| req_length=1 | 8            | 16           | 16        |

**A\_min\_req\_cycle**, **B\_min\_req\_cycle**: Controls the FIFO so that it cannot read the subsequent data until a specific time interval has passed..

| Name      | Address   | Description                          | Туре | Reset value |
|-----------|-----------|--------------------------------------|------|-------------|
| DP_REG_32 | BAR0+880h | Sub sample mode & mmu request length | R/W  | 0           |

| Bits    | Name             | Description                                           | Reset value |
|---------|------------------|-------------------------------------------------------|-------------|
|         | subsample_mode_m | Sub sample mode for Main picture                      |             |
| [0]     |                  | 0=1:1(Normal) mode                                    | 0           |
|         |                  | 1=1:2 sub sample mode                                 |             |
| [1]     | -                | Reserved                                              | _           |
|         | subsample_mode_s | Sub sample mode for Sub picture                       |             |
| [2]     |                  | 0=1:1(Normal) mode                                    | 0           |
|         |                  | 1=1:2 sub sample mode                                 |             |
| [3]     | -                | Reserved                                              | _           |
| [4]     | A_req_length     | Requested data length from A FIFO(line memory) to MMU | 0           |
| [4]     |                  | 0=8 word 1=16 word                                    | 0           |
| [5]     | B_req_length     | Requested data length from B FIFO(line memory) to MMU | 0           |
| [5]     |                  | 0=8 word 1=16 word                                    | 0           |
| [40:6]  | A_min_req_cycle  | Minimum Cycle for the Next Request of FIFO A          | 0           |
| [12:6]  |                  | (7bit=0~127) Unit: ???                                | 0           |
| [10:12] | B_min_req_cycle  | Minimum Cycle for the Next Request of FIFO B          | 0           |
| [19:13] |                  | (7bit=0~127) Unit: ???                                | U           |
| [31:20] | _                | Reserved                                              | _           |



# MAIN PICTURE VERTICAL CONTROL REGISTER

DP\_REG\_33

| Name      | Address        | Description                             | Туре | Reset value |
|-----------|----------------|-----------------------------------------|------|-------------|
| DP REG 33 | RADO 1994b     | Main vertical filter coefficient and    | R/W  | 0           |
| DF_REG_33 | G_33 BAR0+884h | main video data vertical start location | r/vv | 0           |

| Bits    | Name         | Description                                 | Reset value |
|---------|--------------|---------------------------------------------|-------------|
| [9:0]   | conv_ratio   | Main picture vertical filter coefficient    | 0           |
| [23:10] | main_v_start | Main picture vertical video data read start | 0           |
| [31:24] | _            | Reserved                                    | _           |



# MAIN PICTURE HORIZONTAL START AND END CONTROL REGISTER

DP\_REG\_34

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| DP_REG_34 | BAR0+888h | Main picture horizontal start and end | R/W  | 0           |

| Bits    | Name         | Description                                   | Reset value |
|---------|--------------|-----------------------------------------------|-------------|
| [9:0]   | main_h_start | Main picture horizontal video data read start | 0           |
| [19:10] | main_h_end   | Main picture horizontal video data read end   | 0           |
| [31:20] | -            | Reserved                                      | _           |



# MAIN PICTURE HORIZONTAL SIZE CONTROL REGISTER

DP\_REG\_35

| Name      | Address     | Description                         | Туре  | Reset value |
|-----------|-------------|-------------------------------------|-------|-------------|
| DP REG 35 | BAR0+88ch   | Main picture horizontal size and    | R/W   | 0           |
|           | DAILOTOOLII | main picture horizontal active size | 13/99 | 0           |

| Bits    | Name            | Description                                     | Reset value |
|---------|-----------------|-------------------------------------------------|-------------|
| [9:0]   | main_h_size     | Main picture horizontal pixel count             | 0           |
| [19:10] | main_disp_hsize | Main picture horizontal display count(Capture ) | 0           |
| [31:20] | _               | Reserved                                        | _           |



# IPC THRESHOLD CONTROL REGISTER

# DP\_REG\_37

| Name      | Address   | Description   | Туре | Reset value |
|-----------|-----------|---------------|------|-------------|
| DP_REG_37 | BAR0+894h | IPC threshold | R/W  | 0           |

| Bits   | Name    | Description                                    | Reset value |
|--------|---------|------------------------------------------------|-------------|
| [1:0]  | IPC_th1 | IPC threshold for Step 1 in SP (8, 16, 32, 64) | 0           |
| [2]    | IPC_th2 | IPC threshold for Step 2 in SP (16, 32)        | 0           |
| [3]    | IPC_th3 | IPC threshold for Step 3 in SP (16, 32)        |             |
| [31:4] | _       | Reserved                                       | _           |



## PANORAMA CONTROL REGISTER

DP\_REG\_38

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| DP_REG_38 | BAR0+898h | Panorama on & Left/Center region Size | R/W  | 0           |

| Bits    | Name    | Description                        | Reset value |
|---------|---------|------------------------------------|-------------|
| [0]     | pano_on | Panorama mode                      | 0           |
| [9:1]   | L_end   | Left region end in Panorama mode   | 0           |
| [19:10] | C_end   | Center region end in Panorama mode |             |
| [31:20] | _       | Reserved                           | -           |



# MAIN PICTURE HORIZONTAL COEFFICIENT CONTROL REGISTER

DP\_REG\_39

| Name      | Address   | Description                         | Туре | Reset value |
|-----------|-----------|-------------------------------------|------|-------------|
| DP_REG_39 | BAR0+89ch | Main picture horizontal coefficient | R/W  | 0           |

| Bits    | Name   | Description                                | Reset value |
|---------|--------|--------------------------------------------|-------------|
| [10:0]  | h_coef | Main picture horizontal filter coefficient | 0           |
| [31:11] | _      | Reserved                                   | -           |



## PANORAMA COEFFICIENT A AND B CONTROL REGISTER

#### DP\_REG\_40

.

| Name      | Address   | Description                | Туре | Reset value |
|-----------|-----------|----------------------------|------|-------------|
| DP_REG_40 | BAR0+8a0h | Panorama coefficient A & B | R/W  | 0           |

| Bits    | Name     | Description                       | Reset value |
|---------|----------|-----------------------------------|-------------|
| [9:0]   | h_coef_A | Panorama horizontal filter coef A | 0           |
| [19:10] | h_coef_B | Panorama horizontal filter coef B | 0           |
| [31:20] | _        | Reserved                          | -           |

## POLY PHASE FILTER COEFICIENT CONTROL REGISTER

DP\_REG\_41

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_41 | BAR0+8a4h | Poly phase filter coefficient 0 | R/W  | 0x7ff0      |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [15:0]  | poly0 | Poly phase filter 0 | 0x7ff0      |
| [31:16] | _     | Reserved            | _           |



#### DP\_REG\_42

•

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_42 | BAR0+8a8h | Poly phase filter coefficient 1 | R/W  | 0x66fffa50  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly1 | Poly phase filter 1 | 0x66fffa50  |

# POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_43

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_43 | BAR0+8ach | Poly phase filter coefficient 2 | R/W  | 0x98764310  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly2 | Poly phase filter 2 | 0x98764310  |



#### DP\_REG\_44

.

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_44 | BAR0+8b0h | Poly phase filter coefficient 2 | R/W  | 0x35790bba  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly2 | Poly phase filter 2 | 0x35790bba  |

# POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_45

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| DP_REG_45 | BAR0+8b4h | Poly phase filter coefficient | R/W  | 0x12348100  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly3 | Poly phase filter 3 | 0x12348100  |



#### DP\_REG\_46

•

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_46 | BAR0+8b8h | Poly phase filter coefficient 3 | R/W  | 0x2b688dd6  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly3 | Poly phase filter 3 | 0x2b688dd6  |

# POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_47

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_47 | BAR0+8bch | Poly phase filter coefficient 3 | R/W  | 0xffef3adb  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly3 | Poly phase filter 3 | 0xffef3adb  |



#### DP\_REG\_48

.

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_48 | BAR0+8c0h | Poly phase filter coefficient 4 | R/W  | 0x078f9fc0  |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [27:0]  | poly4 | Poly phase filter 4 | 0x078f9fc0  |
| [31:28] | _     | Reserved            | _           |

## POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_49

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_49 | BAR0+8c4h | Poly phase filter coefficient 4 | R/W  | 0x05ac9b3a  |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [27:0]  | poly4 | Poly phase filter 4 | 0x05ac9b3a  |
| [31:28] | _     | Reserved            | _           |



#### DP\_REG\_50

•

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_50 | BAR0+8c8h | Poly phase filter coefficient 4 | R/W  | 0x030751a8  |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [27:0]  | poly4 | Poly phase filter 4 | 0x030751a8  |
| [31:28] | -     | Reserved            | -           |

## POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_51

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_51 | BAR0+8cch | Poly phase filter coefficient 4 | R/W  | 0x00820692  |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [27:0]  | poly4 | Poly phase filter 4 | 0x00820692  |
| [31:28] | —     | Reserved            | _           |



#### DP\_REG\_52

.

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_52 | BAR0+8d0h | Poly phase filter coefficient 5 | R/W  | 0xbba97530  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly5 | Poly phase filter 5 | 0xbba97530  |

# POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_53

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_53 | BAR0+8d4h | Poly phase filter coefficient 5 | R/W  | 0x1346789a  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly5 | Poly phase filter 5 | 0x1346789a  |



#### DP\_REG\_54

•

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_54 | BAR0+8d8h | Poly phase filter coefficient 6 | R/W  | 0x166bffa4  |

| Bits   | Name  | Description         | Reset value |
|--------|-------|---------------------|-------------|
| [31:0] | poly6 | Poly phase filter 6 | 0x166bffa4  |

## POLY PHASE FILTER COEFICIENT CONTROL REGISTER

#### DP\_REG\_55

| Name      | Address   | Description                     | Туре | Reset value |
|-----------|-----------|---------------------------------|------|-------------|
| DP_REG_55 | BAR0+8dch | Poly phase filter coefficient 7 | R/W  | 0x1ffc      |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [15:0]  | poly7 | Poly phase filter 7 | 0x1ffc      |
| [31:16] | -     | Reserved            | -           |



## MAIN WRITE 1H SIZE CONTROL REGISTER

#### DP\_REG\_56

.

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| DP_REG_56 | BAR0+8e0h | Main Write 1h size | R/W  | 0           |

| Bits   | Name       | Description   | Reset value |
|--------|------------|---------------|-------------|
| [5:0]  | wr_1h_size | 1H write size | 0           |
| [31:6] | _          | Reserved      | -           |

# MAIN COLOR MATRIX CONTROL REGISTER

#### DP\_REG\_57

| Name      | Address   | Description       | Туре | Reset value |
|-----------|-----------|-------------------|------|-------------|
| DP_REG_57 | BAR0+8e4h | Main Color matirx | R/W  | 0           |

| Bits    | Name     | Description                    | Reset value |
|---------|----------|--------------------------------|-------------|
| [5:0]   | main_yy1 | Main picute color matrix : yy1 | 0           |
| [11:6]  | main_yy2 | Main picute color matrix : yy2 | 0           |
| [21:12] | main_cb1 | Main picute color matrix : cb1 | 0           |
| [31:22] | _        | Reserved                       | _           |



## MAIN COLOR MATRIX CONTROL REGISTER

#### DP\_REG\_58

•

| Name      | Address   | Description       | Туре | Reset value |
|-----------|-----------|-------------------|------|-------------|
| DP_REG_58 | BAR0+8e8h | Main Color matirx | R/W  | 0           |

| Bits    | Name     | Description                    | Reset value |
|---------|----------|--------------------------------|-------------|
| [9:0]   | main_cb2 | Main picute color matrix : cb2 | 0           |
| [19:10] | main_cr1 | Main picute color matrix : cr1 | 0           |
| [29:20] | main_cr2 | Main picute color matrix : cr2 | 0           |
| [31:30] | _        | Reserved                       | _           |

## MAIN BOUNDARY COLOR CONTROL REGISTER

#### DP\_REG\_59

| Name      | Address   | Description         | Туре | Reset value |
|-----------|-----------|---------------------|------|-------------|
| DP_REG_59 | BAR0+8ech | Main boundary color | R/W  | 0           |

| Bits    | Name          | Description                               | Reset value |
|---------|---------------|-------------------------------------------|-------------|
| [15:0]  | main_bd_color | Main picture boundary color (6:5:5 YCbCr) | 0           |
| [31:16] | -             | Reserved                                  | -           |



## SUB MMU REQUEST SIZE CONTROL REGISTER

#### DP\_REG\_60

.

| Name      | Address   | Description          | Туре | Reset value |
|-----------|-----------|----------------------|------|-------------|
| DP_REG_60 | BAR0+8f0h | Sub mmu request size | R/W  | 0           |

| Bits   | Name              | Description                                     | Reset value |
|--------|-------------------|-------------------------------------------------|-------------|
| [0]    | sub_req_length    | Sub picture request length (1:16 word 0:8 word) | 0           |
| [7:1]  | sub_min_req_cycle | Sub picture minimum request cycle               | 0           |
| [31:9] | _                 | Reserved                                        | _           |

## SUB PICTURE HORIZONTAL SIZE CONTROL REGISTER

#### DP\_REG\_61

| Name      | Address   | Description                              | Туре | Reset value |
|-----------|-----------|------------------------------------------|------|-------------|
| DP_REG_61 | BAR0+8f4h | Sub display & video data horizontal size | R/W  | 0           |

| Bits    | Name           | Description                          | Reset value |
|---------|----------------|--------------------------------------|-------------|
| [9:0]   | sub_h_size     | Sub picture horizontal pixel count   | 0           |
| [18:10] | sub_disp_hsize | Sub picture horizontal display count | 0           |
| [31:19] | _              | Reserved                             | _           |



### SUB PICTURE HORIZONTAL FILTER CONTROL REGISTER

#### DP\_REG\_62

•

| Name      | Address   | Description                       | Туре | Reset value |
|-----------|-----------|-----------------------------------|------|-------------|
| DP_REG_62 | BAR0+8f8h | Sub horizontal filter coefficient | R/W  | 0           |

| Bits    | Name           | Description                               | Reset value |
|---------|----------------|-------------------------------------------|-------------|
| [9:0]   | sub_req_length | Sub picture horizontal filter coefficient | 0           |
| [31:10] | -              | Reserved                                  | _           |

## SUB PICTURE COLOR MATRIX CONTROL REGISTER

#### DP\_REG\_63

| Name      | Address   | Description      | Туре | Reset value |
|-----------|-----------|------------------|------|-------------|
| DP_REG_63 | BAR0+8fch | Sub Color matrix | R/W  | 0           |

| Bits    | Name    | Description                   | Reset value |
|---------|---------|-------------------------------|-------------|
| [5:0]   | sub_yy1 | Sub picute color matrix : yy1 | 0           |
| [11:6]  | sub_yy2 | Sub picute color matrix : yy2 | 0           |
| [21:12] | sub_cb1 | Sub picute color matrix : cb1 | 0           |
| [31:22] | _       | Reserved                      | -           |



## SUB PICTURE COLOR MATRIX CONTROL REGISTER

#### DP\_REG\_64

.

| Name      | Address   | Description      | Туре | Reset value |
|-----------|-----------|------------------|------|-------------|
| DP_REG_64 | BAR0+900h | Sub Color matrix | R/W  | 0           |

| Bits    | Name    | Description                    | Reset value |
|---------|---------|--------------------------------|-------------|
| [9:0]   | sub_cb2 | Sub picture color matrix : cb2 | 0           |
| [19:10] | sub_cr1 | Sub picture color matrix : cr1 | 0           |
| [29:20] | sub_cr2 | Sub picture color matrix : cr2 | 0           |
| [31:30] | _       | Reserved                       | -           |

## SUB PICTURE VERTICAL SIZE CONTROL REGISTER

DP\_REG\_65

| Name      | Address   | Description                                                 | Туре | Reset value |
|-----------|-----------|-------------------------------------------------------------|------|-------------|
| DP_REG_65 | BAR0+904h | Sub vertical filter coefficient / video data vertical start | R/W  | 0           |

| Bits    | Name           | Description                                | Reset value |
|---------|----------------|--------------------------------------------|-------------|
| [9:0]   | sub_conv_ratio | Sub picture vertical filter coefficient    | 0           |
| [23:10] | sub_v_start    | Sub picture vertical video data read start | 0           |
| [31:24] | _              | Reserved                                   | -           |

## SUB PICTURE HORIZONTAL SIZE CONTROL REGISTER

#### DP\_REG\_66

•

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| DP_REG_66 | BAR0+908h | Sub video data horizontal start & end | R/W  | 0           |

| Bits    | Name        | Description                                  | Reset value |
|---------|-------------|----------------------------------------------|-------------|
| [9:0]   | sub_h_start | Sub picture horizontal video data read start | 0           |
| [19:10] | sub_h_end   | Sub picture horizontal video data read end   | 0           |
| [31:20] | _           | Reserved                                     | —           |

# SUB PICTURE BOUNDARY COLOR CONTROL REGISTER

#### DP\_REG\_67

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| DP_REG_67 | BAR0+90ch | Sub boundary color | R/W  | 0           |

| Bits    | Name           | Description                              | Reset value |
|---------|----------------|------------------------------------------|-------------|
| [15:0]  | sub_conv_ratio | Sub picture boundary color (6:5:5 YCbCr) | 0           |
| [31:16] | _              | Reserved                                 | -           |



# SUB PICTURE HORIZONTAL SIZE CONTROL REGISTER

#### DP\_REG\_68

| Name      | Address   | Description              | Туре | Reset value |
|-----------|-----------|--------------------------|------|-------------|
| DP_REG_68 | BAR0+910h | Display background color | R/W  | 0           |

| Bits    | Name          | Description                                    | Reset value |
|---------|---------------|------------------------------------------------|-------------|
| [15:0]  | disp_bg_color | Display background color (6:5:5 YCbCr)         | 0           |
| [16]    | SD_GP-on      | SD output uses video with Graphics             | 0           |
| [17]    | clipping      | data clipping on                               | 0           |
|         | chroma_format | HD output Color format                         |             |
| [20:18] |               | [19:18] (0) No Transform (1) 601 (2) RGB       | 0           |
|         |               | [20] (0) 4:2:2 YCbcr (1) 4:4:4 when 709 or 601 |             |
| [21]    | hd_656        | 656 HD digital output                          | 0           |
| [31:22] | _             | Reserved                                       | _           |

# SD OUTPUT FILTRE RATIO CONTROL REGISTER

### DP\_REG\_70

| Name      | Address   | Description            | Туре | Reset value |
|-----------|-----------|------------------------|------|-------------|
| DP_REG_70 | BAR0+918h | SD output filter ratio | R/W  | 0           |

| Bits    | Name    | Description            | Reset value |
|---------|---------|------------------------|-------------|
| [7:0]   | h_ratio | SDout horizontal ratio | 0           |
| [17:8]  | v_ratio | SDout vertical ratio   | 0           |
| [31:18] | _       | Reserved               | -           |



# DIGITAL ENCODER MODE CONTROL REGISTER

# DP\_REG\_71

| Name      | Address   | Description          | Туре | Reset value |
|-----------|-----------|----------------------|------|-------------|
| DP_REG_71 | BAR0+91ch | Digital Encoder Mode | R/W  | 0           |

| Bits    | Name         | Description                                | Reset value |
|---------|--------------|--------------------------------------------|-------------|
| [0]     | sqpx         | Input/output data rate                     | 0           |
| [1]     | Infmt        | Input/output field rate                    | 0           |
| [2]     | phalt        | chroma encodeing method                    | 0           |
| [3]     | fdrst        | enables FSC locked color signal generation | 0           |
| [4]     | ped          | ebalbes pedistal for video output          | 0           |
| [6:5]   | fscsel       | color modulation frequency                 | 0           |
| [8:7]   | ybw          | luma output video bandwidth                | 0           |
| [10:9]  | cbw          | chroma output video bandwidth              | 0           |
| [13:11] | test_obs     | test observability points                  | 0           |
| [14]    | free_running | free running mode                          | 0           |
| [31:15] | _            | Reserved                                   | _           |



## MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_72

•

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_72 | BAR0+920h | Macrovision interface | R/W  | 0xd2bd73e   |

| Bits   | Name    | Description                         | Reset value |
|--------|---------|-------------------------------------|-------------|
| [31:0] | mv_reg0 | Macrovision register x0, x1, x2, x3 | 0xd2bd73e   |

# MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_73

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_73 | BAR0+924h | Macrovision interface | R/W  | 0x90db665b  |

| Bits   | Name    | Description                         | Reset value |
|--------|---------|-------------------------------------|-------------|
| [31:0] | mv_reg1 | Macrovision register x4, x5, x6, x7 | 0x90db665b  |



## MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_74

.

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_74 | BAR0+928h | Macrovision interface | R/W  | 0x000000ff  |

| l | Bits   | Name    | Description                           | Reset value |
|---|--------|---------|---------------------------------------|-------------|
| ſ | [31:0] | mv_reg2 | Macrovision register x8, x9, x10, x11 | 0x000000ff  |

# MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_75

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_75 | BAR0+92ch | Macrovision interface | R/W  | 0x020df6f0  |

| Bits   | Name    | Description                             | Reset value |
|--------|---------|-----------------------------------------|-------------|
| [31:0] | mv_reg3 | Macrovision register x12, x13, x14, x15 | 0x020df6f0  |



# MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_76

•

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_76 | BAR0+930h | Macrovision interface | R/W  | 0x0000f0cf  |

| Bits    | Name    | Description                        | Reset value |
|---------|---------|------------------------------------|-------------|
| [23:0]  | mv_reg4 | Macrovision register x16, x17, x40 | 0x0000f0cf  |
| [31:24] | -       | Reserved                           | -           |

# MACROVISION INTERFACE CONTROL REGISTER

#### DP\_REG\_77

| Name      | Address   | Description           | Туре | Reset value |
|-----------|-----------|-----------------------|------|-------------|
| DP_REG_77 | BAR0+934h | Macrovision interface | R/W  | 0x00000000  |

| Bits   | Name    | Description                             | Reset value |
|--------|---------|-----------------------------------------|-------------|
| [31:0] | mv_reg5 | Macrovision register x48, x49, x50, x51 | 0x000000ff  |



# SD OUTPUT CAPTION CONTROL REGISTER

DP\_REG\_78

.

| Name      | Address   | Description               | Туре | Reset value |
|-----------|-----------|---------------------------|------|-------------|
| DP_REG_78 | BAR0+938h | SD output Caption Control | R/W  | 0           |

| Bits    | Name    | Description                               | Reset value |
|---------|---------|-------------------------------------------|-------------|
| [7:0]   | cap1_3  | caption data CC1(Field 1) or CC3(Field 2) | 0           |
| [15:8]  | cap2_4  | caption data CC2(Field 1) or CC3(Field 2) | 0           |
| [17:16] | cap_ctr | caption data validity                     | 0           |
| [31:18] | _       | Reserved                                  | _           |

# DAC CONTROL REGISTER

DP\_REG\_79

| Name      | Address   | Description | Туре | Reset value |
|-----------|-----------|-------------|------|-------------|
| DP_REG_79 | BAR0+93ch | DAC Control | R/W  | 0           |

| Bits   | Name   | Description                     | Reset value |
|--------|--------|---------------------------------|-------------|
|        | cap1_3 | SD output DAC control           |             |
|        |        | 0 = blank : reset               |             |
| [2:0]  |        | 1 = vsetup : output level shift | 0           |
|        |        | 2 = sleep mode                  |             |
|        |        | others = no effect              |             |
|        | cap2_4 | HD output DAC control           |             |
|        |        | 0 = blank : reset               |             |
| [5:3]  |        | 1 = vsetup : output level shift | 0           |
|        |        | 2 = sleep mode                  |             |
|        |        | others = no effect              |             |
| [31:6] | _      | Reserved                        | -           |



# INTERRUPT FLAG REGISTER

| Name      | Address   | Description              | Туре | Reset value |
|-----------|-----------|--------------------------|------|-------------|
| DP_REG_80 | BAR0+940h | Interrupt event register | R/W  | 0           |

| Bits   | Name               | Description                                                                                 | Reset value |
|--------|--------------------|---------------------------------------------------------------------------------------------|-------------|
| [0]    | interupt_event_SD0 | SD0 Interrupt Event<br>0 = SD0 interrupt is NOT generated<br>1 = SD0 interrupt is generated | 0           |
| [1]    | interupt_event_HD  | HD Interrupt Event<br>0 = HD interrupt is NOT generated<br>1 = HD interrupt is generated    | 0           |
| [2]    | interupt_event_SD1 | SD1 Interrupt Event<br>0=SD1 interrupt is NOT generated<br>1=SD1 interrupt is generated     | 0           |
| [31:3] | -                  | Reserved                                                                                    | _           |



# **INTERRUPT MASK REGISTER**

Description.

| Name      | Address   | Description             | Туре | Reset value |
|-----------|-----------|-------------------------|------|-------------|
| DP_REG_81 | BAR0+944h | Interrupt mask register | R/W  | 0           |

| Bits   | Name                 | Description                   | Reset value |
|--------|----------------------|-------------------------------|-------------|
|        | interupt_event_mask_ | SD0 Interrupt Event Mask      |             |
| [0]    | SD0                  | 0=SD0 interrupt is NOT Masked | 0           |
|        |                      | 1=SD0 interrupt is Masked     |             |
|        | interupt_event_mask_ | HD Interrupt Event Mask       |             |
| [1]    | HD                   | 0=HD interrupt is NOT Masked  | 0           |
|        |                      | 1=HD interrupt is Masked      |             |
|        | interupt_event_mask_ | SD1 Interrupt Event Mask      |             |
| [2]    | SD1                  | 0=SD1 interrupt is NOT Masked | 0           |
|        |                      | 1=SD1 interrupt is Masked     |             |
| [31:3] | -                    | Reserved                      | _           |



# SD INTERRUPT INPUT CONTROL REGISTER

Description

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| DP_REG_82 | BAR0+948h | SD interrupt input | R/W  | 0           |

| Bits    | Name              | Description                                                                                     | Reset value |
|---------|-------------------|-------------------------------------------------------------------------------------------------|-------------|
|         | SD0_toggle_cnt_on | The Start of Counting the Field_ID Toggle                                                       |             |
| [0]     |                   | 0 = Disable SD0 toggle counter operation                                                        | 0           |
|         |                   | 1 = Enable SD0 toggle counter operation                                                         |             |
|         | SD0_cpu_mode      | External SD0 CPU Mode                                                                           |             |
|         |                   | 0 = Normal 3D-IPC                                                                               |             |
| [2:1]   |                   | 1 = Normal 2D-IPC (EOSI)                                                                        | 0           |
|         |                   | 2 = 2D-IPC                                                                                      |             |
|         |                   | 3 = SD I/F Auto Detection                                                                       |             |
|         | SD0_field_num     | The Number of Fields for the Counting Field_ID Toggle                                           |             |
| [12:3]  |                   | The number of fields to be tested in order to determine whether the field ID is toggled or not. | 0           |
| [31:13] | _                 | Reserved                                                                                        | _           |

# HD INTERRUPT INPUT CONTROL REGISTER

#### DP\_REG\_83

| Name      | Address   | Description        | Туре | Reset value |
|-----------|-----------|--------------------|------|-------------|
| DP_REG_83 | BAR0+94ch | HD interrupt input | R/W  | 0           |

| Bits   | Name      | Description                                       | Reset value |
|--------|-----------|---------------------------------------------------|-------------|
| [0]    | Sel_HD_SD | Start of Source Format Detection at HD I/F Module | 0           |
| [31:1] | -         | Reserved                                          | -           |

# SD TOGGLE COUNT REGISTER

#### DP\_REG\_84

| Name      | Address   | Description     | Туре | Reset value |
|-----------|-----------|-----------------|------|-------------|
| DP_REG_84 | BAR0+950h | SD toggle count | R    | 0           |

| Bits    | Name           | Description                                      | Reset value |
|---------|----------------|--------------------------------------------------|-------------|
| [9:0]   | SD0_toggle_cnt | The Count of Field_ID Toggling at SD0 I/F Module | 0           |
| [19:10] | SD1_toggle_cnt | The Count of Field_ID Toggling at SD1 I/F Module | 0           |
| [31:11] | _              | Reserved                                         | _           |



# HD PROGRESSIVE COUNT REGISTER

DP\_REG\_85

.

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| DP_REG_85 | BAR0+954h | HD progressive & 4line count at 81MHz | R    | 0           |

| Bits    | Name        | Description                                                                                                                                            | Reset value |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [0]     | prog_inter  | Progressive/Interlace Indication at HD I/F                                                                                                             | 0           |
| [15:1]  | clk67p5_cnt | Counting Based on 67.5MHz for 10 Line at HD I/F<br>(The count obtained when the 10 horizontal-line of HD input<br>is counted with 67.5-MHz frequency.) | 0           |
| [31:16] | _           | Reserved                                                                                                                                               | _           |

# HD VERTICAL AND HORIZONTAL COUNT REGISTER

# The pixel count of the HD horizontal 1 line which is counted by clock input (for example,74.25MHz) to the HD input clock pin.

| Name      | Address   | Description                    | Туре | Reset value |
|-----------|-----------|--------------------------------|------|-------------|
| DP_REG_86 | BAR0+958h | HD vertical & horizontal count | R    | 0           |

| Bits    | Name  | Description                             | Reset value |
|---------|-------|-----------------------------------------|-------------|
| [12:0]  | h_cnt | Pixel Count for 1 Line in HD I/F Module | 0           |
| [23:13] | v_cnt | Line Count for 1 Frame in HD I/F Module | 0           |
| [31:24] | —     | Reserved                                | -           |



# HD OUTPUT ANALOG SYNC CONTROL REGISTER

#### DP\_REG\_87

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| DP_REG_87 | BAR0+95ch | HD output Analog sync control | R/W  | 0           |

| Bits    | Name              | Description                       | Reset value |
|---------|-------------------|-----------------------------------|-------------|
| [1:0]   | HDout_insize      | HD Format (0:1080i 1:720p 2:480P) | 0           |
|         | HDout_mode        | Analog HD Format                  |             |
| [3:2]   |                   | 0 = YPbPr with 3 Level Sync       | 0           |
| [3:2]   |                   | 2 = RGB with 3 Level Sync         | 0           |
|         |                   | 3 = RGB without sync              |             |
| [4]     | HDout_RGBY_offset | Setting "1" if Blank Level is 16  | 0           |
| [11:5]  | HDout_hsync_pos   | Analog H Sync Tip                 | 0           |
| [20:12] | HDout_v_h_start   | Analog V Start                    | 0           |
| [31:21] | _                 | Reserved                          | -           |



# HD AND SD OUTPUT DAC CONTROL REGISTER

#### DP\_REG\_88

.

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| DP_REG_88 | BAR0+960h | HD out & SD out DAC Connection status | R    | 0           |

| Bits   | Name             | Description               | Reset value |
|--------|------------------|---------------------------|-------------|
| [0]    | SDout_DAC_sensez | 0 = Hi-Z                  | 0           |
| [0]    |                  | 1 = SD out DAC Connection | 0           |
| [4]    | HDout_DAC_sensez | 0 = Hi-Z                  | 0           |
| [1]    |                  | 1 = HD out DAC Connection | 0           |
| [31:2] | _                | Reserved                  | _           |

# SD HORIZONTAL CONTROL REGISTER

#### DP\_REG\_89

| Name      | Address   | Description               | Туре | Reset value |
|-----------|-----------|---------------------------|------|-------------|
| DP_REG_89 | BAR0+964h | SD horizontal start & end | R/W  | 0           |

| Bits    | Name             | Description                                      | Reset value |
|---------|------------------|--------------------------------------------------|-------------|
| [7:0]   | SDout_h_act_st   | Horizontal Active Start for SD Output Generation | 0           |
| [18:8]  | SDout_h_act_end  | Horizontal Active End for SD Output Generation   | 0           |
| [29:19] | SDout_denc_delay | Sync Delay for DENC(NTSC-Encoder)                |             |
| [31:30] | _                | Reserved                                         | _           |

# HD AND SD SELECTION CONTROL REGISTER

# DP\_REG\_90

| Name      | Address   | Description  | Туре | Reset value |
|-----------|-----------|--------------|------|-------------|
| DP_REG_90 | BAR0+968h | HD/SD select | R/W  | 0           |

| Bits    | Name              | Description                                              | Reset value |
|---------|-------------------|----------------------------------------------------------|-------------|
|         | Sel_HD_SD         | External input muxing                                    |             |
| [0]     |                   | 0=SD1 input enable                                       | 0           |
|         |                   | 1=HD input enable                                        |             |
| [1]     | SD1_on            | Operation enable for SD1 I/F module???                   | 0           |
| [7:0]   | Ext_sync_type     | Input Sync Polarity for External SD1                     |             |
| [7:2]   |                   | See also Sync_type.                                      |             |
| [13:8]  | SD1_v_start_o     | External SD1 vertical active start position (odd field)  |             |
| [13.0]  |                   | ???                                                      |             |
| [19:14] | SD1_v_start_e     | External SD1 vertical active start position (even field) |             |
| [19.14] |                   | ???                                                      |             |
|         | SD1_toggle_cnt_on | The start of counting the Field_ID toggle                |             |
| [20]    |                   | 0=Disable SD1 toggle counter operation                   |             |
|         |                   | 1=Enable SD1 toggle counter operation                    |             |
| [31:21] | -                 | Reserved                                                 | -           |

# POLY PHASE FILTER SIGN REGISTER

DP\_REG\_91

.

| Name      | Address   | Description                | Туре | Reset value |
|-----------|-----------|----------------------------|------|-------------|
| DP_REG_91 | BAR0+96ch | Poly phase filter sign R/W |      | 0           |

| Bits    | Name          | Description                                      | Reset value |
|---------|---------------|--------------------------------------------------|-------------|
| [20:0]  | _             | Reserved                                         | _           |
| [30:21] | SD1_field_num | The Number of Field for Counting Field_ID_Toggle | 0           |
| [31]    | _             | Reserved                                         | -           |

# POLY PHASE FILTER SIGN REGISTER

DP\_REG\_92

х.

| Name      | Address   | Description            | Туре | Reset value |
|-----------|-----------|------------------------|------|-------------|
| DP_REG_92 | BAR0+970h | Poly phase filter sign |      | 0           |

| Bits | Name | Description | Reset value |
|------|------|-------------|-------------|
|      |      |             |             |
|      |      |             |             |
|      |      |             |             |



| Table 2-1. SSH2000A Register map (continued: DP control register) |           |                             |      |             |
|-------------------------------------------------------------------|-----------|-----------------------------|------|-------------|
| Name                                                              | Address   | Description                 | Туре | Reset value |
| DP_REG_93                                                         | BAR0+974h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_94                                                         | BAR0+978h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_95                                                         | BAR0+97ch | SD output vertical position | R/W  | 0           |
| DP_REG_96                                                         | BAR0+980h | SD output vertical position | R/W  | 0           |
| DP_REG_93                                                         | BAR0+974h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_94                                                         | BAR0+978h | Polyphase filter sign       | R/W  | 0           |
| DP_REG_95                                                         | BAR0+97ch | SD output vertical position | R/W  | 0           |

Table 2-1. S5H2000X Register map (continued: DP control register)



NOTE



# **GRAPHIC PROCESSOR**

# 7.1 OVERVIEW

The Graphic Module consists of 3 sub-modules: the GP (Graphic Processor), the GA (Graphic Accelerator), and the memory bank. The GP reads graphic data on local memory via the MMU and mixes it with video signals input from the DP. The GA quickly transfers the graphic data on the system memory to the local memory via the PCI interface and performs various quick pixel operations with the H/W. The Memory Bank is a module that contains the line memory and CLUT used by the GP.

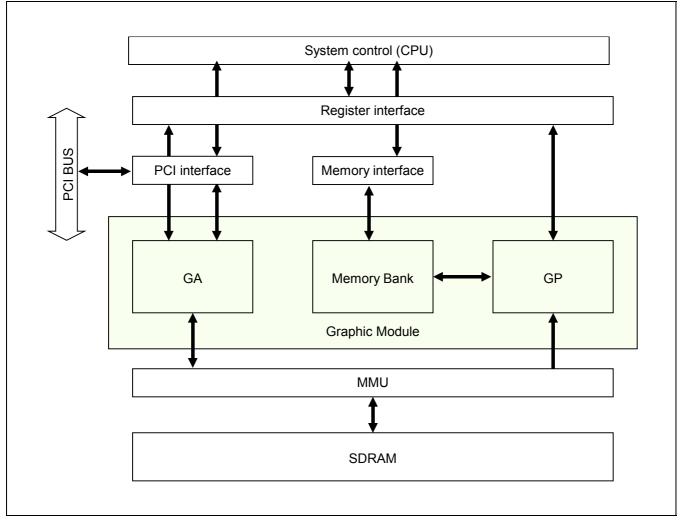



Figure 7-1 Graphic Processor block diagram



# 7.2 Feature

- Graphic Windows
- Graphic Windows
  - Up to 4 windows can be displayed on the screen at the same time.
  - A window has an arbitrary size within the screen size. However, the width should be an even number.
  - A window has an arbitrary position regardless of the screen size. That is, it can be located outside the screen. The regions outside the screen are automatically clipped.
  - Each window can have its own graphic format.
  - Each window has a priority of 0 to 3. Priority 0 is the highest and 3 is the lowest. The higher priority window is displayed as the foreground window and the lower priority window is overlaid by the higher priority window.
  - A window can be zoomed-in twice its size horizontally and vertically.
  - Each window has the sub-window display function that displays a small rectangle area within the window.
- Window Graphic Formats: Each window can have one of the following graphic formats.
  - 8bit bitmap RGB 565
  - 8bit bitmap RGBα 5551
  - 8bit bitmap RGBα 4444
  - 16bit graphic RGB 565
  - 16bit graphic RGBα 5551
  - 16bit graphic RGBα 4444
- Blending
  - Window Blending: 32-level window blending can be applied to each window. It is a blending mode that can be applied to all pixels of a window regardless of its graphic format.
  - Pixel Blending: A 16-level blending factor that can be applied to each pixel of a window. RGBα 5551: LSB 0 bit is used as the index of the 4-bit blending factor table.

RGB $\alpha$  4444: LSB 3~0 bits are the 4-bit blending factor.

For a window that has pixel blending, both window blending and pixel blending can be applied at the same time. The blending factor is obtained by multiplying the two blending factors.

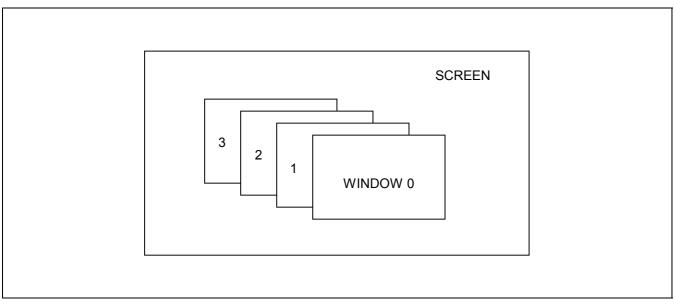
- Blending Layer
  - There is a blending layer composed of video and graphic layers.
  - An arbitrary sized video input from the display processor is mapped to the video layer.
  - Four windows are overlaid in the order of their priority.
  - Vertical hierarchy can be applied for 2 blending layers in an arbitrary order. That is, the video layer can be positioned above or below the graphic layer.
  - Blending is performed to the lower layer using the blending factor of the upper layer.



- H/W Cursor
  - Always positioned on the upper layer.
  - Can have a maximum width of 128 pixels (horizontal) and the maximum screen size height (vertical).
  - 4 bits/pixel bitmap (16 colors).
  - Supports YCbCr655 color format only.
  - Color value 0 is transparent.
  - H/W blinking is supported with 1 ~ 64 frames period.
- Graphic Accelerator
  - Supports 8-bit bitmap, 16-bit true color.
  - Block transfers the 8-bit/16-bit data of the 32-bit width which is being transferred to the CPU memory (source) and to the external SDRAM via the MMU interface. (block copy)
  - Can block transfer the data which has a smaller width than the source block data.



# 7.3 Function Spec


#### 7.3.1 H/W Window

The S5H2000X graphic processor (henceforth, GP) supports 4 graphic planes. The graphic plane need not be the same size as the screen and can be smaller than the screen and a different size than the existing graphic H/W. The graphic plane can be positioned outside the screen. However, the plane region outside the screen will be clipped. Due to these characteristics, the graphic plane is named a window. A window (i.e., a graphic plane) is an H/W window different than an S/W window on a Windows PC system.

The GP has four H/W windows and each window can have the following attributes.

#### 7.3.1.1 Window ID (Priority)

A priority is assigned to determine the order in which the H/W windows are displayed on the screen when overlaid partly or entirely. An H/W window has a unique ID that ranges from 0 to 3. This window ID represents the priority of the window. 0 means the highest priority and 3 means the lowest priority. When there is more than one window created and they have been overlaid, the window that has higher priority is displayed on top of the lower priority window.





#### 7.3.1.2 Window Position & Size

Window Position and Size indicates the position, width (horizontal size) and height (vertical size) of the window on the screen. A window can be any size smaller than the screen, and need not be the same size as the screen. However, for the 8-bit/pixel format, the window must have a width of pixels equaling a multiple of an even integer due to the characteristics of a 4:2:2 display. For the 16-bit format, a window can have a size equal to or less than 1/2 the size of the screen. But, a window that is 1/2 size of the screen can be enlarged to screen size with the horizontal 2X zoom-in function. Therefore, a window displayed on the screen always has pixels equaling the



multiple of an even integer, but the actual width (horizontal size) need not be an even number.

The position of a window is represented by the coordinates of its upper-left pixel of the screen. The origin (0, 0) is located at the upper-left pixel of the screen. The position of a window need not be limited to the inside of the screen. Part or the entire area can be positioned outside the screen. A window (graphic plane) can also have a negative position and can be positioned at a coordinate completely outside the screen.

Due to the characteristics of a 4:2:2 display, a window should be positioned on a horizontal coordinate pixel equaling a multiple of an even integer. The area outside the screen will be clipped. By using these functions, the auto-hiding function that slides in the task bar when the cursor positions over it, as in Microsoft Windows, can be implemented simply without the burden of S/W.

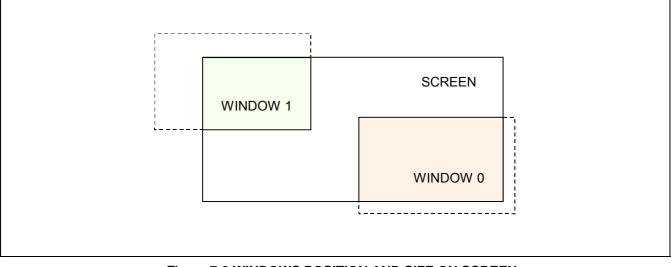



Figure 7-2 WINDOWS POSITION AND SIZE ON SCREEN

#### 7.3.1.3 Horizontal Byte Size of a Window

For each window, the horizontal byte size of its actual window on the screen should be specified. This is necessary because the sub-window display function that implements the display of the actual window larger than the actual window requires that the H/W has to know the actual window's horizontal byte size to calculate the start address of the next line. In the sub-window function, the horizontal size of the window is calculated with the horizontal size of the sub-window and has no relationship with the horizontal byte size of the actual window. As shown in the following figure, a sub-window can be implemented by assigning a parameter less than the size of the actual pixel data of the window on local memory. In this case, the horizontal byte size of the actual window on the memory.



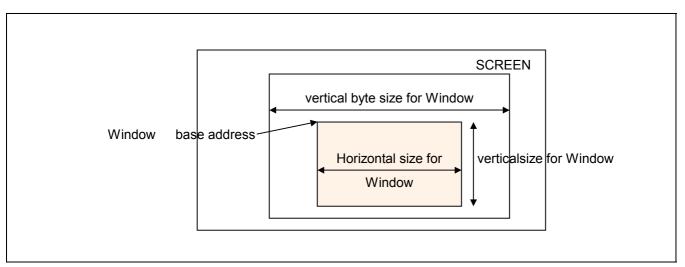



Figure 7-2 WINDOWS POSITION AND SIZE ON SCREEN

#### 7.3.1.4 Layer ID

The GP has 2 blending layers: a video and a graphic layer. The Video layer is made of the signals transferred to the GP from the MPEG video output or the external input video via the Display Processor (DP). The Graphic layer is the blending layer for graphic images. The windows that belong to the graphic layer are overlaid according to their priority and they is no blending between them. The vertical hierarchy of the two layers is variable. That is, the video layer need not always be positioned over the graphic layer, but can be positioned over graphic layer.

## 7.3.1.5 Visibility

This parameter controls whether to show or hide a window on the screen.

#### 7.3.1.6 Window Color Format

This attribute represents the color format of a window. Both 8-bit bitmap and 16-bit high color modes are supported. Each window can have a separate color format, and more than one window with different color formats can be displayed on the screen at the same time. However, 8-bit bitmap windows share a common color look up table (CLUT). The following table shows the supported types of color formats.

| Color Format            | Blending mode                            |  |  |
|-------------------------|------------------------------------------|--|--|
| 8bit index RGB 5:6:5    | no blending                              |  |  |
| 8bit index RGBa 5:5:5:1 | 1bit index for 4bit pixel blending table |  |  |
| 8bit index RGBa 4:4:4:4 | 4bit pixel blending factor               |  |  |
| 16bit RGB 5:6:5         | no blending                              |  |  |
| 16bit RGBa 5:5:5:1      | 1bit index for 4bit pixel blending table |  |  |
| 16bit RGBa 4:4:4:4      | 4bit pixel blending factor               |  |  |

#### Table 7-1 color formats



A window is specified in RGB format. The actual color that the GP H/W processes is YCbCr. In this format, the low bits of each color component are filled with 0 to make 8 bits and then the color is processed. Hence, the 6, 5, and 4 bits shown in the table above represent the high bits of 8-bit color. RGB is also filled with 0 to make 8 bits and then converted to YCbCr before processing.

#### 7.3.1.7 Window Blend Enable & Blend factor

Window Blend is a common mode that applies the 5 bit (32 level) blending factor to all pixels of a window. The window blending factor can be specified separately for each window. It applies the 32 level blending factor specified to all pixels of a window regardless of its color format. The window blending mode can be enabled/disabled with the window blend enable flag.

#### 7.3.1.8 Pixel Blend Enable

For a window that has the color format RGBa 5551 or RGBa 4444, the bend factor can be specified for each pixel. Each window has a blend table that represents a 4-bit blending factor. The index of this blend table is used as the blending factor for 1 bit pixel blending, while, the entire table is used as the blending factor for 4-bit pixel blending. Pixel blending can be enabled/disabled with the pixel blend enable flag.

#### 7.3.1.9 Blend enable

This flag determines whether to apply the blending mode to the window. When set to On, the current blending mode specified to the window is applied..

At this time, if both Window Blend and Pixel Blend are enabled, the two blending modes will be applied at the same time. Therefore, the blending factor is obtained by multiplying the two blending factors. When the blend enable flag is set to Off, the window becomes an opaque window regardless of its blending mode(s).

#### 7.3.1.10 Window Horizontal Doubling

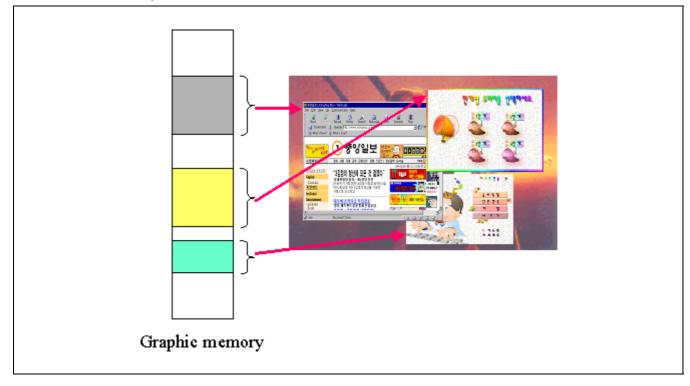
This function displays the window by enlarging it 2 times in a horizontal direction. This is implemented by pixel replication. For the 8-bit bitmap mode, both normal display and horizontal doubling can be selected. But, for the 16-bit color format mode, only the horizontal doubling mode should be used for the architectural reason that the H/W and is enabled automatically by the API. Therefore, for a 16-bit color format window, its horizontal size should be 1/2 of the pixel size of the actual window to be displayed on the screen.

#### 7.3.1.11 Window Vertical Doubling

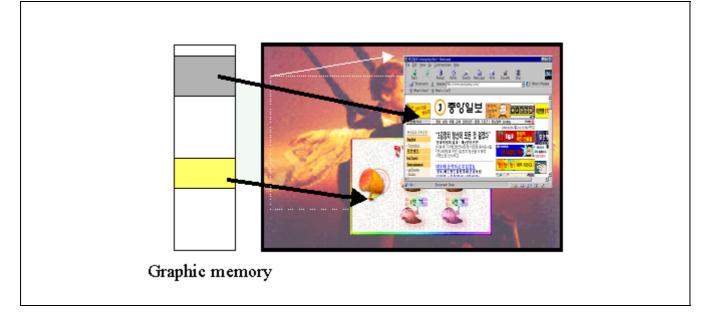
When set to ON, the window is displayed enlarged 2 times vertically. This function is implemented with line duplication. As opposed to horizontal doubling, both normal display and vertical doubling can be selected for 8-bit and 16-bit formats.

#### 7.3.1.12 Window Base Address

The Window Base Address is the pointer to the frame buffer allocated to a window. The unit is a byte. It means the offset to the local memory base address on the system memory map. A virtual window frame buffer can exist any place, either in the system memory or the local memory. But, the frame buffer which is registered to the H/W window and displayed on the screen must always exist in the local memory.




#### 7.3.1.13 Transparent Color Enable


When enabled, a pixel is processed as a transparent color when its RGB value is 0. When disabled, it is processed as black.

#### 7.3.1.14 Window Examples

Windows overlay



#### Windows location & priority change



Sub-window & out of screen location





#### 7.3.2 Blending

Basically, blending is performed between the layers that have vertical hierarchy. Assuming that Pixel A is on the upper layer and has the blending factor á, and Pixel B is on the lower layer, the blending result X is obtained as shown in the following formula:

 $X = a^*A + (1-a)^*B \quad (0 < a < 1)$ 

As mentioned above, there are two blending modes: Window Blending and Pixel Blending.

For Window Blending, a 5-bit blending factor is allocated for each window and is applied to all pixels on a window. Pixel Blending is applied to only the pixels of the color format which have the specified pixel blending factor. If both of the blending modes are enabled, they are applied at the same time.

# 7.3.2.1 Blending Layers

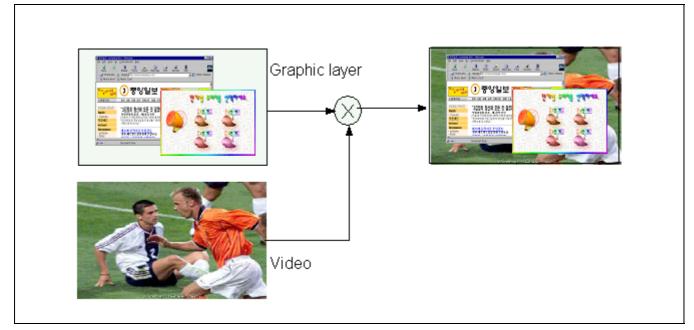
Windows have their own priority and construct a vertical hierarchy. But this means only a vertical overlay of windows and does not mean a blending hierarchy. That is, it means simply that a lower priority window is overlaid by a higher priority window. When they are overlaid, the blending factor of the overlaid area is always that of the higher priority window. For blending, the S5H2000X GP provides a separate graphic layer which is different from the window hierarchy.

A window must belong to this layer. Window overlay according to priority is performed between the windows that belong to the graphic layer. Blending is performed between the video and the graphic layer, and the vertical hierarchy between both layers is variable. As described above, video need not always be lower than the graphic layer and can be positioned over the graphic layer. In this case, the video size should be less than the screen size to display the lower graphic layer. The area out of the video area is processed as transparent color. Blending is performed between the windows that belong to different layers. Assuming that A is a pixel on the lower layer, B is a pixel on the upper layer, and the blending factor is â, the blending result X is:

$$X = (B^{*}\hat{a} + (1-\hat{a})^{*}A) (0 < \hat{a} < 1)$$

# 7.3.2.2 Blending Factor

Window blending factor is composed of 5-bits and has the range of 0 to 31. 0 indicates that the pixel is transparent, and 31, opaque. In actual calculations, blending factor **â** is obtained with the following statements.




Pixel blending factor is composed of 4-bits and has the range of 0 to 15. 0 indicates that the pixel is transparent, and 15, opaque. Opaque level increases linearly from 0 to 15. In actual calculations, blending factor **a** is obtained with the following statements.

Depending on color format, either 1- or 4-bit blending factor is used for pixel blending. In case of 4-bit factor type, all 4 bits are used as pixel blending factor as they are. In case of 1-bit factor type, the bit is used as the index to the 4-bit blending factor table. Each window has a blending factor table that has two entries, and the bit is used as the index to that table. Therefore, though there are two blending factor types available for 1-bit pixel blending mode, both factors have the same 16 factor levels (0 to 15).

#### 7.3.2.3 Blending Example

Blending Layers





**ELECTRONICS** 

#### 7.3.3 Graphic Effects

#### 7.3.3.1 Background Color

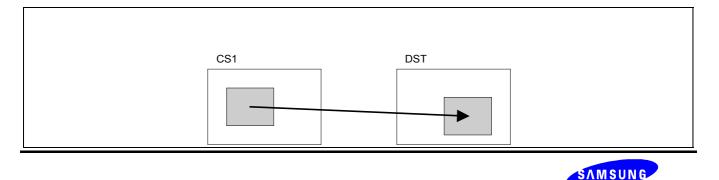
This function replaces the video layer with a specified color. It can be turned on/off and any color can be set as the background color.

#### 7.3.3.2 Progressive/Interlace Display

When saving graphic data to the graphic frame buffer allocated to a window, it should always be saved in the progressive display order.

But, video output should satisfy both the interlaced and progressive output to comply with MPEG video MP@HL specifications. To satisfy this specification, the GP needs to access graphic data on a frame buffer in accordance with video output. Then, when the video output method changes, it only has to modify the progressive/interlaced parameter of the GP according to the changes.

#### 7.3.4 H/W Cursor


The GP supports the H/W cursor. The cursor is positioned on the uppermost layer of vertical hierarchy. The size of cursor is 128 pixels horizontally and equal to the vertical screen size vertically. Only 4-bit bitmap (16 colors) is supported for each pixel as a data format. YCbCr655 format is supported as a color format. If the color value of a pixel is 0, it is processed as transparent color. The cursor is basically a rectangle, but it can be formed into any shape using transparent color. It should exist in the local memory and the base address and horizontal byte size should be registered with the API. A feature of the GP cursor is blinking. The cursor blinks according to the specified frame cycle. The blinking cycle can be 1 frame to 64 frames.

#### 7.3.5 Graphic Accelerator

The Graphic Accelerator (henceforth, GA) is the module that quickly processes block copy between windows using a BitBLT engine without intervention of the CPU. This is not the processing between the video and graphic layers but the processing between the graphic data of the two windows. The window that the GA processes need not be the active window, and it could be a virtual window buffer unregistered as a H/W window. But, a virtual window should have 8- or 16-bit color format which is a possible format for an H/W window.

#### 7.3.5.1 BitBLT Type

For block copy, only one source block can be specified and it should exist in the system memory area.



The above figure shows block copy from the system memory area to the frame buffer of a window. **WINDOW HORIZONTAL POSIOTION REGISTER 0 ~ 3** 

There are 4 horizontal position registers for each window. They specify the horizontal start and end points of a window.

#### WHPR\_0 ~ WHPR\_3

| Name   | Address            | Description                               | Туре | Reset value |
|--------|--------------------|-------------------------------------------|------|-------------|
| WHPR_n | BAR0+a00h<br>+ 4*n | Horizontal position register for window n | R/W  | 0           |

| Bits    | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reset value |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [10:0]  | WHEP | Window Horizontal End Point<br>Indicates the horizontal end point of a window on the<br>screen. In API, the horizontal start point and the                                                                                                                                                                                                                                                                                                                                                               | 0           |
|         |      | horizontal pixel count are used as input parameters for<br>convenience. Then, the horizontal end point is<br>calculated and set to this field. Be careful that the end<br>point is not calculated as (start point + size -1) but as<br>(start point + size) due to architectural reasons of the<br>H/W. The end point represents the actual pixel position<br>on the screen. So, if the window is in the Horizontal<br>Doubling mode, the end point should be calculated as<br>(start point + size * 2). |             |
| [15:11] | —    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           |
| [26:16] | WHSP | Window Horizontal Start Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|         |      | Indicates the horizontal start point of a window assuming that the upper-left pixel of the screen is (0, 0). The value should be always an even value due to the 4:2:2 characteristics of the video.                                                                                                                                                                                                                                                                                                     |             |
| [31:27] | _    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _           |

\* n = 0 ~ 3



## WINDOW VERTICAL POSIOTION REGISTER 0 ~ 3

There are 4 vertical position registers for each window. They specify the vertical start and end points of a window.

#### WVPR\_0 ~ WVPR\_3

| Name   | Address           | Description                             | Туре | Reset value |
|--------|-------------------|-----------------------------------------|------|-------------|
| WVPR_n | BAR0+a20h<br>+4*n | Vertical position register for window n | R/W  | 0           |

| Bits    | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reset value |
|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [10:0]  | WVEP | Window Vertical End Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0           |
|         |      | Indicates the vertical end point of a window on the screen. In API, the vertical start point and the vertical pixel count are used as input parameters for convenience. Then, the vertical end point is calculated and set to this field. Be careful that the end point is not calculated as (start point + size -1) but as (start point + size) due to architectural reasons of the H/W. The end point represents the actual pixel position on the screen. So, if the window is in Vertical Doubling mode, the end point should be calculated as (start point + size * 2). |             |
| [15:11] | -    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _           |
| [26:16] | WVSP | Window Vertical Start Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|         |      | Indicates the vertical start point of a window assuming that the upper-left pixel of the screen is (0, 0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| [31:27] | _    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _           |

\* n = 0 ~ 3



#### WINDOW MODE REGISTER 0 ~ 3

There are 4 mode registers for each window. They specify the operational characteristics of a window.

#### WMR\_0 ~ WMR\_3

| Name  | Address            | Description                | Туре | Reset value |
|-------|--------------------|----------------------------|------|-------------|
| WMR_n | BAR0+a40h<br>+ 4*n | Mode register for window n | R/W  | 0           |

| Bits   | Name  | Description                                                                                                                                                                                                                          | Reset value |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [4:0]  | WBF   | Window Blending Factor                                                                                                                                                                                                               | 0           |
|        |       | Defines 32 window blending levels. The value range is 0 to 31. 0 means transparent and 31 means opaque.                                                                                                                              |             |
| [5]    | HDE   | Horizontal Doubling Enable                                                                                                                                                                                                           | 0           |
|        |       | 0 = Displays the window normally.                                                                                                                                                                                                    |             |
|        |       | 1 = Repeats each horizontal pixel twice so that the<br>horizontal size of the window displayed on the screen is<br>two times the size of the window in memory. For 16-bit<br>true color format, this flag must be set to enable (1). |             |
| [6]    | VDE   | Vertical Doubling Enable                                                                                                                                                                                                             | 0           |
|        |       | 0 = Displays the window normally.                                                                                                                                                                                                    |             |
|        |       | 1 = Repeats each vertical pixel twice so that the vertical size of the window displayed on the screen is two times                                                                                                                   |             |
|        |       | the size of the window in memory. As opposed to<br>Horizontal Doubling, this flag need not be set to enable<br>(1) for 16-bit true color format.                                                                                     |             |
| [10:7] | WOSGF | Window OSG Format                                                                                                                                                                                                                    | 0           |
|        |       | Defines the OSG format of the window. Supported formats are:                                                                                                                                                                         |             |
|        |       | 0 = bit bitmap, RGB 5:6:5                                                                                                                                                                                                            |             |
|        |       | 1 = bit bitmap, RGBá 5:5:5:1                                                                                                                                                                                                         |             |
|        |       | 2 = bit bitmap, RGBá 4:4:4:4                                                                                                                                                                                                         |             |
|        |       | $3 \sim 7 = reserved$                                                                                                                                                                                                                |             |
|        |       | 8 = bit graphic, RGB 5:6:5                                                                                                                                                                                                           |             |
|        |       | 9 = bit graphic, RGBá 5:5:5:1                                                                                                                                                                                                        |             |
|        |       | 10 = bit graphic, RGBá 4:4:4:4                                                                                                                                                                                                       |             |
|        |       | 11 ~ 15 = reserved                                                                                                                                                                                                                   |             |

\*n = 0 ~ 3



WMR\_0 ~ WMR\_3 (Continued)

| Bits    | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reset value |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [11]    | PBE  | Pixel Blending Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0           |
|         |      | 0 = Does not apply pixel blending.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|         |      | 1 = Applies pixel blending when the format of a pixel has a pixel blending factor.                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|         |      | * If both window blending and pixel blending are<br>enabled, the window blending factor * and pixel blending<br>factor will be applied.                                                                                                                                                                                                                                                                                                                                                |             |
| [12]    | WBE  | Window Blending Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0           |
|         |      | 0 = Does not apply window blending.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|         |      | 1 = Applies window blending to the all pixels of the window.                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| [13]    | BE   | Blending Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0           |
|         |      | 0 = Blending off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|         |      | 1 = Applies the blending mode(s) specified for the window.                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| [14]    | WV   | Window Visibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0           |
|         |      | 0 = Hides the window from the screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|         |      | 1 = Shows the window on the screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| [15]    | _    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -           |
| [26:16] | WHBS | Window Horizontal Byte Size                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           |
|         |      | Indicates the horizontal byte size of the window<br>mapped in the memory. It can be calculated<br>from the horizontal pixel size of the window. But,<br>it has no relationship with the horizontal pixel size<br>when displaying a sub-window which is smaller<br>that the size of the actual window in the memory.<br>Hence, the horizontal byte size of the actual<br>window should be set separately for correct<br>calculation of the start address of each line of the<br>window. |             |
| [27]    | TCE  | Transparent Color Enable<br>Specifies whether to process the pixel whose color Y<br>component is 0 or RGB is 0 as transparent color or<br>black.                                                                                                                                                                                                                                                                                                                                       | 0           |
| [31:28] |      | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |

\*n = 0 ~ 3



#### WINDOW BASE ADDRESS REGISTER 0 ~ 3

These registers indicate the start byte address offset of the window. Be careful that the value is not a value in the system memory map but the offset to the local memory start address. The value range is 0 to 32 MB.

#### WMR\_0 ~ WMR\_3

| Name  | Address           | Description                        | Туре | Reset value |
|-------|-------------------|------------------------------------|------|-------------|
| WAR_n | BAR0+a60h<br>+4*n | Base address register for window n | R/W  | 0           |

| Bits    | Name | Description         | Reset value |
|---------|------|---------------------|-------------|
| [24:0]  | WBA  | Window base address | 0           |
| [31:25] | -    | Reserved            | -           |

\*n = 0 ~ 3



#### BACKGROUND COLOR AND BLINK CONTROL REGISTER

This register specifies the background color, controls the OSG, and controls the cursor enable/disable and blinking.

#### BCR

| Name | Address   | Description                             | Туре | Reset value |
|------|-----------|-----------------------------------------|------|-------------|
| BCR  | BAR0+a80h | Background color/blink control register | R/W  | 0           |

| Bits    | Name     | Description                                                                                                                                                                                                 | Reset value |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [5:0]   | СВР      | Cursor Blink Period                                                                                                                                                                                         | 0           |
|         |          | Indicates the cursor blink cycle (6 bits). When set to 0, it is same as blink disable. The cycle range is 1 to 63 (unit: frame). For example, 10 means that the cursor blinks (on and off) every 10 frames. |             |
| [6]     | BLINK_E  | Blink Enable                                                                                                                                                                                                | 0           |
|         |          | 0 = blink disable                                                                                                                                                                                           |             |
|         |          | 1 = blink enable                                                                                                                                                                                            |             |
|         |          | When set to 'Enable (1)', the cursor blinks (on and off) according to the cycle set in the cursor blink period field.                                                                                       |             |
| [7]     | CURSOR_E | Cursor Enable                                                                                                                                                                                               | 0           |
|         |          | 0 = cursor disable                                                                                                                                                                                          |             |
|         |          | 1 = cursor enable                                                                                                                                                                                           |             |
|         |          | Turns the cursor ON/OFF .                                                                                                                                                                                   |             |
| [8]     | OSG_E    | OSG Enable                                                                                                                                                                                                  | 0           |
|         |          | 0 = OSG disable                                                                                                                                                                                             |             |
|         |          | 1 = OSG enable                                                                                                                                                                                              |             |
|         |          | This flag turns on/off all OSG functions. All the OSG functions can be implemented on the screen when this flag is set to 1.                                                                                |             |
| [9]     | BC_E     | Background Color Enable                                                                                                                                                                                     | 0           |
|         |          | 0 = Uses video on the video layer.                                                                                                                                                                          |             |
|         |          | 1 = Uses background color instead of the video signal on the video layer.                                                                                                                                   |             |
| [15:10] | -        | Reserved                                                                                                                                                                                                    | _           |
| [20:16] | BCR      | Background Color (Cr)                                                                                                                                                                                       | 0           |
|         |          | Indicates the 5-bit Cr value of the background color.                                                                                                                                                       |             |
| [25:21] | BCB      | Background Color (Cb)                                                                                                                                                                                       | 0           |
|         |          | Indicates the 5-bit Cb value of the background color.                                                                                                                                                       |             |



# **BCR (Continued)**

| Bits    | Name | Description                                                                                                                                                                                            | Reset value |
|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [31:26] | BCY  | Background Color (Y)                                                                                                                                                                                   | 0           |
|         |      | If there is no video signal or it is not displayed, the<br>background color can be shown instead. YCbCr 655 is<br>used in the color format and this field indicates the 6-bit<br>Y value of YCbCr 655. |             |



#### VIDEO EFFECT CONTROL REGISTER

This register controls whether to use progressive scan for video effects. It also controls the graphic plane order.

VER

| Name | Address   | Description           | Туре | Reset value |
|------|-----------|-----------------------|------|-------------|
| VER  | BAR0+a84h | Video effect register | R/W  | 0           |

| Bits    | Name    | Description                                                                                     | Reset value |
|---------|---------|-------------------------------------------------------------------------------------------------|-------------|
| [8:0]   | _       | Reserved                                                                                        | -           |
| [9]     | PROG_E  | Progressive Scan                                                                                | 0           |
|         |         | 0 = interlace                                                                                   |             |
|         |         | 1 = progressive                                                                                 |             |
|         |         | Should be set to 1 for progressive video output. Should be set to 0 for interlaced video ouput. |             |
| [21:10] | _       | Reserved                                                                                        | _           |
| [22]    | PLANE_O | Plane Order                                                                                     | 0           |
|         |         | 0 = Graphic over video                                                                          |             |
|         |         | 1 = Video over graphic                                                                          |             |
| [31:23] | _       | Reserved                                                                                        | -           |



#### PIXEL ALPHA VALUE REGISTER

This register is the alpha-look up table used in the 1-bit pixel blending mode. The 1-bit pixel blending value is used as the index of this table, and converted into a 4-bit blending factor. The 4 look up tables for a window are packed in the 32-bit register.

| PAR |
|-----|
|-----|

| Name | Address   | Description            | Туре | Reset value |
|------|-----------|------------------------|------|-------------|
| PAR  | BAR0+a8ch | Pixel á value register | R/W  | 0           |

| Bits    | Name       | Description                         | Reset value |
|---------|------------|-------------------------------------|-------------|
| [3:0]   | PBLDIF1_W3 | Pixel blending factor 1 for window3 | 0           |
| [7:4]   | PBLDF0_W3  | Pixel blending factor 0 for window3 | 0           |
| [11:8]  | PBLDF1_W2  | Pixel blending factor 1 for window2 | 0           |
| [15:12] | PBLDF0_W2  | Pixel blending factor 0 for window2 | 0           |
| [19:16] | PBLDF1_W1  | Pixel blending factor 1 for window1 | 0           |
| [23:17] | PBLDF0_W1  | Pixel blending factor 0 for window1 | 0           |
| [27:24] | PBLDF1_W0  | Pixel blending factor 1 for window0 | 0           |
| [31:28] | PBLDF0_W0  | Pixel blending factor 0 for window0 | 0           |



#### HORIZONTAL CURSOR POSITION CONTROL REGISTER

This register specifies the horizontal start and end points of the cursor. In API, h\_start and h\_size are input as parameters and h\_end is calculated as h\_start + h\_size. The pixel position on the screen is used as the origin of the coordinates. Because the OSG has an 8-pixel delay to the cursor, 8 is added to compensate the position offset by the OSG.

#### CHPR

| Name | Address   | Description                         | Туре | Reset value |
|------|-----------|-------------------------------------|------|-------------|
| CHPR | BAR0+aa4h | Horizontal cursor position register | R/W  | 0           |

| Bits    | Name    | Description                   | Reset value |
|---------|---------|-------------------------------|-------------|
| [10:0]  | h_end   | Cursor horizontal end point   | 0           |
| [15:11] | -       | Reserved                      | _           |
| [26:16] | h_start | Cursor horizontal start point | 0           |
| [31:27] | _       | Reserved                      | _           |



#### VERTICAL CURSOR POSITION CONTROL REGISTER

This register specifies the vertical start and end points of the cursor. In API, v\_start and v\_size are input as parameters and v\_end is calculated as v\_start + v\_size.

#### CVPR

| Name | Address   | Description                       | Туре | Reset value |
|------|-----------|-----------------------------------|------|-------------|
| CVPR | BAR0+aa8h | Vertical cursor position register | R/W  | 0           |

| Bits    | Name    | Description                 | Reset value |
|---------|---------|-----------------------------|-------------|
| [10:0]  | v_end   | Cursor vertical end point   | 0           |
| [15:11] | _       | Reserved                    | -           |
| [26:16] | v_start | Cursor vertical start point | 0           |
| [31:27] | _       | Reserved                    | _           |



#### CURSOR ADDRESS AND SIZE CONTROL REGISTER

This register controls the cursor address in the memory and the cursor's horizontal size.

#### CASR

| Name | Address   | Description                    | Туре | Reset value |
|------|-----------|--------------------------------|------|-------------|
| CASR | BAR0+aach | Cursor address & size register | R/W  | 0           |

| Bits    | Name | Description                                                                                                                                              | Reset value |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [24:0]  | CBA  | Cursor Base Address                                                                                                                                      | 0           |
|         |      | Base address of the cursor in the memory.                                                                                                                |             |
| [31:25] | CHBS | Cursor Horizontal Byte Size                                                                                                                              | 0           |
|         |      | The actual horizontal byte size of the cursor in the memory. Because the cursor can have a maximum 126 -pixel width, the max value is 64 bytes (7 bits). |             |



#### **CURSOR COLOR INDEX REGISTERS**

These registers are the color loop tables for the cursor. Two colors are packed in a register. A total of 8 registers are used to support 16 colors. The color format is always YCbCr 655.

#### CASR\_n

| Name  | Address            | Description                       | Туре | Reset value |
|-------|--------------------|-----------------------------------|------|-------------|
| CCR_n | BAR0+ab0h<br>+ 4*n | Cursor color register for index n | R/W  | 0           |

| Bits    | Name    | Description                          | Reset value |
|---------|---------|--------------------------------------|-------------|
| [4:0]   | CE115CR | Cr of Color Entry 1/3/5/7/9/11/13/15 | 0           |
| [9:5]   | CE115CB | Cb of Color Entry 1/3/5/7/9/11/13/15 | 0           |
| [15:10] | CE115Y  | Y of Color Entry 1/3/5/7/9/11/13/15  | 0           |
| [20:16] | CE114CR | Cr of Color Entry 0/2/4/6/8/10/12/14 | 0           |
| [25:21] | CE114CB | Cb of Color Entry 0/2/4/6/8/10/12/14 | 0           |
| [31:26] | CE114Y  | Y of Color Entry 0/2/4/6/8/10/12/14  | 0           |

\*n = 0 ~ 7



### GA DESTINATION SIZE CONTROL REGISTER

GA destination size.

### GA\_SIZE

| Name    | Address   | Description                       | Туре | Reset value |
|---------|-----------|-----------------------------------|------|-------------|
| GA_SIZE | BAR0+b04h | BLT hor./ver. pixel size register | R/W  | 0           |

| Bits    | Name  | Description                                            | Reset value |
|---------|-------|--------------------------------------------------------|-------------|
| [11:0]  | BLT_H | Block Height                                           | 0           |
|         |       | Specifies the height (pixel) of the destination block. |             |
| [15:12] | -     | Reserved                                               | _           |
| [27:16] | BLT_W | Block Width                                            | 0           |
|         |       | Specifies the width (pixel) of the destination block.  |             |
| [31:28] | _     | Reserved                                               | _           |

#### GA SYSTEM SOURCE SIZE REGISTER

The horizontal byte size of the system source window that contains the block to transfer to the system memory. This value is required so that the H/W can calculate the start address of each line of the block.

#### GA\_CS1\_0

| Name     | Address   | Description                             | Туре | Reset value |
|----------|-----------|-----------------------------------------|------|-------------|
| GA_CS1_0 | BAR0+b10h | Source1 BLT mode register in cpu memory | R/W  | 0           |

| Bits    | Name   | Description                                                 | Reset value |
|---------|--------|-------------------------------------------------------------|-------------|
| [11:0]  | HBS_SW | Horizontal byte size of the source window on system memory. | 0           |
| [31:12] | —      | Reserved                                                    | -           |



#### GA SYSTEM SOURCE SIZE REGISTER

Start address of the block to local memory. The address should be an address of byte units in the system memory map. Be careful that, the window base address and the target block coordinate for the target block on the window are specified in order to specify a local memory block, while, the block base address is directly specified in order to specify a system memory block.

#### GA\_CS1\_1

| Name     | Address   | Description                             | Туре | Reset value |
|----------|-----------|-----------------------------------------|------|-------------|
| GA_CS1_1 | BAR0+b14h | Source1 BLT start address in cpu memory | R/W  | 0           |

| l | Bits   | Name  | Description                                                              | Reset value |
|---|--------|-------|--------------------------------------------------------------------------|-------------|
|   | [31:0] | BA_SW | Base address of block of the source window on system memory to transfer. | 0           |



#### GA DESTINATION WINDOW HORIZONTAL SIZE REGISTER

The byte size of the vertical line of the destination window. Because a block transfer is performed against the specified block inside a window and a window varies in the screen area, the horizontal byte size of (not the block but) the window to which the block belongs should be specified in order to know the start address of each line of the block.

#### GA\_DST\_0

| Name     | Address   | Description                                   | Туре | Reset value |
|----------|-----------|-----------------------------------------------|------|-------------|
| GA_DST_0 | BAR0+b30h | Destination BLT mode register in local memory | R/W  | 0           |

| Bits    | Name | Description                      | Reset value |
|---------|------|----------------------------------|-------------|
| [11:0]  | DHBS | Destination horizontal byte size | 0           |
| [31:12] | —    | Reserved                         | _           |



#### GA DESTINATION WINDOW BASE ADDRESS REGISTER

Base address of the DST window in the local memory. It is a 128-bit word address. While the system block base address represents the address on the system memory map, it represents the offset to the local memory base address.

#### GA\_DST\_1

| Name     | Address   | Description                                     | Туре | Reset value |
|----------|-----------|-------------------------------------------------|------|-------------|
| GA_DST_1 | BAR0+b34h | Destination window base address in local memory | R/W  | 0           |

| Bits    | Name    | Description             | Reset value |
|---------|---------|-------------------------|-------------|
| [20:0]  | DSTW_BA | DST window base address | 0           |
| [31:21] | _       | Reserved                | -           |

#### GA DESTINATION WINDOW BASE ADDRESS REGISTER

This register represents the vertical start and horizontal start points of the destination block.

#### GA\_DST\_2

| Name     | Address   | Description                                 | Туре | Reset value |
|----------|-----------|---------------------------------------------|------|-------------|
| GA_DST_2 | BAR0+b38h | Destination BLT start point in local memory | R/W  | 0           |

| Bits    | Name | Description                                                                                                                                         | Reset value |
|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [10:0]  | DBVS | Destination Block Vertical Start<br>The y coordinate of the start point (upper left point) of the<br>destination block on the destination window.   | 0           |
| [15:11] | -    | Reserved                                                                                                                                            | _           |
| [26:16] | DBHS | Destination Block Horizontal Start<br>The x coordinate of the start point (upper left point) of the<br>destination block on the destination window. | 0           |
| [31:27] | _    | Reserved                                                                                                                                            | _           |



#### GA FORMAT SELECTION CONROL REGISTER

This register controls the starting of the BitBLT operation. BitBLT starts when a BitBLT format is written to the format flag.

#### **GA\_START**

| Name     | Address   | Description        | Туре | Reset value |
|----------|-----------|--------------------|------|-------------|
| GA_START | BAR0+ba8h | BLT start register | R/W  | 0           |

| Bits   | Name       | Description      | Reset value |
|--------|------------|------------------|-------------|
| [0]    | BLT_FORMAT | BLT format       | 0           |
|        |            | 0 = 8 bit/pixel  |             |
|        |            | 1 = 16 bit/pixel |             |
| [31:1] | _          | Reserved         | _           |



#### GA RESET CONTROL REGISTER

This register is used to stop the BitBLT operation being performed. For example, in an interactive application, if the BitBLT being performed is too large the operation can be stopped with this register. Once this register is set, the following BitBLT commands are also masked and the BitBLT engine performs no operation and writes the command finish signal to the GA\_STAT register. The CPU has the responsibility to clear the GA reset bit once it is set.

#### GA\_RST

| Name   | Address   | Description       | Туре | Reset value |
|--------|-----------|-------------------|------|-------------|
| GA_RST | BAR0+bach | GA reset register | R/W  | 0           |

| Bits   | Name   | Description | Reset value |
|--------|--------|-------------|-------------|
| [0]    | GA_RST | GA reset    | 0           |
| [31:1] | _      | Reserved    | -           |



#### GA STATUS REGISTER

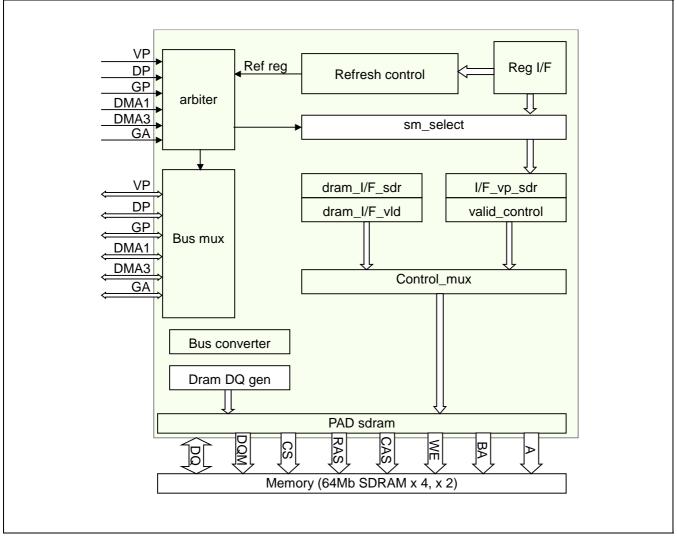
This register indicates whether the GA is idle or busy.

# GA\_STAT

| Name    | Address   | Description        | Туре | Reset value |
|---------|-----------|--------------------|------|-------------|
| GA_STAT | BAR0+bb0h | GA status register | R/W  | 0           |

| Bits   | Name    | Description | Reset value |
|--------|---------|-------------|-------------|
| [0]    | GA_STAT | GA status   | 0           |
|        |         | 0 = GA idle |             |
|        |         | 1 = GA busy |             |
| [31:1] | _       | Reserved    | _           |




NOTE





**8.1 OVERVIEW** 

#### Architecture



#### Figure 8-1 MMU diagram



### 8.2 Feature

- M SDRAM Memory Support (32bit Bus-SDRAM)
- Multiple Memory Configuration Support (x4 and x2 modes supported)
- CAS Latency 3 Support (135MHz target)
- Up to 11 Clients Supported
- Twofold Arbitration Support for Real-Time Service and Non-Real-Time Service
- Guaranteed Maximum Waiting Time (165) Clock

### 8.3 Operating Flow

SAM2K-Lite MMU uses SDRAM as memory. This memory requires initialization and MMU performs that initialization. During initialization of the memory, the system and the MMU divide the work for which they will take charge. Thus, the system supplies a stable voltage and clock, and when a specific time interval (about 200 usec) has passed the external CPU sets the environment registers inside the MMU and then the MMU performs the remaining initializations.

#### For SDRAM

1. Supplies the power and clock. CKE="H" (Provided by @System), DQM="H" (@mmu), NOP (@mmu)

- 2. Supplies stable power and clock (@system); NOP (@mmu)
- => The system sets the mmu\_conf\_done register. (mmu\_reg: 39th register)
- 3. Pre-Charges all Banks.
- 4. Auto-Refreshes more than twice.
- 5. Performs MRS.



# BASE\_ADDR\_0

.

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_0 | BAR0+c00h | Base address register 0, 1 for MPEG memory | R/W  | 0x000       |
|             |           | 0: MPEG/T/Y/I, 1: MPEG/T/Y/P               |      | 0x088       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_TYI | MPEG/T/Y/I (12:LSB) | 0x000       |
| [23:12] | M_TYP | MPEG/T/Y/P (0:LSB)  | 0x088       |
| [31:24] | —     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_1

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_1 | BAR0+c04h | Base address register 2, 3 for MPEG memory | R/W  | 0x110       |
|             |           | 2: MPEG/T/Y/B0, 3: MPEG/T/Y/B1             |      | 0x198       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_TYB0 | MPEG/T/Y/B0 (12:LSB) | 0x110       |
| [23:12] | M_TYB1 | MPEG/T/Y/B1 (0:LSB)  | 0x198       |
| [31:24] | —      | Not used             | _           |



# BASE\_ADDR\_4

.

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_4 | BAR0+c10h | Base address register 8, 9 for MPEG memory | R/W  | 0x440       |
|             |           | 8: MPEG/T/C/I, 9: MPEG/T/C/P               |      | 0x484       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_TCI | MPEG/T/C/I (12:LSB) | 0x440       |
| [23:12] | M_TCP | MPEG/T/C/P (0:LSB)  | 0x484       |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_5

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_5 | BAR0+c14h | Base address register 10, 11 for MPEG memory | R/W  | 0x4C8       |
|             |           | 10: MPEG/T/C/B0, 11: MPEG/T/C/B1             |      | 0x50C       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_TCB0 | MPEG/T/C/B0 (12:LSB) | 0x4C8       |
| [23:12] | M_TCB1 | MPEG/T/C/B1 (0:LSB)  | 0x50C       |
| [31:24] | _      | Not used             | _           |



### BASE\_ADDR\_8

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_8 | BAR0+c20h | Base address register 16, 17 for MPEG memory | R/W  | 0x220       |
|             |           | 16: MPEG/B/Y/I, 17: MPEG/B/Y/P               |      | 0x2A8       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_BYI | MPEG/B/Y/I (12:LSB) | 0x220       |
| [23:12] | M_BYP | MPEG/B/Y/P (0:LSB)  | 0x2A8       |
| [31:24] | —     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_9

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_9 | BAR0+c24h | Base address register 18, 19 for MPEG memory | R/W  | 0x330       |
|             |           | 18: MPEG/B/Y/B0, 19: MPEG/B/Y/B1             |      | 0x3B8       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_BYB0 | MPEG/B/Y/B0 (12:LSB) | 0x330       |
| [23:12] | M_BYB1 | MPEG/B/Y/B1 (0:LSB)  | 0x3B8       |
| [31:24] | _      | Not used             | -           |



### BASE\_ADDR\_12

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_12 | BAR0+c30h | Base address register 24, 25 for MPEG memory | R/W  | 0x550       |
|              |           | 24: MPEG/B/C/I, 25: MPEG/B/C/P               |      | 0x594       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_BCI | MPEG/B/C/I (12:LSB) | 0x550       |
| [23:12] | M_BCP | MPEG/B/C/P (0:LSB)  | 0x594       |
| [31:24] | _     | Not used            | -           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_13

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_13 | BAR0+c34h | Base address register 26, 27 for MPEG memory | R/W  | 0x5d8       |
|              |           | 26: MPEG/B/C/B0, 27: MPEG/B/C/B1             |      | 0x61C       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_BCB0 | MPEG/B/C/B0 (12:LSB) | 0x5d8       |
| [23:12] | M_BCB1 | MPEG/B/C/B1 (0:LSB)  | 0x61C       |
| [31:24] | _      | Not used             | _           |

### BASE\_ADDR\_32

.

| Name         | Address   | Description                                | Туре | Reset value |
|--------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_32 | BAR0+c80h | Base address register 64, 65 for DP memory | R/W  | 0           |
|              |           | 64: 0x000, 65: external memory 1           |      | 0x2C0       |

| Bits    | Name  | Description                                            | Reset value |
|---------|-------|--------------------------------------------------------|-------------|
|         |       | External/0 (12:LSB)                                    |             |
| [11:0]  | EXT_0 | recommend value : 0x000                                | 0           |
|         |       | absolute base address register of modules except VP,DP |             |
| [23:12] | EXT_1 | External/1 (0:LSB)                                     | 0x2C0       |
| [31:24] | _     | Not used                                               | _           |

# **BASE ADDRESS REGISTER**

#### BASE\_ADDR\_33

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_33 | BAR0+c84h | Base address register 66, 67 for DP memory   | R/W  | x2ED        |
|              |           | 66: external memory 2, 67: external memory 3 |      | x31A        |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_2 | External/2 (12:LSB) | x2ED        |
| [23:12] | EXT_3 | External/3 (0:LSB)  | x31A        |
| [31:24] | —     | Not used            | _           |



### BASE\_ADDR\_34

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_34 | BAR0+c88h | Base address register 68, 69 for DP memory   | R/W  | x347        |
|              |           | 68: external memory 4, 69: external memory 5 |      | x347        |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_4 | External/4 (12:LSB) | x347        |
| [23:12] | EXT_5 | External/5 (0:LSB)  | x374        |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

#### BASE\_ADDR\_35

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_35 | BAR0+c8ch | Base address register 70, 71 for DP memory   | R/W  | 0           |
|              |           | 70: external memory 6, 71: external memory 7 |      |             |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_6 | External/6 (12:LSB) | x3A1        |
| [23:12] | EXT_7 | External/7 (0:LSB)  | 0           |
| [31:24] | _     | Not used            | _           |

### BASE\_ADDR\_36

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_36 | BAR0+c90h | Base address register 72, 73 for DP memory   | R/W  | 0           |
|              |           | 72: external memory 8, 73: external memory 9 |      |             |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_8 | External/8 (12:LSB) | 0           |
| [23:12] | EXT_9 | External/9 (0:LSB)  | 0           |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_37

| Name         | Address   | Description                                    | Туре | Reset value |
|--------------|-----------|------------------------------------------------|------|-------------|
| BASE_ADDR_37 | BAR0+c94h | Base address register 66, 67 for DP memory     | R/W  | 0           |
|              |           | 74: external memory 10, 75: external memory 11 |      |             |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | EXT_10 | External/10 (12:LSB) | 0           |
| [23:12] | EXT_11 | External/11 (0:LSB)  | 0           |
| [31:24] | _      | Not used             | -           |



# **REFRESH COUNTER REGISTER**

# **REFRESH\_COUNT**

| Name          | Address   | Description     | Туре | Reset value |
|---------------|-----------|-----------------|------|-------------|
| REFRESH_COUNT | BAR0+c98h | Refresh Counter | R/W  | 0x3FF       |

| Bits    | Name | Description                               | Reset value |
|---------|------|-------------------------------------------|-------------|
|         |      | DRAM Refresh rate count value             |             |
| [10:0]  |      | (64ms/4096=15.6us needed                  | 0x3FF       |
|         |      | => 15.6us/14.8ns=1054 under, clock needed |             |
|         |      | SDRAM ADDR Delay Control                  |             |
|         |      | 0 = 0ns $4 = 4ns$                         |             |
| [13:11] |      | 1 = 2ns 5 = 5ns                           | 0           |
|         |      | 2 = 2ns, 6 = 6ns                          |             |
|         |      | 3 = 3ns, 7 = 7ns                          |             |
|         |      | SDRAM BA Delay Control                    |             |
|         |      | 0 = 0ns, $4 = 4$ ns                       |             |
| [16:14] |      | 1 = 2ns, 5 = 5ns                          | 0           |
|         |      | 2 = 2ns, 6 = 6ns                          |             |
|         |      | 3 = 3ns, 7 = 7ns                          |             |
|         |      | SDRAM CS Delay Control                    |             |
|         |      | 0 = 0ns, 4: 4ns                           |             |
| [19:17] |      | 1 = 2ns, 5: 5ns                           | 0           |
|         |      | 2 = 2ns, 6: 6ns                           |             |
|         |      | 3 = 3ns, 7: 7ns                           |             |
| [31:20] | _    | Not used                                  | _           |



# **MMU CONFIGURATION REGISTER**

# MMU\_CONF

| Name     | Address   | Description                | Туре | Reset value |
|----------|-----------|----------------------------|------|-------------|
| MMU_CONF | BAR0+c9ch | MMU Configuration Register | R/W  | ???         |

| Bits    | Name      | Description                                                   | Reset value |
|---------|-----------|---------------------------------------------------------------|-------------|
|         | CONF_DONE | Configuration Done Bit                                        |             |
| [0]     |           | 0 = MMU Configuration is not done.                            | 0           |
|         |           | 1 = MMU Configuration is done.                                |             |
|         | RVLDLY    | Read Valid Delay Control for Bus Converting                   |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [3:1]   |           | 1 = 2ns 5 = 3ns                                               | 2           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | DQMDLY    | SDRAM DQM Delay Control                                       |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [6:4]   |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | ENBDLY    | SDRAM DQ PAD Enable Delay Control                             |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [9:7]   |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | DQODLY    | SDRAM DQ Delay Control                                        |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [12:10] |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | CTLDLY    | SDRAM Control Signal(CKE,CS,RAS,CAS,WE,BA,A)<br>Delay Control |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [15:13] |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |



# MMU\_CONF(continued)

| Bits    | Name      | Description                                   | Reset value |
|---------|-----------|-----------------------------------------------|-------------|
|         | CKODLY    | SDRAM DQO Latch Clock Delay Control           |             |
|         |           | 0 = 0ns $4 = !ck$                             |             |
| [18:16] |           | 1 = 1ns 5 = !ck+1ns                           | 0           |
|         |           | 2 = 2ns, 6 = !ck+2ns                          |             |
|         |           | 3 = 3ns, 7 = !ck+3ns                          |             |
|         | CKIDLY    | SDRAM DQI Latch Clock Delay Control           |             |
|         |           | 0 = 0ns $4 = !ck$                             |             |
| [21:19] |           | 1 = 1ns 5 = !ck+1ns                           | 0           |
|         |           | 2 = 2ns, 6 = !ck+2ns                          |             |
|         |           | 3 = 3ns, 7 = !ck+3ns                          |             |
| [22]    | SZRECOVER | State Machine Size Recovery in case i_XM_sz=0 | 0           |
| [22]    |           | 1: Enable(if sz:0->2), 0: Disable             | 0           |
| [00]    | ARBSEL    | Arbiter State-Machine Select                  | 0           |
| [23]    |           | 1: Priority-Based 0: FCFS                     | 0           |
| [31:24] | _         | Not used                                      | _           |



# **REFRESH CYCLE CONTROL REGISTER**

# **REF\_CYCLE**

•

| Name      | Address   | Description            | Туре | Reset value |
|-----------|-----------|------------------------|------|-------------|
| REF_CYCLE | BAR0+ca0h | Refresh Cycle Register | R/W  | 0xA         |

| Bits   | Name               | Description                                                                    | Reset value |
|--------|--------------------|--------------------------------------------------------------------------------|-------------|
| [3:0]  | Refresh_Cycle_Time | Memory Refresh Cycle Time (tRFC/tCK) (in clock unit)<br>=> tRFC:72ns/tCK:7.4ns | 0xA         |
| [31:4] | _                  | Not used                                                                       | -           |

# HALT LIMIT CONTROL REGISTER

# HALT\_LIMIT

| Name       | Address   | Description         | Туре | Reset value |
|------------|-----------|---------------------|------|-------------|
| HALT_LIMIT | BAR0+ca4h | Halt Limit Register | R/W  | 0x64        |

| Bits    | Name                   | Description                                | Reset value |
|---------|------------------------|--------------------------------------------|-------------|
| [9:0]   | ARBITER_HALT_LIM<br>IT | ARBITER HALT Decision Time (in clock unit) | 0x64        |
| [31:10] | -                      | Not used                                   | _           |



### **MMU ERROR STATUS INFORMATION REGISTER**

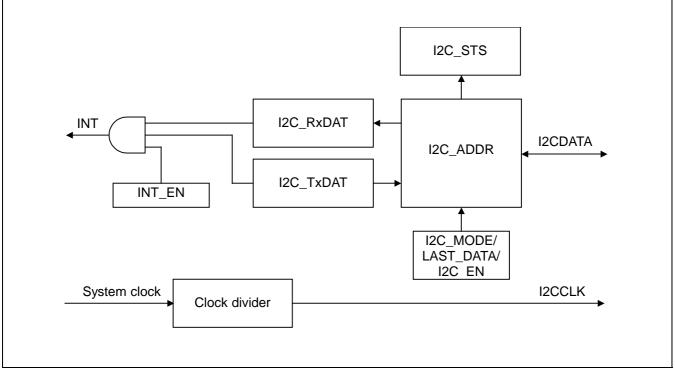
### MMU\_ERR\_INFO

| Name         | Address   | Description                           | Туре | Reset value |
|--------------|-----------|---------------------------------------|------|-------------|
| MMU_ERR_INFO | BAR0+ca8h | MMU Error Status Information Register | R    | 0           |

| Bits   | Name         | Description                                          | Reset value |
|--------|--------------|------------------------------------------------------|-------------|
| [0]    | SM_SEL_ERROR | 0 = no error<br>1 = VP State-Machine Selection Error | 0           |
| [1]    | ARBITER_HALT | 0 = no error<br>1 = Arbitration Error                | 0           |
| [5:2]  | HALT_INDEX   | Arbitration Error Client Index Number                | 0           |
| [6]    | SIZE_ZERO    | 0 = no error<br>1 = State Machine Size Zero Error    | 0           |
| [31:7] | _            | Not used                                             | _           |



NOTE






#### 9.1 OVERVIEW

The S5H2000X has a built-in IIC to enable serial interface with an external source. The IIC supports master transmitter and master receiver modes. The clock receives clock signals from the system clock (67.5MHz) and branches them to the slave.

### Architecture



#### Figure 9-1 IIC block diagram



# BASE\_ADDR\_0

.

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_0 | BAR0+c00h | Base address register 0, 1 for MPEG memory | R/W  | 0x000       |
|             |           | 0: MPEG/T/Y/I, 1: MPEG/T/Y/P               |      | 0x088       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_TYI | MPEG/T/Y/I (12:LSB) | 0x000       |
| [23:12] | M_TYP | MPEG/T/Y/P (0:LSB)  | 0x088       |
| [31:24] | —     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_1

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_1 | BAR0+c04h | Base address register 2, 3 for MPEG memory | R/W  | 0x110       |
|             |           | 2: MPEG/T/Y/B0, 3: MPEG/T/Y/B1             |      | 0x198       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_TYB0 | MPEG/T/Y/B0 (12:LSB) | 0x110       |
| [23:12] | M_TYB1 | MPEG/T/Y/B1 (0:LSB)  | 0x198       |
| [31:24] | —      | Not used             | -           |



# BASE\_ADDR\_4

.

| Name        | Address   | Description                                | Туре | Reset value |
|-------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_4 | BAR0+c10h | Base address register 8, 9 for MPEG memory | R/W  | 0x440       |
|             |           | 8: MPEG/T/C/I, 9: MPEG/T/C/P               |      | 0x484       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_TCI | MPEG/T/C/I (12:LSB) | 0x440       |
| [23:12] | M_TCP | MPEG/T/C/P (0:LSB)  | 0x484       |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_5

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_5 | BAR0+c14h | Base address register 10, 11 for MPEG memory | R/W  | 0x4C8       |
|             |           | 10: MPEG/T/C/B0, 11: MPEG/T/C/B1             |      | 0x50C       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_TCB0 | MPEG/T/C/B0 (12:LSB) | 0x4C8       |
| [23:12] | M_TCB1 | MPEG/T/C/B1 (0:LSB)  | 0x50C       |
| [31:24] | _      | Not used             | _           |



### BASE\_ADDR\_8

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_8 | BAR0+c20h | Base address register 16, 17 for MPEG memory | R/W  | 0x220       |
|             |           | 16: MPEG/B/Y/I, 17: MPEG/B/Y/P               |      | 0x2A8       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_BYI | MPEG/B/Y/I (12:LSB) | 0x220       |
| [23:12] | M_BYP | MPEG/B/Y/P (0:LSB)  | 0x2A8       |
| [31:24] | —     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_9

•

| Name        | Address   | Description                                  | Туре | Reset value |
|-------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_9 | BAR0+c24h | Base address register 18, 19 for MPEG memory | R/W  | 0x330       |
|             |           | 18: MPEG/B/Y/B0, 19: MPEG/B/Y/B1             |      | 0x3B8       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_BYB0 | MPEG/B/Y/B0 (12:LSB) | 0x330       |
| [23:12] | M_BYB1 | MPEG/B/Y/B1 (0:LSB)  | 0x3B8       |
| [31:24] | _      | Not used             | -           |



### BASE\_ADDR\_12

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_12 | BAR0+c30h | Base address register 24, 25 for MPEG memory | R/W  | 0x550       |
|              |           | 24: MPEG/B/C/I, 25: MPEG/B/C/P               |      | 0x594       |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | M_BCI | MPEG/B/C/I (12:LSB) | 0x550       |
| [23:12] | M_BCP | MPEG/B/C/P (0:LSB)  | 0x594       |
| [31:24] | _     | Not used            | -           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_13

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_13 | BAR0+c34h | Base address register 26, 27 for MPEG memory | R/W  | 0x5d8       |
|              |           | 26: MPEG/B/C/B0, 27: MPEG/B/C/B1             |      | 0x61C       |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | M_BCB0 | MPEG/B/C/B0 (12:LSB) | 0x5d8       |
| [23:12] | M_BCB1 | MPEG/B/C/B1 (0:LSB)  | 0x61C       |
| [31:24] | _      | Not used             | -           |



### BASE\_ADDR\_32

.

| Name         | Address   | Description                                | Туре | Reset value |
|--------------|-----------|--------------------------------------------|------|-------------|
| BASE_ADDR_32 | BAR0+c80h | Base address register 64, 65 for DP memory | R/W  | 0           |
|              |           | 64: 0x000, 65: external memory 1           |      | 0x2C0       |

| Bits    | Name  | Description                                            | Reset value |
|---------|-------|--------------------------------------------------------|-------------|
|         |       | External/0 (12:LSB)                                    |             |
| [11:0]  | EXT_0 | recommend value : 0x000                                | 0           |
|         |       | absolute base address register of modules except VP,DP |             |
| [23:12] | EXT_1 | External/1 (0:LSB)                                     | 0x2C0       |
| [31:24] | _     | Not used                                               | _           |

# **BASE ADDRESS REGISTER**

#### BASE\_ADDR\_33

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_33 | BAR0+c84h | Base address register 66, 67 for DP memory   | R/W  | x2ED        |
|              |           | 66: external memory 2, 67: external memory 3 |      | x31A        |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_2 | External/2 (12:LSB) | x2ED        |
| [23:12] | EXT_3 | External/3 (0:LSB)  | x31A        |
| [31:24] | _     | Not used            | -           |



### BASE\_ADDR\_34

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_34 | BAR0+c88h | Base address register 68, 69 for DP memory   | R/W  | x347        |
|              |           | 68: external memory 4, 69: external memory 5 |      | x347        |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_4 | External/4 (12:LSB) | x347        |
| [23:12] | EXT_5 | External/5 (0:LSB)  | x374        |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

# BASE\_ADDR\_35

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_35 | BAR0+c8ch | Base address register 70, 71 for DP memory   | R/W  | 0           |
|              |           | 70: external memory 6, 71: external memory 7 |      |             |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_6 | External/6 (12:LSB) | x3A1        |
| [23:12] | EXT_7 | External/7 (0:LSB)  | 0           |
| [31:24] | _     | Not used            | -           |

### BASE\_ADDR\_36

.

| Name         | Address   | Description                                  | Туре | Reset value |
|--------------|-----------|----------------------------------------------|------|-------------|
| BASE_ADDR_36 | BAR0+c90h | Base address register 72, 73 for DP memory   | R/W  | 0           |
|              |           | 72: external memory 8, 73: external memory 9 |      |             |

| Bits    | Name  | Description         | Reset value |
|---------|-------|---------------------|-------------|
| [11:0]  | EXT_8 | External/8 (12:LSB) | 0           |
| [23:12] | EXT_9 | External/9 (0:LSB)  | 0           |
| [31:24] | _     | Not used            | _           |

# **BASE ADDRESS REGISTER**

### BASE\_ADDR\_37

| Name         | Address   | Description                                    | Туре | Reset value |
|--------------|-----------|------------------------------------------------|------|-------------|
| BASE_ADDR_37 | BAR0+c94h | Base address register 66, 67 for DP memory     | R/W  | 0           |
|              |           | 74: external memory 10, 75: external memory 11 |      |             |

| Bits    | Name   | Description          | Reset value |
|---------|--------|----------------------|-------------|
| [11:0]  | EXT_10 | External/10 (12:LSB) | 0           |
| [23:12] | EXT_11 | External/11 (0:LSB)  | 0           |
| [31:24] | _      | Not used             | -           |



# **REFRESH COUNTER REGISTER**

# **REFRESH\_COUNT**

.

| Name          | Address   | Description     | Туре | Reset value |
|---------------|-----------|-----------------|------|-------------|
| REFRESH_COUNT | BAR0+c98h | Refresh Counter | R/W  | 0x3FF       |

| Bits    | Name | Description                        | Reset value |
|---------|------|------------------------------------|-------------|
|         |      | DRAM Refresh rate count value      |             |
| [10:0]  |      | (64ms/4096=15.6us needed           | 0x3FF       |
|         |      | => 15.6us/14.8ns=1054 clock needed |             |
|         |      | SDRAM ADDR Delay Control           |             |
|         |      | 0 = 0ns $4 = 4$ ns                 |             |
| [13:11] |      | 1 = 2ns 5 = 5ns                    | 0           |
|         |      | 2 = 2ns, 6 = 6ns                   |             |
|         |      | 3 = 3ns, 7 = 7ns                   |             |
|         |      | SDRAM BA Delay Control             |             |
|         |      | 0 = 0ns, $4 = 4$ ns                |             |
| [16:14] |      | 1 = 2ns, 5 = 5ns                   | 0           |
|         |      | 2 = 2ns, 6 = 6ns                   |             |
|         |      | 3 = 3ns, 7 = 7ns                   |             |
|         |      | SDRAM CS Delay Control             |             |
|         |      | 0 = 0ns, 4: 4ns                    |             |
| [19:17] |      | 1 = 2ns, 5: 5ns                    | 0           |
|         |      | 2 = 2ns, 6: 6ns                    |             |
|         |      | 3 = 3ns, 7: 7ns                    |             |
| [31:20] |      | Not used                           |             |

# **MMU CONFIGURATION REGISTER**

# MMU\_CONF

.

| Name     | Address   | Description                | Туре | Reset value |
|----------|-----------|----------------------------|------|-------------|
| MMU_CONF | BAR0+c9ch | MMU Configuration Register | R/W  | ???         |

| Bits    | Name      | Description                                                   | Reset value |
|---------|-----------|---------------------------------------------------------------|-------------|
|         | CONF_DONE | Configuration Done Bit                                        |             |
| [0]     |           | 0 = MMU Configuration is not done.                            | 0           |
|         |           | 1 = MMU Configuration is done.                                |             |
|         | RVLDLY    | Read Valid Delay Control for Bus Converting                   |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [3:1]   |           | 1 = 2ns 5 = 3ns                                               | 2           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | DQMDLY    | SDRAM DQM Delay Control                                       |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [6:4]   |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | ENBDLY    | SDRAM DQ PAD Enable Delay Control                             |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [9:7]   |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | DQODLY    | SDRAM DQ Delay Control                                        |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [12:10] |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |
|         | CTLDLY    | SDRAM Control Signal(CKE,CS,RAS,CAS,WE,BA,A)<br>Delay Control |             |
|         |           | 0 = 0ns 4 = 1ns                                               |             |
| [15:13] |           | 1 = 2ns 5 = 3ns                                               | 0           |
|         |           | 2 = 4ns, 6 = 5ns                                              |             |
|         |           | 3 = 6ns, 7 = 7ns                                              |             |



# MMU\_CONF(continued)

| Bits    | Name      | Description                                   | Reset value |
|---------|-----------|-----------------------------------------------|-------------|
|         | CKODLY    | SDRAM DQO Latch Clock Delay Control           |             |
|         |           | 0 = 0ns $4 = !ck$                             |             |
| [18:16] |           | 1 = 1ns 5 = !ck+1ns                           | 0           |
|         |           | 2 = 2ns, 6 = !ck+2ns                          |             |
|         |           | 3 = 3ns, 7 = !ck+3ns                          |             |
|         | CKIDLY    | SDRAM DQI Latch Clock Delay Control           |             |
|         |           | 0 = 0ns $4 = !ck$                             |             |
| [21:19] |           | 1 = 1ns 5 = !ck+1ns                           | 0           |
|         |           | 2 = 2ns, 6 = !ck+2ns                          |             |
|         |           | 3 = 3ns, 7 = !ck+3ns                          |             |
| [22]    | SZRECOVER | State Machine Size Recovery in case i_XM_sz=0 | 0           |
| [22]    |           | 1: Enable(if sz:0->2), 0: Disable             | 0           |
| [00]    | ARBSEL    | Arbiter State-Machine Select                  | 0           |
| [23]    |           | 1: Priority-Based 0: FCFS                     | 0           |
| [31:24] | _         | Not used                                      | _           |



# **REFRESH CYCLE CONTROL REGISTER**

# **REF\_CYCLE**

•

| Name      | Address   | Description            | Туре | Reset value |
|-----------|-----------|------------------------|------|-------------|
| REF_CYCLE | BAR0+ca0h | Refresh Cycle Register | R/W  | 0xA         |

| Bits   | Name               | Description                                                                    | Reset value |
|--------|--------------------|--------------------------------------------------------------------------------|-------------|
| [3:0]  | Refresh_Cycle_Time | Memory Refresh Cycle Time (tRFC/tCK) (in clock unit)<br>=> tRFC:72ns/tCK:7.4ns | 0xA         |
| [31:4] | —                  | Not used                                                                       | -           |

# HALT LIMIT CONTROL REGISTER

# HALT\_LIMIT

.

| Name       | Address   | Description         | Туре | Reset value |
|------------|-----------|---------------------|------|-------------|
| HALT_LIMIT | BAR0+ca4h | Halt Limit Register | R/W  | 0x64        |

| Bits    | Name                   | Description                                | Reset value |
|---------|------------------------|--------------------------------------------|-------------|
| [9:0]   | ARBITER_HALT_LIM<br>IT | ARBITER HALT Decision Time (in clock unit) | 0x64        |
| [31:10] | _                      | Not used                                   | _           |



# **MMU ERROR STATUS INFORMATION REGISTER**

# MMU\_ERR\_INFO

.

| Name         | Address   | Description                           | Туре | Reset value |
|--------------|-----------|---------------------------------------|------|-------------|
| MMU_ERR_INFO | BAR0+ca8h | MMU Error Status Information Register | R    | 0           |

| Bits   | Name         | Description                                          | Reset value |
|--------|--------------|------------------------------------------------------|-------------|
| [0]    | SM_SEL_ERROR | 0 = no error<br>1 = VP State-Machine Selection Error | 0           |
| [1]    | ARBITER_HALT | 0 = no error<br>1 = Arbitration Error                | 0           |
| [5:2]  | HALT_INDEX   | Arbitration Error Client Index Number                | 0           |
| [6]    | SIZE_ZERO    | 0 = no error<br>1 = State Machine Size Zero Error    | 0           |
| [31:7] | _            | Not used                                             | -           |



NOTE



# **10** AUDIO

.

# AUDIO DMA CONTROL REISTER (PSA0)

### PCM DMA Source Address Register(LDCR\_PSA0)

| Name      | Address   | Description                        | Туре | Reset value |
|-----------|-----------|------------------------------------|------|-------------|
| LDCR_PSA0 | BAR0+100h | PCI Start Address to read PCM data | R/W  | 0           |

| Bits   | Name | Description                              | Reset value |
|--------|------|------------------------------------------|-------------|
| [21.0] | PSA0 | This is source address for PCM Read-DMA. | 0           |
| [31:0] |      | This is PCI address of system memory.    | 0           |

### Stream DMA Source Address Register(LDCR\_PSA1)

| Name      | Address   | Description                           | Туре | Reset value |
|-----------|-----------|---------------------------------------|------|-------------|
| LDCR_PSA1 | BAR0+104h | PCI Start Address to read STREAM data | R/W  | 0           |

| Bits   | Name | Description                                 | Reset value |
|--------|------|---------------------------------------------|-------------|
| [24,0] | PSA1 | This is source address for STREAM Read-DMA. | 0           |
| [31:0] |      | This is PCI address of system memory.       | 0           |

### Transfer Word Count Register for PCM DMA(LDCR\_TWC0)

| Name      | Address   | Description                              | Туре | Reset value |
|-----------|-----------|------------------------------------------|------|-------------|
| LDCR_TWC0 | BAR0+108h | Transfer word count register for PCM DMA | R/W  | 0           |

| Bits    | Name | Description                     | Reset value |
|---------|------|---------------------------------|-------------|
| [15:0]  | TWC0 | Word (32bits) data size for PCM | 0           |
| [31:16] | _    | Reserved                        | _           |



| Transfer Word Count Register for Stream | n DMA(LDCR_TWC1) |
|-----------------------------------------|------------------|
|-----------------------------------------|------------------|

|                  |            | Description                           | Type | Reset value |
|------------------|------------|---------------------------------------|------|-------------|
| LDCR_TWC1 BAR0+1 | Ch Transfe | er word count register for STREAM DMA | R/W  | 0           |

| Bits    | Name | Description                        | Reset value |
|---------|------|------------------------------------|-------------|
| [15:0]  | TWC1 | Word (32bits) data size for stream | 0           |
| [31:16] | —    | Reserved                           | -           |

# AUDIO DMA Auxiliary Control Register(LDCR\_AxC)

| Name     | Address   | Description                          | Туре | Reset value |
|----------|-----------|--------------------------------------|------|-------------|
| LDCR_AxC | BAR0+110h | Audio DMA auxiliary Control Register | R/W  | 0           |

| Bits   | Name        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reset value |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0]  | MIN_BS_P    | Minimum Block Size for the PCM<br>It is the size of data that the audio DMA requests the PCI<br>bus to transfer. When set to 4, the size of a frame that<br>the PCI transfers is a 4-word unit. If the size of data<br>transferred from the DMA is 64 bytes, LDCR_TWC0 is<br>16, and MIN_BS_P is 4, the DMA requests the PCI bus 4<br>times, 4-words at a time.<br>The range of values is 1 ~ 8. The unit is 1 word (4 bytes).<br>This value is cleared to 0 (LDCR_AxC[16]=0) when the<br>DMA operation finishes. Therefore, the user has to write<br>the desired value whenever he starts the DMA. | 0           |
| [15:8] | MIN_BS_S    | Minimum Block Size for Stream<br>It is the size of data that the audio DMA requests the PCI<br>bus to transfer. When set to 4, the size of a frame that<br>the PCI transfers is a 4-word unit. If the size of data to<br>transmit from the DMA is 64 bytes, LDCR_TWC1 is 16,<br>and MIN_BS_S is 4, the DMA requests the PCI bus 4<br>times, 4-words at a time.<br>The range of values is 1 ~ 8. The unit is 1 word (4 bytes).<br>This value is cleared to 0 (LDCR_AxC[17]=0) when the<br>DMA operation finishes. Therefore, the user has to write<br>the desired value whenever he starts the DMA.  | 0           |
| [16]   | START_DMA_P | Starts DMA for PCM<br>0 = Finishes the PCM DMA<br>1 = Starts and operates the PCM DMA<br>When set to 1, PCM DMA starts. When the DMA<br>operation finishes, it is cleared to 0 automatically.                                                                                                                                                                                                                                                                                                                                                                                                       | 0           |



|         | Start DMA for STREAM | 0                                                                                                    |   |
|---------|----------------------|------------------------------------------------------------------------------------------------------|---|
|         |                      | 0 = Ends or finishes STREAM DMA                                                                      |   |
| [17]    | START_DMA_S          | 1 = Starts and operates STREAM DMA                                                                   |   |
|         |                      | When set to 1, STREAM DMA starts. When the DMA operation finishes, it is cleared to 0 automatically. |   |
| [31:18] | _                    | Reserved                                                                                             | _ |

# Transferd Data Size for PCM Register (LDCR\_XWC0)

| Name      | Address   | Description                   | Туре | Reset value |
|-----------|-----------|-------------------------------|------|-------------|
| LDCR_XWC0 | BAR0+114h | Transferred Data Size for PCM | R    | 0           |

| Bits    | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reset value |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [15:0]  | XWC0 | Transferred Word Count Register for PCM (Read-Only)<br>When the total stream DMA transfer size and<br>LDCR_TWC0 are transferred, the transfer size is written<br>to this register. It is read-only and should be read after<br>the DMA operation is finished (LDCR_AxC[16]=0). The<br>transferred size cannot be known during the DMA<br>operation, because it is different from other DMA<br>operations in that the total transfer size is accumulated<br>with each transfer unit. | 0           |
| [31:16] | _    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _           |

.

### Transferd Data Size for Stream Register (LDCR\_XWC1)

| Name      | Address   | Description                      | Туре | Reset value |
|-----------|-----------|----------------------------------|------|-------------|
| LDCR_XWC1 | BAR0+118h | Transferred Data Size for stream | R    | 0           |

| Bits   | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                  | Reset value |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|        |      | Transferred Word Count Register for Stream (Read-<br>Only)                                                                                                                                                                                                                                                                                                                                                                   |             |
| [15:0] | XWC1 | When the total stream DMA transfer size and<br>LDCR_TWC1 are transferred, the transfer size is written<br>to this register. It is read-only and should be read after<br>the DMA operation is finished (LDCR_AxC[17]=0). The<br>transferred size cannot be known during the DMA<br>operation, because it is different from other DMA<br>operations in that the total transfer size is accumulated<br>with each transfer unit. | 0           |



| [31:16] | _ | Reserved | _ |
|---------|---|----------|---|
|---------|---|----------|---|

# Audio DMA Error Status Register(LDCR\_ESR)

| Name     | Address   | Description                     | Туре | Reset value |
|----------|-----------|---------------------------------|------|-------------|
| LDCR_ESR | BAR0+11ch | Audio DMA Error Status Register | R    | 0           |

| Bits    | Name               | Description            | Reset value |
|---------|--------------------|------------------------|-------------|
| [0]     | PCM_host1_fatal    | host1_fatal for PCM    | 0           |
| [1]     | PCM_host1_perr     | host1_perr for PCM     | 0           |
| [7:2]   | —                  | Reserved               | -           |
| [8]     | Stream_host1_fatal | host1_fatal for Stream | 0           |
| [9]     | Stream _host1_perr | host1_perr for Stream  | 0           |
| [31:10] | -                  | Reserved               | _           |

# AUDIO CONTROL REGISTER

# AUDIO IO CONTROL REGISTER (LACR\_IO)

| Name    | Address   | Description                  | Туре | Reset value |
|---------|-----------|------------------------------|------|-------------|
| LACR_IO | BAR0+124h | Audio INOUT Setting Register | R/W  | 0           |

These registers set the operation mode of the SAM2K-LITE audio I/F module, including I/O related items.

| Bits   | Name       | Description                               | Reset value |
|--------|------------|-------------------------------------------|-------------|
|        | SEL_BCLK   | Select bclk                               | 0           |
| [0]    |            | 0 = 32 fs (16-bit output)                 |             |
|        |            | 1 = 64 fs (32-bit output)                 |             |
|        | SEL_PCM    | Select PCM                                | 0           |
| [1]    |            | 0 = dec_pcm                               |             |
|        |            | 1 = ext_pcm                               |             |
|        | OUT_FORMAT | Output format (to DAC)                    | 0           |
| [2]    |            | 0 = I2S                                   |             |
|        |            | 1 = MSB first                             |             |
|        | IN_FORMAT  | Input port (from DAC)                     | 0           |
| [3]    |            | 0: I2S                                    |             |
|        |            | 1: MSB first                              |             |
|        | POLARITY   | polarity ( input data clocking position ) | 0           |
| [4]    |            | 0 = rising (out at falling)               |             |
|        |            | 1 = falling (out at rising)               |             |
| [31:5] | -          | Reserved                                  | _           |

This register controls transfers according to the IEC958 format.



# AUDIO VAL CONTROL REGISTER (LACR\_VAL)

| Name     | Address   | Description                   | Туре | Reset value |
|----------|-----------|-------------------------------|------|-------------|
| LACR_VAL | BAR0+128h | Audio IEC958 Control Register | R/W  | 0           |

This register controls transfers according to IEC958 format.

| Bits    | Name           | Description                                                                                                        | Reset value |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------|-------------|
|         | SPDIF_O_FORMAT | SPDIF output format:                                                                                               |             |
| [0]     |                | 0 = stream                                                                                                         | 0           |
|         |                | 1 = PCM                                                                                                            |             |
|         | CD_TYPE        | Compressed data type :<br>(Only used Stream format(LACR_VAL[0]=0))                                                 |             |
|         |                | 0 = Pause (Not supported in S5H2000X)                                                                              |             |
|         |                | 1 = AC-3                                                                                                           |             |
|         |                | 2 = MPEG1 (layer-1)                                                                                                | 0           |
| [3:1]   |                | 3 = MPEG1 (layer-2, -3), MPEG-2-BC                                                                                 | Ū           |
|         |                | 4 = MPEG2-Extension                                                                                                |             |
|         |                | 5 = MPEG2 (lay1-lsf)                                                                                               |             |
|         |                | 6 = MPEG2 (lay2, lay3-lsf)                                                                                         |             |
|         |                | 7 = Reserved                                                                                                       |             |
|         | CT_CODE        | IEC958 Category Code:                                                                                              |             |
| [11:4]  |                | This value depends on the equipment type which is set<br>on bit[15:8] of the IEC958 channel status bits (192 bits) | 0x00        |
|         | ES_SIZE        | ES size in bits:                                                                                                   | 0           |
| [27:12] |                | Burst data length bit                                                                                              |             |
|         | COPY_BIT       | IEC958 Copyright Bit:                                                                                              |             |
|         |                | This value is applied to bit[15:8] of the IEC958 channel status bits (192 bits)                                    | 0           |
| [28]    |                | 0 = Asserted                                                                                                       | 0           |
|         |                | 1 = Not asserted                                                                                                   |             |
| [31:29] | -              | Reserved                                                                                                           | -           |

### AUDIO STATUS CONTROL REGISTER (LACR\_STATUS)

| Name        | Address   | Description                   | Туре | Reset value |
|-------------|-----------|-------------------------------|------|-------------|
| LACR_STATUS | BAR0+12ch | Audio Channel Status Register | R    | 0           |

This register sets the IEC958 channel status value.

In the consumer mode, frames 0-31 is used and frames 32-191(all 0's) are not used. The value of this register put in the C bit at SPDIF formatting. Please refer to IEC958 spec for more information.

| Bits    | Name                 | Description                           | Reset value |
|---------|----------------------|---------------------------------------|-------------|
| [0]     | channel status block | 0 = consumer use                      | 0           |
|         |                      | 1 = professional                      | 0           |
| [1]     | audio sample word    | 0 = linear pcm                        | 0           |
| [']     |                      | 1 = non-linear pcm                    | 0           |
| [2]     | copyright assertion  | 0 = copyright                         | 0           |
| [2]     |                      | 1 = no copyright                      | 0           |
| [5:3]   | Data type            | 000 = digital data or 2ch audio       | 0           |
| [0.0]   |                      | others = don't care                   | 0           |
| [7:6]   | mode                 | 00 = mode 0                           | 0           |
| [7.0]   |                      | others = reserved                     | 0           |
| [15:8]  | catagory code        | 00000000 = category code              | 0           |
| [10.0]  |                      | others = don't care                   |             |
| [19:16] | source number        | 0000 = don't care                     | 0           |
| [10.10] |                      | others are the value of source number |             |
| [23:20] | channel number       | 0000 = don't care                     | 0           |
| [20.20] |                      | others are the value of source number |             |
|         | sampling frequency   | Sampling frequency select             |             |
| [27:24] |                      | 0000 = 44.1KHz                        | 0           |
| [27.27] |                      | 0100 = 48KHz                          |             |
|         |                      | 1100 = 32KHz                          |             |
|         | clock accuracy       | Clock accuracy select                 |             |
| [31:28] |                      | 00 = level 2                          | 0           |
| [020]   |                      | 01 = level 3                          | , v         |
|         |                      | 10 = level 1                          |             |



# INTERRUPT CONTROLLER (Preliminary)

# **OVERVIEW**

Interrupt controller in S5H2000X receives 14 interrupt requests from interrupt sources such as DMA, CPU, etc.

The role of the interrupt controller is to generate interrupt request to the PCI INTA pin out after the arbitration process when there are multiple interrupt requests from internal peripherals and/or external interrupt request pins.

The arbitration process is performed by Interrupt enable logic and the result is written to the interrupt pending register that can be read by the users in the interrupt service routine.

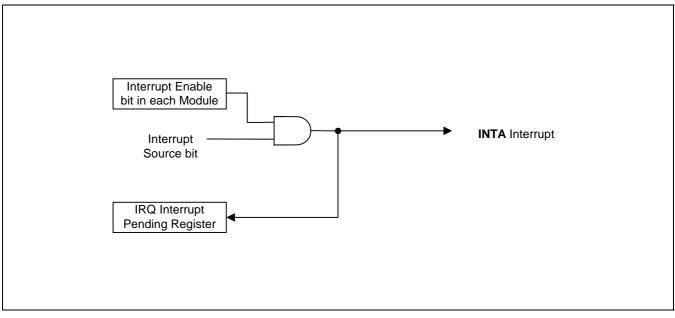



Figure 11-1. Interrupt Controller Block Diagram



### INTERRUPT CONTROLLER OPERATION

### Interrupt generation

The S5H2000X receives interrupt service by notifying the external CPU of the interrupt generated in inside via the INTA pin. The INTA pin is the way for the PCI device requests to interrupt the host CPU.

# **CONTROL REGISTERS**

There are two control registers in the interrupt controller: enable register(**GSCR\_IER**), and interrupt pending registers(**GSCR\_IPCR**).

All the interrupt requests from the interrupt sources are first registered in the source pending register and generate interrupt to INTA pin. There is no Interrupt Mask register, requested interrupt source is directly showed INTA pin. So you can not polling interrupt by interrupt pending register. The details of each control registers are as follows.

### INTERRUPT ENABLE REGISTER (GSCR\_IER)

Each of the 14 bits in the interrupt enable register is related to an interrupt source. If you clear a specific bit to 0, the interrupt request from the corresponding interrupt source is not serviced by the CPU. If the mask bit is 1, the interrupt request can be serviced.

### INTERRUPT PENDING AND CLEAR REGISTER (GSCR\_IPCR)

The GSCR\_IPCR contain one flag per interrupt (14 total) that indicates an interrupt request has been made by a unit. Inside the interrupt service routine, the GSCR\_IPCR are read to determine the interrupt source.

Bits within the IPCR are read only. Once an interrupt has been serviced, the handler clears the pending bit at the interrpt service routine by writing a one to the necessary bit in the source pendign register(GSCR\_IPCR).

This is a read-only register.



# **INTERRUPT SOURCES**

Interrupt controller supports 14 interrupt sources as follows table 11-1. User can get to know the interrupt source in the interrupt service routine by reading GSCR\_IPCR register.

| Corresponding bit | Sources        | Descriptions                                      |  |
|-------------------|----------------|---------------------------------------------------|--|
| [0]               | EN_SEC_WR_INT  | Write-done (pci_ts_dpsram_if : section) interrupt |  |
| [1]               | EN_AUD_WR_INT  | Write-done (pci_ts_dpsram_if : audio) interrupt   |  |
| [2]               | EN_GP_RD_INT   | Write-done _1(pci_gp_if) interrupt                |  |
| [3]               | EN_SP_WR_INT   | Write-done _0(pci_sp_if) interrupt                |  |
| [4]               | EN_HSMB_WR_INT | Write-done _1(pci_hsmb_if) interrupt              |  |
| [5]               | EN_PCM_RD      | Write-done _1(pci_audio_pcm) interrupt            |  |
| [6]               | EN_STM_RD_INT  | Write-done (pci_audio_stream) interrupt           |  |
| [15:7]            | -              | Reserved                                          |  |
| [16]              | EN_EXT0        | Inform Queue0 that PID filtering data is arrived  |  |
| [17]              | RESERVED       | Reserved                                          |  |
| [18]              | EN_EXT1        | Interrupt from ARM7TDMI                           |  |
| [21:19]           | -              | Reserved                                          |  |
| [22]              | EN_EXT4        | Interrupt from VDMA                               |  |
| [23]              | EN_EXT5        | Interrupt from VSYNC_EVEN                         |  |
| [24]              | EN_EXT6        | Interrupt from VSYNC ODD                          |  |
| [25]              | EN_EXT7        | Interrupt from DP                                 |  |
| [26]              | EN_EXT8        | Interrupt from SP                                 |  |
| [31:27]           | -              | Reserved                                          |  |

| Table 11-1 | Interrunt | Source & | Corres | ponding Bit |
|------------|-----------|----------|--------|-------------|
|            | menupi    | Source o |        | ponung bit  |



# INTERRUPT CONTROLLER SEPCIAL REGISTERS

### INTERRUPT ENABLE REGISTER (GSCR\_IER )

Each of the 14 bits in the interrupt enable register, GSCR\_IER, corresponds to an interrupt source (**Refer to Table 11-1**). When a source interrupt enable bit is 0 and the corresponding interrupt event occurs, the interrupt dose not generate interrupt request and dose not set interrupt pending and clear register (GSCR\_IPCR). If the mask bit is 1, the interrupt generate a request and set interrupt pending and clear register(GSCR\_IPCR).

| Name     | Address  | Description               | Туре | Reset value |
|----------|----------|---------------------------|------|-------------|
| GSCR_IER | BAR0+04h | Interrupt Enable Register | R/W  | 0           |

| Bits    | Name           | Description                                              | Reset value |
|---------|----------------|----------------------------------------------------------|-------------|
| [0]     | EN_SEC_WR_INT  | Enable write-done (pci_ts_dpsram_if : section) interrupt | 0           |
| [1]     | EN_AUD_WR_INT  | Enable write-done (pci_ts_dpsram_if : audio) interrupt   | -           |
| [2]     | EN_GP_RD_INT   | Enable write-done_1(pci_gp_if) interrupt                 | 0           |
| [3]     | EN_SP_WR_INT   | Enable write-done_0(pci_sp_if) interrupt                 | 0           |
| [4]     | EN_HSMB_WR_INT | Enable write-done_1(pci_hsmb_if) interrupt               | 0           |
| [5]     | EN_PCM_RD      | Enable write-done_1(pci_audio_pcm) interrupt             | 0           |
| [6]     | EN_STM_RD_INT  | Enable write-done (pci_audio_stream) interrupt           | 0           |
| [15:7]  | -              | Reserved                                                 | -           |
| [16]    | EN_EXT0        | Queue0 PID filtering data7                               | 0           |
| [17]    | -              | Reserved                                                 | -           |
| [18]    | EN_EXT1        | Interrupt from ARM7TDMI                                  | 0           |
| [21:19] | -              | Reserved                                                 | -           |
| [22]    | EN_EXT4        | Interrupt from VDMA                                      | 0           |
| [23]    | EN_EXT5        | Interrupt from VSYNC_EVEN                                | 0           |
| [24]    | EN_EXT6        | Interrupt from VSYNC ODD                                 | 0           |
| [25]    | EN_EXT7        | Interrupt from DP                                        | 0           |
| [26]    | EN_EXT8        | Interrupt from SP                                        | 0           |
| [31:27] | -              | Reserved                                                 | -           |



## INTERRUPT PENDING AND CLEAR REGISTER (GSCR\_IPCR)

The GSCR\_IPCR contain one flag per interrupt (14 total-refer to Table 11-1) that indicates an interrupt request has been made by a unit. Inside the interrupt service routine, the GSCR\_IPCR are read to determine the interrupt source.

| Name      | Address  | Description                        | Туре | Reset value |
|-----------|----------|------------------------------------|------|-------------|
| GSCR_IPCR | BAR0+08h | Interrupt Pending & Clear Register | R/W  | 0           |

| Bits    | Name Description |                                                            | Reset value |
|---------|------------------|------------------------------------------------------------|-------------|
| [0]     | EN_SEC_WR_INT    | Pending & clear (pci_ts_dpsram_if : section) interrupt     | 0           |
| [1]     | EN_AUD_WR_INT    | Pending & clear (pci_ts_dpsram_if : audio) interrupt       | 0           |
| [2]     | EN_GP_RD_INT     | Pending & clear (pci_gp_if) interrupt                      | 0           |
| [3]     | EN_SP_WR_INT     | Pending & clear (pci_sp_if) interrupt                      | 0           |
| [4]     | EN_HSMB_WR_INT   | Pending & clear (pci_hsmb_if) interrupt                    | 0           |
| [5]     | EN_PCM_RD        | Pending & clear (pci_audio_pcm) interrupt                  | 0           |
| [6]     | EN_STM_RD_INT    | Pending & clear (pci_audio_stream) interrupt               | 0           |
| [15:7]  | -                | Reserved                                                   | _           |
| [16]    | EN_EXT0          | Notification that PID Filtered Data has Arrived at Queue0. | 0           |
| [17]    | RESERVED         | Reserved                                                   | 0           |
| [18]    | EN_EXT1          | Pending & clear Interrupt from ARM7TDMI                    | 0           |
| [21:19] | -                | Reserved                                                   | -           |
| [22]    | EN_EXT4          | Pending & clear Interrupt from VDMA                        | 0           |
| [23]    | EN_EXT5          | Pending & clear Interrupt from VSYNC_EVEN                  | 0           |
| [24]    | EN_EXT6          | Pending & clear Interrupt from VSYNC ODD                   | 0           |
| [25]    | EN_EXT7          | Pending & clear Interrupt from DP                          | 0           |
| [26]    | EN_EXT8          | Pending & clear Interrupt from SP                          | 0           |
| [31:27] | -                | Reserved                                                   | -           |



**R&D SPECIFICATION** 

SPEC

S3C2800X

# PRODUCT OVERVIEW

# INTRODUCTION

SAMSUNG's S3C2800X 32-bit RISC microprocessor is designed to provide a cost-effective and high performance micro-controller solution for hand-held devices and general applications. To reduce total system cost, S3C2800X also provides the following: 16KB I/D cache,internal SRAM, 2-ch UART with handshake, 4-ch DMA, System manager (chip select logic, FP/ EDO/SDRAM controller), 3-ch timers, I/O ports, RTC, 2-ch I2C-BUS interface and PLL for clock.

The S3C2800X was developed using a ARM920T core, 0.18 um CMOS standard cells, and a memory compiler. Its low-power, simple, elegant and fully static design is particularly suitable for cost-sensitive and power sensitive applications. Also S3C2800X adopts a new bus architecture, Harvard BUS architecture.

An outstanding feature of the S3C2800X is its CPU core, a 32-bit ARM920T RISC processor (165Mips @150MHz) designed by Advanced RISC Machines, Ltd. The architectural enhancements of ARM920T include the Thumb decompressor, an on-chip ICE breaker debug support, and a 32-bit hardware multiplier.

By providing a complete set of common system peripherals, the S3C2800X minimizes overall system costs and eliminates the need to configure additional components. The integrated on-chip functions that are described in this document include:

- PCI Host Bridge intrface (32-bit, 33MHz)
- 1.8V Static ARM920T CPU core with 16KB I/D cache . (Harvard bus architecture up to 150MHz)
- External memory controller. (FP/EDO/SDRAM Control, Chip Select logic)
- 4-ch general DMAs with external request pins
- 2-ch UART with handshake (IRDA1.0, 16-byte FIFO) ,Modem Interface
- 2-ch multi-master I2C-BUS controller
- 3-ch 16-bit interval timers
- 16-bit Watch Dog Timer
- 48 general purpose I/O ports / 8-ch external interrupt source
- Power control: Normal, Slow, Idle mode.
- RTC with calendar function.
- On-chip clock generator with PLL.



# **FEATURES**

### Architecture

- ARM920T CPU core supports the ARM and Thumb instruction set, core debug,
- Enhanced multiplier, JTAG and the embedded ICE
- Support boundary scan.
- Memory Menagement (support virtual memory)
- Internal AMBA bus architecture ( AMBA2.0, AHB/APB )
- Maximum CPU clock frequency 150MHz@1.8v

### System Manager

- Little/Big endian support for external memory.
- Internal Special Function Registers(SFRs)are Little endian only.
- Address space: 32Mbytes per each bank. (Total 256Mbyte)
- Supports programmable 8/16/32-bit data bus width for each memory bank.
- All Fixed bank start address(Static memory & Dynamic memory banks)
- 8 memory banks.
  - 4 memory banks for static memory (ROM, SRAM ,FLASH etc).
  - 4 memory banks for Dynamic memory (Fast Page, EDO, and Synchronous DRAM)
- Fully Programmable access cycles for all static memory banks.
- 16-word embedded SRAM.
- Supports external wait signal to expend the bus cycle.
- Supports self-refresh mode in DRAM/SDRAM for power-down.
- Supports asymmetric/symmetric address of DRAM.

### I/D Cache Memory

- 64-way set-associative cache with I-Cache(16KB) & D-Cache(16KB)
- 8 words per line with one valid bit and two dirty bits per line
- Pseudo-random or round-robin replacement algorithm
- Write-through and Write-back cache operation.
- The write buffer can hold 16 word of data and four address
- Low voltage cache to reduce power consumption



### **Clock & Power Manager**

- The on-chip PLL generates the necessary clock for the operation of MCU at maximum 150MHz@1.8V.
- Input frequency (Fin) = 4MHz ~ 10MHz.
- Output frequency (Fout) = 20MHz ~ 150MHz.
- Clock can be fed selectively to each function block by software
- Power mode : Normal, Slow, Idle mode
  - Normal mode : Normal operating mode.
  - Slow mode : Low frequency clock without PLL
  - Idle mode : Clock stopping to CPU, only.

### **PCI Interface**

- Internal PCI Host Bridge
- 32-bit data bus / 33MHz

### Interrupt Controller

- 29 Interrupt sources

   (3 Timers, 6 UART, 8 External interrupts, 4 DMA ,2 RTC, 2 I2C, 2 RMT, 2 PCI).
- Software polling Interrupt mode.
- Level/edge sensitive triggering on the external interrupts source
- Programmable IRQ/FIQ for each interrpt request
- Supports FIQ (Fast Interrupt request) for very urgent interrupt request

### Timers

3-ch 16 bit interval Timer with DMA-based or interrupt-based operation

### Watch-dog Timer

• 16-bit Watchdog Timer

### **Remocon Receiver**

- FIFO 8 steps
- FIFO interrupt is full(8) step overfllow



## **RTC (Real Time Clock)**

- Full clock feature: msec, sec, min, hour, day, week, month, year.
- 32.768 KHz operation.
- Alarm interrupt for CPU wake-up.
- Time tick interrupt

### General purpose input/output ports

- 8 external interrupt ports
- 48 multiplexed input/output ports

### UART

- 2-channel UART with DMA-based or interrupt based operation
- Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data transmit/receive
- Supports H/W handshaking during transmit/receive
- Programmable baud rates ( up to 230.4Kbps )
- Supports IrDA 1.0 (230.4Kbps)
- Loop back mode for testing
- Program accessible 16-byte FIFO (2x16 byte FIFO for transmit/receive data)

### **DMA Controller**

- 4 channel general purpose Direct Memory Access controller without CPU intervention.
- Support IO to memory, memory to IO, IO to IO with the DMA which has 6 type's DMA requestor: Software, 3 internal function blocks (UART0, UART1, Timer), and 2 External pins.
- Burst transfer mode to enhance the transfer rate on the FPDRAM, EDODRAM and SDRAM.

### **IIC-BUS Interface**

- 2-ch Multi-Master I2C-Bus with interrupt-based operation.
- Serial, 8-bit oriented, bi-directional data transfers can be made at up to 100 Kbit/s in the standard mode or up to 400 Kbit/s in the fast mode.

### **Operating Voltage Range**

• Core : 1.8V I/O : 3.0 V to 3.6 V

### **Operating Frequency**

Up to 150 MHz

### Package

240 QFP



# **BLOCK DIAGRAM**

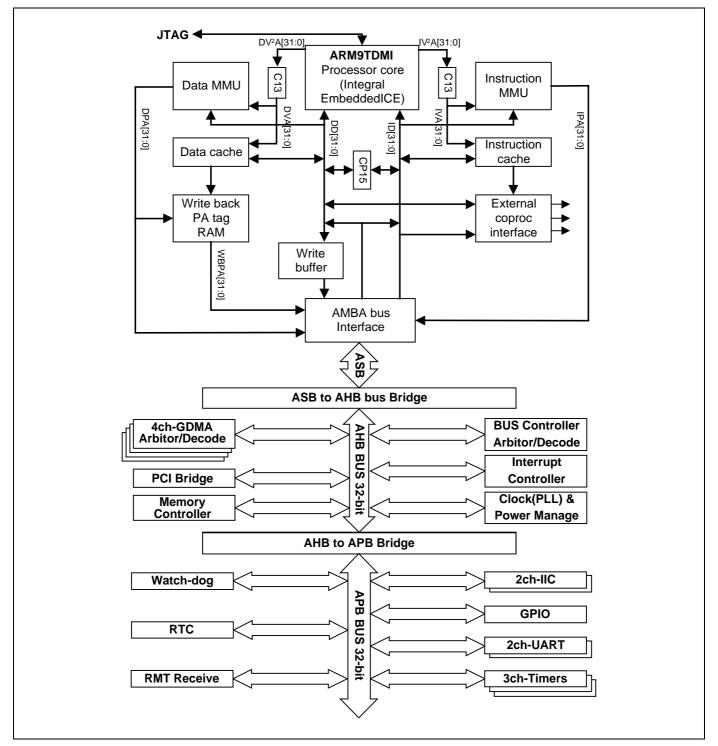



Figure 1-1. S3C2800X Block Diagram



# **OVERVIEW OF THE ARM920T**

The ARM920T is a member of the ARM9 Thumb family of general-purpose microprocessors. The ARM920T is targeted at embedded control applications where high performance, low die size, and low power are all-important. The ARM920T supports both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to trade off between high performance and high code density. The ARM920T supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM920T also includes support for coprocessors.

The ARM920T is a Harvard cache architecture processor. The separate instruction and data caches in this design are 16KB each in size, with an 8-word line length. The ARM920T implements an enhanced ARM Architecture V4 MMU to provide translation and access permission checks for instruction and data addresses.

The processor core within ARM920T is an ARM9TDMI. This processor core is a Harvard architecture device implemented using a five-stage pipeline consisting of fetch, decode, execute, memory and write stages, and can be provided as a stand-alone core which can be embedded into more complex devices.

The ARM920T interface to the rest of the system is via unified address and data buses. This interface is scompatible with the *Advanced Microcontroller Bus Architecture* (AMBA) bus scheme. For coprocessor support, the instruction and data buses are exported along with simple handshaking signals. The ARM920T also has a *TrackingICE* mode which allows an approach similar to a conventional ICE mode of operation.

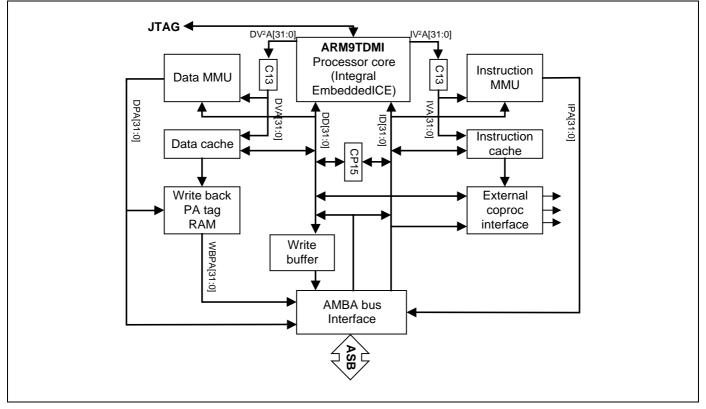



Figure 1-2. ARM920T Functional Block Diagram



# **PIN ASSIGNMENTS**

### NOTES :

- 1. OM[3:0] and ENDIAN value are latched only at the rising edge of nRESET. So, when nRESET is L, the pins of OM[3:0] and ENDIAN are in input state.
- 2. IICSDA, IICSCL pins are open-drain type.
- 3. AI/AO means analog input/output.

| I/О Туре                 | Descriptions                                                                                          |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| vdd18i, vss18i           | 1.8V Vdd/Vss for internal logic                                                                       |  |  |  |
| vdd3op, vss3op           | 3.3V Vdd/Vss for external interface logic                                                             |  |  |  |
| vdd18t, vss18t           | 1.8V Vdd/Vss for analog circuitry                                                                     |  |  |  |
| phsoscm16                | Oscillator cell with enable and feedback resister(4M~10MHz)                                           |  |  |  |
| phbsu50ct12sm            | bi-directional pad, CMOS schmit-trigger, 50Kohm pull-up resister with control, tri-<br>state, lo=12mA |  |  |  |
| phbsu50ct8sm             | bi-directional pad, CMOS schmit-trigger, 50Kohm pull-up resister with control, tri-<br>state, Io=8mA  |  |  |  |
| phbsu50cd4sm             | bi-directional pad, CMOS schmit-trigger, 50Kohm pull-up resister with control, tri-<br>state, Io=4mA  |  |  |  |
| phot6                    | output pad, tri-state, Io=6mA                                                                         |  |  |  |
| phot8                    | output pad, tri-state, Io=8mA                                                                         |  |  |  |
| phot10                   | output pad, tri-state, Io=10mA                                                                        |  |  |  |
| phis                     | input pad, CMOS schmitt-trigger                                                                       |  |  |  |
| phnc50,<br>phnc50_option | pad for analog pin                                                                                    |  |  |  |



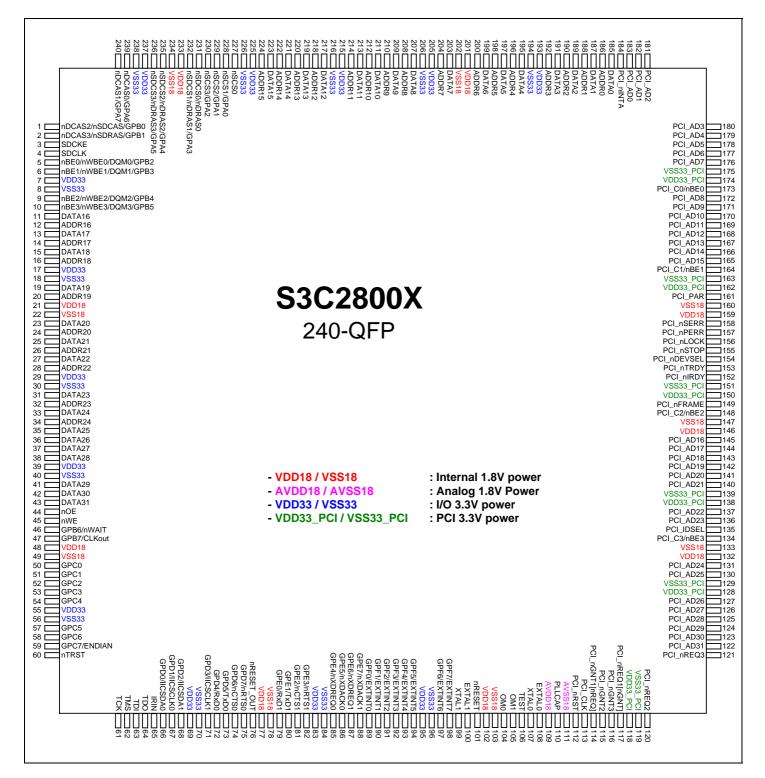



Figure 1-1. S3C2800X Pin Assignment (240-QFP)



| Pin<br># | Pin Name             | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|----------------------|---------------------|--------------------|-------------------------|
| 1        | nDCAS2/nSDCAS/GPB0   | nSDCAS              | O/IO               | Phbsu50ct8sm            |
| 2        | nDCAS3/nSDRAS/GPB1   | nSDRAS              | O/IO               | Phbsu50ct8sm            |
| 3        | SDCKE                |                     | 0                  | Phot6                   |
| 4        | SDCLK                |                     | 0                  | Phot10                  |
| 5        | nBE0/nWBE0/DQM0/GPB2 | DQM0                | O/IO               | Phbsu50ct8sm            |
| 6        | nBE1/nWBE1/DQM1/GPB3 | DQM1                | O/IO               | Phbsu50ct8sm            |
| 7        | VDD33                |                     | Р                  |                         |
| 8        | VSS33                |                     | Р                  |                         |
| 9        | nBE2/nWBE2/DQM2/GPB4 | DQM2                | O/IO               | Phbsu50ct8sm            |
| 10       | nBE3/nWBE3/DQM3/GPB5 | DQM3                | O/IO               | Phbsu50ct8sm            |
| 11       | DATA16               |                     | I/O                |                         |
| 12       | ADDR16               |                     | 0                  |                         |
| 13       | DATA17               |                     | I/O                |                         |
| 14       | ADDR17               |                     | 0                  |                         |
| 15       | DATA18               |                     | I/O                |                         |
| 16       | ADDR18               |                     | 0                  |                         |
| 17       | VDD33                |                     | Р                  |                         |
| 18       | VSS33                |                     | Р                  |                         |
| 19       | DATA19               |                     | I/O                |                         |
| 20       | ADDR19               |                     | 0                  |                         |
| 21       | VDD18                |                     | Р                  |                         |
| 22       | VSS18                |                     | Р                  |                         |
| 23       | DATA20               |                     | I/O                |                         |
| 24       | ADDR20               |                     | 0                  |                         |
| 25       | DATA21               |                     | I/O                |                         |
| 26       | ADDR21               |                     | 0                  |                         |
| 27       | DATA22               |                     | I/O                |                         |
| 28       | ADDR22               |                     | 0                  |                         |
| 29       | VDD33                |                     | Р                  |                         |
| 30       | VSS33                |                     | Р                  |                         |
| 31       | DATA23               |                     | I/O                |                         |
| 32       | ADDR23               |                     | 0                  |                         |
| 33       | DATA24               |                     | I/O                |                         |



| Pin<br># | Pin Name     | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|--------------|---------------------|--------------------|-------------------------|
| 34       | ADDR24       |                     | 0                  |                         |
| 35       | DATA25       |                     | I/O                |                         |
| 36       | DATA26       |                     | I/O                |                         |
| 37       | DATA27       |                     | I/O                |                         |
| 38       | DATA28       |                     | I/O                |                         |
| 39       | VDD33        |                     | Р                  |                         |
| 40       | VSS33        |                     | Р                  |                         |
| 41       | DATA29       |                     | I/O                |                         |
| 42       | DATA30       |                     | I/O                |                         |
| 43       | DATA31       |                     | I/O                |                         |
| 44       | nOE          |                     | 0                  | Phot8                   |
| 45       | nWE          |                     | 0                  | Phot6                   |
| 46       | GPB6/nWAIT   | GPB6                | IO                 | Phbsu50ct8sm            |
| 47       | GPB7/CLKout  | GPB7                | IO                 | Phbsu50ct8sm            |
| 48       | VDD18        |                     | Р                  |                         |
| 49       | VSS18        |                     | Р                  |                         |
| 50       | GPC0         |                     | IO                 | Phbsu50ct8sm            |
| 51       | GPC1         |                     | IO                 | Phbsu50ct8sm            |
| 52       | GPC2         |                     | IO                 | Phbsu50ct8sm            |
| 53       | GPC3         |                     | IO                 | Phbsu50ct8sm            |
| 54       | GPC4         |                     | IO                 | Phbsu50ct8sm            |
| 55       | VDD33        |                     | Р                  |                         |
| 56       | VSS33        |                     | Р                  |                         |
| 57       | GPC5         |                     | IO                 | Phbsu50ct8sm            |
| 58       | GPC6         |                     | IO                 | Phbsu50ct8sm            |
| 59       | GPC7/ENDIAN  | ENDIAN              | l(1)               | Phbsu50ct8sm            |
| 60       | nTRST        |                     |                    | Phis                    |
| 61       | ТСК          |                     |                    | Phis                    |
| 62       | TMS          |                     |                    | Phis                    |
| 63       | TDI          |                     | I                  | Phis                    |
| 64       | TDO          |                     | 0                  | Phot6                   |
| 65       | IRIN         |                     | I                  | Phis                    |
| 66       | GPD0/IICSDA0 | GPD0                | IO(2)              | Phbsu50cd4sm            |



| Pin<br># | Pin Name      | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|---------------|---------------------|--------------------|-------------------------|
| 67       | GPD1/IICSCLK0 | GPD1                | IO(2)              | Phbsu50cd4sm            |
| 68       | GPD2/IICSDA1  | GPD2                | IO(2)              | Phbsu50cd4sm            |
| 69       | VDD33         |                     | Р                  |                         |
| 70       | VSS33         |                     | Р                  |                         |
| 71       | GPD3/IICSCLK1 | GPD3                | IO(2)              | Phbsu50cd4sm            |
| 72       | GPD4/RxD0     | GPD4                | IO                 | Phbsu50ct8sm            |
| 73       | GPD5/TxD0     | GPD5                | IO                 | Phbsu50ct8sm            |
| 74       | GPD6/nCTS0    | GPD6                | IO                 | Phbsu50ct8sm            |
| 75       | GPD7/nRTS0    | GPD7                | IO                 | Phbsu50ct8sm            |
| 76       | nRESET_OUT    |                     | 0                  | Phob10                  |
| 77       | VDD18         |                     | Р                  |                         |
| 78       | VSS18         |                     | Р                  |                         |
| 79       | GPE0/RxD1     | GPE0                | IO                 | Phbsu50ct8sm            |
| 80       | GPE1/TxD1     | GPE1                | IO                 | Phbsu50ct8sm            |
| 81       | GPE2/nCTS1    | GPE2                | IO                 | Phbsu50ct8sm            |
| 82       | GPE3/nRTS1    | GPE3                | IO                 | Phbsu50ct8sm            |
| 83       | VDD33         |                     | Р                  |                         |
| 84       | VSS33         |                     | Р                  |                         |
| 85       | GPE4/nXDREQ0  | GPE4                | IO                 | Phbsu50ct8sm            |
| 86       | GPE5/nXDACK0  | GPE5                | Ю                  | Phbsu50ct8sm            |
| 87       | GPE6/nXDREQ1  | GPE6                | IO                 | Phbsu50ct8sm            |
| 88       | GPE7/nXDACK1  | GPE7                | IO                 | Phbsu50ct8sm            |
| 89       | GPF0/EXTINT0  | GPF0                | IO                 | Phbsu50ct8sm            |
| 90       | GPF1/EXTINT1  | GPF1                | Ю                  | Phbsu50ct8sm            |
| 91       | GPF2/EXTINT2  | GPF2                | IO                 | Phbsu50ct8sm            |
| 92       | GPF3/EXTINT3  | GPF3                | IO                 | Phbsu50ct8sm            |
| 93       | GPF4/EXTINT4  | GPF4                | Ю                  | Phbsu50ct8sm            |
| 94       | GPF5/EXTINT5  | GPF5                | IO                 | Phbsu50ct8sm            |
| 95       | VDD33         |                     | Р                  |                         |
| 96       | VSS33         |                     | Р                  |                         |
| 97       | GPF6/EXTINT6  | GPF6                | IO                 | Phbsu50ct8sm            |
| 98       | GPF7/EXTINT7  | GPF7                | IO                 | Phbsu50ct8sm            |
| 99       | XTAL1         |                     | I                  | Phsosck17               |

Table 1-1. 240-Pin QFP Pin Assignment (Continued)



| Pin<br># | Pin Name        | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|-----------------|---------------------|--------------------|-------------------------|
| 100      | EXTAL1          |                     | 0                  | Phsosck17               |
| 101      | nRESET          |                     | Ι                  | Phis                    |
| 102      | VDD18           |                     | Р                  |                         |
| 103      | VSS18           |                     | Р                  |                         |
| 104      | OM0             |                     | l(1)               | Phis                    |
| 105      | OM1             |                     | l(1)               | Phis                    |
| 106      | TEST            |                     | I                  |                         |
| 107      | XTAL0           |                     | AI(3)              | Phsoscm16               |
| 108      | EXTAL0          |                     | AO(3)              | Phsoscm16               |
| 109      | AVDD18          |                     | Р                  |                         |
| 110      | PLLCAP          |                     | AI(3)              | Phnc50_option           |
| 111      | AVSS18          |                     | Р                  |                         |
| 112      | PCI_nRST        |                     | 0                  |                         |
| 113      | PCI_CLK         |                     | I                  |                         |
| 114      | PCI_nGNT1[nREQ] |                     | 0                  |                         |
| 115      | PCI_nGNT2       |                     | 0                  |                         |
| 116      | PCI_nGNT3       |                     | 0                  |                         |
| 117      | PCI_nREQ1[nGNT] |                     | I                  |                         |
| 118      | VDD33_PCI       |                     | Р                  |                         |
| 119      | VSS33_PCI       |                     | Р                  |                         |
| 120      | PCI_nREQ2       |                     | I                  |                         |
| 121      | PCI_nREQ3       |                     | Ι                  |                         |
| 122      | PCI_AD31        |                     | I/O                |                         |
| 123      | PCI_AD30        |                     | I/O                |                         |
| 124      | PCI_AD29        |                     | I/O                |                         |
| 125      | PCI_AD28        |                     | I/O                |                         |
| 126      | PCI_AD27        |                     | I/O                |                         |
| 127      | PCI_AD26        |                     | I/O                |                         |
| 128      | VDD33_PCI       |                     | Р                  |                         |
| 129      | VSS33_PCI       |                     | Р                  |                         |
| 130      | PCI_AD25        |                     | I/O                |                         |
| 131      | PCI_AD24        |                     | I/O                |                         |
| 132      | VDD18           |                     | Р                  |                         |



| Pin<br># | Pin Name    | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|-------------|---------------------|--------------------|-------------------------|
| 133      | VSS18       |                     | Р                  |                         |
| 134      | PCI_C3/nBE3 |                     | I/O                |                         |
| 135      | PCI_IDSEL   |                     | I                  |                         |
| 136      | PCI_AD23    |                     | I/O                |                         |
| 137      | PCI_AD22    |                     | I/O                |                         |
| 138      | VDD33_PCI   |                     | Р                  |                         |
| 139      | VSS33_PCI   |                     | Р                  |                         |
| 140      | PCI_AD21    |                     | I/O                |                         |
| 141      | PCI_AD20    |                     | I/O                |                         |
| 142      | PCI_AD19    |                     | I/O                |                         |
| 143      | PCI_AD18    |                     | I/O                |                         |
| 144      | PCI_AD17    |                     | I/O                |                         |
| 145      | PCI_AD16    |                     | I/O                |                         |
| 146      | VDD18       |                     | Р                  |                         |
| 147      | VSS18       |                     | Р                  |                         |
| 148      | PCI_C2/nBE2 |                     | I/O                |                         |
| 149      | PCI_nFRAME  |                     | I/O                |                         |
| 150      | VDD33_PCI   |                     | Р                  |                         |
| 151      | VSS33_PCI   |                     | Р                  |                         |
| 152      | PCI_nIRDY   |                     | I/O                |                         |
| 153      | PCI_nTRDY   |                     | I/O                |                         |
| 154      | PCI_nDEVSEL |                     | I/O                |                         |
| 155      | PCI_nSTOP   |                     | I/O                |                         |
| 156      | PCI_nLOCK   |                     |                    |                         |
| 157      | PCI_nPERR   |                     | I/O                |                         |
| 158      | PCI_nSERR   |                     | I/O                |                         |
| 159      | VDD18       |                     | Р                  |                         |
| 160      | VSS18       |                     | Р                  |                         |
| 161      | PCI_PAR     |                     | I/O                |                         |
| 162      | VDD33_PCI   |                     | Р                  |                         |
| 163      | VSS33_PCI   |                     | Р                  |                         |
| 164      | PCI_C1/nBE1 |                     | I/O                |                         |
| 165      | PCI_AD15    |                     | I/O                |                         |



| Pin<br># | Pin Name    | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|-------------|---------------------|--------------------|-------------------------|
| 166      | PCI_AD14    |                     | I/O                |                         |
| 167      | PCI_AD13    |                     | I/O                |                         |
| 168      | PCI_AD12    |                     | I/O                |                         |
| 169      | PCI_AD11    |                     | I/O                |                         |
| 170      | PCI_AD10    |                     | I/O                |                         |
| 171      | PCI_AD9     |                     | I/O                |                         |
| 172      | PCI_AD8     |                     | I/O                |                         |
| 173      | PCI_C0/nBE0 |                     | I/O                |                         |
| 174      | VDD33_PCI   |                     | Р                  |                         |
| 175      | VSS33_PCI   |                     | Р                  |                         |
| 176      | PCI_AD7     |                     | I/O                |                         |
| 177      | PCI_AD6     |                     | I/O                |                         |
| 178      | PCI_AD5     |                     | I/O                |                         |
| 179      | PCI_AD4     |                     | I/O                |                         |
| 180      | PCI_AD3     |                     | I/O                |                         |
| 181      | PCI_AD2     |                     | I/O                |                         |
| 182      | PCI_AD1     |                     | I/O                |                         |
| 183      | PCI_AD0     |                     | I/O                |                         |
| 184      | PCI_nINTA   |                     | 0                  |                         |
| 185      | DATA0       |                     | I/O                |                         |
| 186      | ADDR0       |                     | 0                  |                         |
| 187      | DATA1       |                     | I/O                |                         |
| 188      | ADDR1       |                     | 0                  |                         |
| 189      | DATA2       |                     | I/O                |                         |
| 190      | ADDR2       |                     | 0                  |                         |
| 191      | DATA3       |                     | I/O                |                         |
| 192      | ADDR3       |                     | 0                  |                         |
| 193      | VDD33       |                     | Р                  |                         |
| 194      | VSS33       |                     | Р                  |                         |
| 195      | DATA4       |                     | I/O                |                         |
| 196      | ADDR4       |                     | 0                  |                         |
| 197      | DATA5       |                     | I/O                |                         |
| 198      | ADDR5       |                     | 0                  |                         |



| Pin<br># | Pin Name      | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|---------------|---------------------|--------------------|-------------------------|
| 199      | DATA6         |                     | I/O                |                         |
| 200      | ADDR6         |                     | 0                  |                         |
| 201      | VDD18         |                     | Р                  |                         |
| 202      | VSS18         |                     | Р                  |                         |
| 203      | DATA7         |                     | I/O                |                         |
| 204      | ADDR7         |                     | 0                  |                         |
| 205      | VDD33         |                     | Р                  |                         |
| 206      | VSS33         |                     | Р                  |                         |
| 207      | DATA8         |                     | I/O                |                         |
| 208      | ADDR8         |                     | 0                  |                         |
| 209      | DATA9         |                     | I/O                |                         |
| 210      | ADDR9         |                     | 0                  |                         |
| 211      | DATA10        |                     | I/O                |                         |
| 212      | ADDR10        |                     | 0                  |                         |
| 213      | DATA11        |                     | I/O                |                         |
| 214      | ADDR11        |                     | 0                  |                         |
| 215      | VDD33         |                     | Р                  |                         |
| 216      | VSS33         |                     | Р                  |                         |
| 217      | DATA12        |                     | I/O                |                         |
| 218      | ADDR12        |                     | 0                  |                         |
| 219      | DATA13        |                     | I/O                |                         |
| 220      | ADDR13        |                     | 0                  |                         |
| 221      | DATA14        |                     | I/O                |                         |
| 222      | ADDR14        |                     | 0                  |                         |
| 223      | DATA15        |                     | I/O                |                         |
| 224      | ADDR15        |                     | 0                  |                         |
| 225      | VDD33         |                     | Р                  |                         |
| 226      | VSS33         |                     | Р                  |                         |
| 227      | nSCS0         |                     | 0                  | Phot8                   |
| 228      | nSCS1/GPA0    | nSCS1               | O/IO               | Phbsu50ct8sm            |
| 229      | nSCS2/GPA1    | nSCS2               | O/IO               | Phbsu50ct8sm            |
| 230      | nSCS3/GPA2    | nSCS3               | 0/10               | Phbsu50ct8sm            |
| 231      | nSDCS0/nDRAS0 | nSDCS0              | 0                  | Phot8                   |



| Pin<br># | Pin Name           | Default<br>Function | I/O State @Initial | I/O TYPE <sup>(6)</sup> |
|----------|--------------------|---------------------|--------------------|-------------------------|
| 232      | nSDCS1/nDRAS1/GPA3 | nSDCS1              | O/IO               | Phbsu50ct8sm            |
| 233      | VDD18              |                     | Р                  |                         |
| 234      | VSS18              |                     | Р                  |                         |
| 235      | nSDCS2/nDRAS2/GPA4 | nSDCS2              | O/IO               | Phbsu50ct8sm            |
| 236      | nSDCS3/nDRAS3/GPA5 | nSDCS3              | O/IO               | Phbsu50ct8sm            |
| 237      | VDD33              |                     | Р                  |                         |
| 238      | VSS33              |                     | Р                  |                         |
| 239      | nDCAS0/GPA6        | nDCAS0              | O/IO               | Phbsu50ct8sm            |
| 240      | nDCAS1/GPA7        | nDCAS1              | O/IO               | Phbsu50ct8sm            |



# SIGNAL DESCRIPTIONS

| Signal                 | Signal I/O Description |                                                                                                                                                                                                                                                       |  |  |
|------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| BUS CONTROLLER         |                        |                                                                                                                                                                                                                                                       |  |  |
| OM[1:0]                |                        | OM[1:0] lets S3C2800X be in TEST mode, which is used only at fabrication. Also, It determines the bus width of nGCS0. The logic level is determined by the pull-up/down resistor during the RESET cycle.<br>00:8-bit 01:16-bit 10:32-bit 11:Test mode |  |  |
| ADDR[24:0]             | 0                      | ADDR[24:0] (Address Bus) outputs the memory address of the corresponding bank .                                                                                                                                                                       |  |  |
| DATA[31:0]             | 10                     | DATA[31:0] (Data Bus) inputs data during memory read and outputs data during memory write. The bus width is programmable among 8/16/32-bit.                                                                                                           |  |  |
| nSCS[3:0]              | 0                      | nSCS[3:0] (Static memory bank Select) are activated when the address of a memory is within the address region of each bank. The number of access cycles and the bank size can be programmed.                                                          |  |  |
| new                    | 0                      | nWE (Write Enable) indicates that the current bus cycle is a write cycle.                                                                                                                                                                             |  |  |
| nWBE[3:0]              | 0                      | Write Byte Enable                                                                                                                                                                                                                                     |  |  |
| nBE[3:0]               | 0                      | 16-bit SRAM Byte Enable                                                                                                                                                                                                                               |  |  |
| nWAIT                  | I                      | Request to prolong a current bus cycle. As long as nWAIT is "L", the current bus cycle can't be completed.                                                                                                                                            |  |  |
| nOE                    | 0                      | nOE (Output Enable) indicates that the current bus cycle is a read cycle.                                                                                                                                                                             |  |  |
| ENDIAN                 | Ι                      | It determines whether or not the data type is little endian or big endian. The logic level is determined by the pull-up/down resistor during the RESET cycle.                                                                                         |  |  |
|                        |                        | 0:little endian 1:big endian                                                                                                                                                                                                                          |  |  |
| DRAM/SDRAM             |                        |                                                                                                                                                                                                                                                       |  |  |
| nDRAS[3:0]             | 0                      | Row Address Strobe                                                                                                                                                                                                                                    |  |  |
| nDCAS[3:0]             | 0                      | Column Address strobe                                                                                                                                                                                                                                 |  |  |
| nSDRAS                 | 0                      | SDRAM Row Address Strobe                                                                                                                                                                                                                              |  |  |
| nSDCAS                 | 0                      | SDRAM Column Address Strobe                                                                                                                                                                                                                           |  |  |
| nSDCS[3:0]             | 0                      | SDRAM Chip Select                                                                                                                                                                                                                                     |  |  |
| DQM[3:0]               | 0                      | SDRAM Data Mask                                                                                                                                                                                                                                       |  |  |
| SDCLK                  | 0                      | SDRAM Clock                                                                                                                                                                                                                                           |  |  |
| SDCKE                  | 0                      | SDRAM Clock Enable                                                                                                                                                                                                                                    |  |  |
| INTERRUPT CONTROL UNIT |                        |                                                                                                                                                                                                                                                       |  |  |
| EINT[7:0]              | Ι                      | External Interrupt request                                                                                                                                                                                                                            |  |  |
| DMA                    |                        |                                                                                                                                                                                                                                                       |  |  |
| nXDREQ[1:0]            | Ι                      | External DMA request                                                                                                                                                                                                                                  |  |  |
| nXDACK[1:0]            | 0                      | External DMA acknowledge                                                                                                                                                                                                                              |  |  |

# Table 1-2. S3C2800X Signal Descriptions



| [                                                                                                                                                      |                                             |                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Signal                                                                                                                                                 | I/O                                         | Description                                                                                                                                                                                        |  |  |  |
| UART                                                                                                                                                   | UART                                        |                                                                                                                                                                                                    |  |  |  |
| RxD[1:0]                                                                                                                                               | RxD[1:0]     I     UART receives data input |                                                                                                                                                                                                    |  |  |  |
| TxD[1:0]                                                                                                                                               | 0                                           | UART transmits data output                                                                                                                                                                         |  |  |  |
| nCTS[1:0]                                                                                                                                              | I                                           | UART clear to send input signal                                                                                                                                                                    |  |  |  |
| nRTS[1:0]                                                                                                                                              | 0                                           | UART request to send output signal                                                                                                                                                                 |  |  |  |
| IIC-BUS                                                                                                                                                |                                             |                                                                                                                                                                                                    |  |  |  |
| IICSDA[1:0]                                                                                                                                            | 10                                          | IIC-bus data                                                                                                                                                                                       |  |  |  |
| IICSCL[1:0]                                                                                                                                            | CL[1:0] IO IIC-bus clock                    |                                                                                                                                                                                                    |  |  |  |
| Remote Receive I                                                                                                                                       | nterru                                      | ıpt                                                                                                                                                                                                |  |  |  |
| IRIN                                                                                                                                                   | Ι                                           | Remote Receive interrupt input                                                                                                                                                                     |  |  |  |
| GENERAL PORT                                                                                                                                           |                                             |                                                                                                                                                                                                    |  |  |  |
| GP[47:0]                                                                                                                                               | Ю                                           | General input/output ports (GPA[7:0], GPB[7:0], GPC[3:0], GPD[7:0], GPE[7:0], GPF[7:0])                                                                                                            |  |  |  |
| <b>RESET &amp; CLOCK</b>                                                                                                                               |                                             |                                                                                                                                                                                                    |  |  |  |
| nRESET                                                                                                                                                 | ST                                          | nRESET suspends any operation in progress and places S3C2800X into a known reset state. For a reset, nRESET must be held to L level for at least 4 SYSCLK after the processor power is stabilized. |  |  |  |
| nRESET_OUT                                                                                                                                             | 0                                           | The nRESET_OUT pin is asserted during hardware reset(POR,nRESET),software reset and watch-dog reset.                                                                                               |  |  |  |
| XTAL0                                                                                                                                                  | AI                                          | Crystal Input for internal osc circuit for system clock.<br>If it isn't used, XTAL0 has to be H level.                                                                                             |  |  |  |
| EXTAL0 AO Crystal Output for internal osc circuit for system clock. It is the inverted output of XTAL0. If it isn't used, it has to be a floating pin. |                                             |                                                                                                                                                                                                    |  |  |  |
| PLLCAP                                                                                                                                                 | AI                                          | Loop filter capacitor for system clock PLL. ( 700pF )                                                                                                                                              |  |  |  |
| XTAL1                                                                                                                                                  | AI                                          | 32 KHz crystal input for RTC.                                                                                                                                                                      |  |  |  |
| EXTAL1                                                                                                                                                 | AO                                          | 32 KHz crystal output for RTC. It is the inverted output of XTAL1.                                                                                                                                 |  |  |  |
|                                                                                                                                                        |                                             |                                                                                                                                                                                                    |  |  |  |

## Table 1-2. S3C2800X Signal Descriptions (Continued)



.

| Signal                  | I/O | Description                                                                                                                                                                                                                                     |
|-------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JTAG TEST LOGI          | C   |                                                                                                                                                                                                                                                 |
| nTRST                   | I   | nTRST(TAP Controller Reset) resets the TAP controller at start.<br>If debugger is used, A 10K pull-up resister has to be connected.<br>If debugger(black ICE) isn't used, nTRST pin has to be L level or low active pulse.                      |
| TMS                     | Ι   | TMS (TAP Controller Mode Select) controls the sequence of the TAP controller's states. A 10K pull-up resister has to be connected to TMS pin.                                                                                                   |
| тск                     | I   | TCK (TAP Controller Clock) provides the clock input for the JTAG logic.<br>A 10K pull-up resister has to be connected to TCK pin.                                                                                                               |
| TDI                     | Ι   | TDI (TAP Controller Data Input) is the serial input for test instructions and data.<br>A 10K pull-up resister has to be connected to TDI pin.                                                                                                   |
| TDO                     | 0   | TDO (TAP Controller Data Output) is the serial output for test instructions and data.                                                                                                                                                           |
| POWER                   |     |                                                                                                                                                                                                                                                 |
| VDD18                   | Р   | S3C2800X core logic VDD (1.8 V)                                                                                                                                                                                                                 |
| VSS18                   | Р   | S3C2800X core logic VSS                                                                                                                                                                                                                         |
| AVDD18                  | Р   | S3C2800X Analog logic (PLL loop filter) VDD(1.8V)                                                                                                                                                                                               |
| AVSS18                  | Р   | S3C2800X Analog logic (PLL loop filter) VSS                                                                                                                                                                                                     |
| VDD33                   | Р   | S3C2800X I/O port VDD (3.3 V)                                                                                                                                                                                                                   |
| VSS33                   | Р   | S3C2800X I/O port VSS                                                                                                                                                                                                                           |
| VDD33_PCI               | Р   | S3C2800X PCI I/O port VDD (3.3V)                                                                                                                                                                                                                |
| VSS33_PCI               | Р   | S3C2800X PCI I/O port VSS                                                                                                                                                                                                                       |
| PCI INTERFACE           |     |                                                                                                                                                                                                                                                 |
| PCI_AD[31:0]            | I/O | PCI Address/Data Bus. Multiplexed address and data bus                                                                                                                                                                                          |
| PCI_C[3:0]/<br>nBE[3:0] | I/O | PCI C (bus command) or Byte enable                                                                                                                                                                                                              |
| PCI_PAR                 | I/O | PCI-parity. Parity is even across PCI_AD[31:0] and PCI_C[3:0]/nBE[3:0]. PCI_PAR is valid one cycle after either an address or data phase. The PCI device that drives PCI_AD[31:0] is responsible for driving PCI_PAR on the next PCI bus clock. |
| PCI_nFRAME              | I/O | PCI_nFRAME is driven by the current PCI bus master to indicate beginning and duration of a PCI access.                                                                                                                                          |
| PCI_nTRDY               | I/O | The target of the current PCI transaction drives PCI_nTRDY. Assertion of PCI_nTRDY indicates that the PCI target is ready to transfer data.                                                                                                     |
| PCI_nIRDY               | I/O | PCI_nIRDY is driven by the current PCI bus master. Assertion of PC_nIRDY indicates that the PCI initiator is ready to transfer data.                                                                                                            |
| PCI_nSTOP               | I/O | The target of the current PCI transaction may assert PCI_nSTOP to indicate to the requesting PCI master that it wants to end the current transaction.                                                                                           |
| PCI_nDEVSEL             | I/O | PCI_nDEVSEL is driven by the target of the current PCI transaction. A PCI target asserts PCI_nDEVSEL when it has decoded an address and command encoding and claims the transaction.                                                            |

# Table 1-2. S3C2800X Signal Descriptions (Continued)

| Signal              | I/O | Description                                                                                                                                                                                                                                                  |
|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCI_IDSEL           | I   | PCI_IDSEL is used during configuration cycles to select the PCI slave interface for<br>configuration                                                                                                                                                         |
| PCI_nPERR           | I/O | PCI_nPERR is used for reporting data parity errors on PCI transactions.<br>PCI_nPERR is driven active by the device receiving PCI_AD[31:0],<br>PCI_C[3:0]/nBE[3:0], and PCI_PARITY, two PCI clocks following the data in which<br>bad parity is detected.    |
| PCI_nSERR           | I/O | PCI_nSERR is used for reporting address parity errors or catastrophic failures detected by a PCI target.                                                                                                                                                     |
| PCI_nREQ1<br>[nGNT] | Ι   | PCI_nREQ1 when internal arbiter is used<br>or<br>nGNT when external arbiter is used.                                                                                                                                                                         |
| PCI_nREQ[3:2]       | I   | PCI_nREQ[3:2] input when internal arbiter is used.<br>Request indicates to the arbiter that this agent desires use of the bus. This is a<br>point-to-point signal. Every master has its own PCI_nREQ which must be tri-stated<br>while PCI_nRST is asserted. |
| PCI_nGNT1<br>[nREQ] | 0   | PCI_nGNT1 when internal arbiter is used<br>or<br>nREQ when external arbiter is used.                                                                                                                                                                         |
| PCI_nGNT[3:2]       | 0   | PCI_nGNT[3:2] output when internal arbiter is used.<br>Grant indicates to the agent that access to the bus has been granted. This is a<br>point-to-point signal. Every master has its own PCI_nGNT which must be ignored<br>while PCI-nRST is asserted.      |
| PCI_CLK             | I   | PCI_CLK is used as the asynchronous PCI clock when in asynch mode. It is unused when the PCI interface is operated synchronously with the AHB bus.                                                                                                           |
| PCI_nRST            | 0   | PCI specific reset                                                                                                                                                                                                                                           |
| PCI_nINTA           | 0   | PCI interrupt                                                                                                                                                                                                                                                |

# Table 1-2. S3C2800X Signal Descriptions (Continued)



# S3C2800X SPECIAL REGISTERS

| Register Name     | Address                               | R/W | Description                                  | Reset Value |
|-------------------|---------------------------------------|-----|----------------------------------------------|-------------|
| Clock & Power M   |                                       |     | Description                                  | Neset Value |
|                   | · · · · · · · · · · · · · · · · · · · |     | DLL configuration Deviator                   | 0.0000 0000 |
| PLLCON            | 0x1000 0000                           | R/W | PLL configuration Register                   | 0x00C0 0002 |
| CLKCON            | 0x1000 0004                           | R/W | Clock generator control Register             | 0x0000 1FFC |
| CLKSLOW           | 0x1000 0008                           | R/W | Slow clock control register                  | 0x0000 0000 |
| LOCKTIME          | 0x1000 000C                           | R/W | PLL lock time count register                 | 0x0000 0FFF |
| SWRCON            | 0x1000 0010                           | W   | Software reset control register              | 0x0000 0000 |
| RAMSR             | 0x1000 0014                           | R/W | Reset and RTC alarm match status register    | 0x0000 0001 |
| Reserved          | 0x1000 0018<br>~0x1000 FFFF           |     | Reserved                                     |             |
| Memory Controll   | er                                    |     |                                              |             |
| ENDIAN            | 0x1001 0000                           | R   | Memory clock & Endian mode control           | 0x0000 000- |
| SMBCON0           | 0x1001 0004                           | R/W | Bank 0 control register for static memory    | 0x0000 00A3 |
| SMBCON1           | 0x1001 0008                           | R/W | Bank 1 control register for static memory    | 0x0000 00A3 |
| SMBCON2           | 0x1001 000C                           | R/W | Bank 2 control register for static memory    | 0x0000 00A3 |
| SMBCON3           | 0x1001 0010                           | R/W | Bank 3 control register for static memory    | 0x0000 00A3 |
| REFRESH           | 0x1001 0014                           | R/W | DRAM/SDRAM refresh control register          | 0x00A4 0000 |
| DMTMCON           | 0x1001 0018                           | R/W | Timing control for dynamic memory            | 0x0003 0D50 |
| MRSR              | 0x1001 001C                           | R/W | Mode Register Set Register for SDRAM         | 0x0000 0030 |
| Reserved          | 0x1001 0020<br>~0x1001 FFFF           |     | Reserved                                     |             |
| Interrupt Control | ler                                   |     |                                              |             |
| SRCPND            | 0x1002 0000                           | R/W | Indicates the interrupt request status.      | 0x0000 0000 |
| INTMOD            | 0x1002 0004                           | R/W | Interrupt mode Register                      | 0x0000 0000 |
| INTMSK            | 0x1002 0008                           | R/W | Determines which interrupt source is masked. | 0x0000 0000 |
| IRQPND            | 0x1002 000C                           | R   | IRQ interrupt service pending register       | 0x0000 0000 |
| FIQPND            | 0x1002 0010                           | R   | FIQ interrupt service pending register       | 0x0000 0000 |
| Reserved          | 0x1002 0014<br>~0x1002 FFFF           |     | Reserved                                     |             |

### Table 1-3. S3C2800X Special Registers



| Register Name  | Address                     | R/W | Description                                | Reset Value |
|----------------|-----------------------------|-----|--------------------------------------------|-------------|
| DMA Controller | ·                           |     |                                            |             |
| DMASRC0        | 0x1003 0000                 | R/W | DMA 0 Source address register              | 0x0000 0000 |
| DMADES0        | 0x1003 0004                 | R/W | DMA 0 Destination address register         | 0x0000 0000 |
| DMACON0        | 0x1003 0008                 | R/W | DMA 0 control register                     | 0x0000 0000 |
| DMASTS0        | 0x1003 000C                 | R   | DMA 0 status register                      | Undefined   |
| DMACSRC0       | 0x1003 0010                 | R   | DMA 0 current source address register      | Undefined   |
| DMACDES0       | 0x1003 0014                 | R   | DMA 0 current destination address register | Undefined   |
| MASKTRIG0      | 0x1003 0018                 | R/W | DMA 0 mask trigger register                | Undefined   |
| Reserved       | 0x1003 001C<br>~0x1003 FFFF |     | Reserved                                   |             |
| DMASRC1        | 0x1004 0000                 | R/W | DMA 1 Source address register              | 0x0000 0000 |
| DMADES1        | 0x1004 0004                 | R/W | DMA 1 Destination address register         | 0x0000 0000 |
| DMACON1        | 0x1004 0008                 | R/W | DMA 1 control register                     | 0x0100 0000 |
| DMASTS1        | 0x1004 000C                 | R   | DMA 1 status register                      | Undefined   |
| DMACSRC1       | 0x1004 0010                 | R   | DMA 1 current source address register      | Undefined   |
| DMACDES1       | 0x1004 0014                 | R   | DMA 1 current destination address register | Undefined   |
| MASKTRIG1      | 0x1004 0018                 | R/W | DMA 0 mask trigger register                | Undefined   |
| Reserved       | 0x1004 001C<br>~0x1004 FFFF |     | Reserved                                   |             |
| DMASRC2        | 0x1005 0000                 | R/W | DMA 2 Source address register              | 0x0000 0000 |
| DMADES2        | 0x1005 0004                 | R/W | DMA 2 Destination address register         | 0x0000 0000 |
| DMACON2        | 0x1005 0008                 | R/W | DMA 2 control register                     | 0x0200 0000 |
| DMASTS2        | 0x1005 000C                 | R   | DMA 2 status register                      | Undefined   |
| DMACSRC2       | 0x1005 0010                 | R   | DMA 2 current source address register      | Undefined   |
| DMACDES2       | 0x1005 0014                 | R   | DMA 2 current destination address register | Undefined   |
| MASKTRIG2      | 0x1005 0018                 | R/W | DMA 0 mask trigger register                | Undefined   |
| Reserved       | 0x1005 001C<br>~0x1005 FFFF |     | Reserved                                   |             |
| DMASRC3        | 0x1006 0000                 | R/W | DMA 3 Source address register              | 0x0000 0000 |
| DMADES3        | 0x1006 0004                 | R/W | DMA 3 Destination address register         | 0x0000 0000 |
| DMACON3        | 0x1006 0008                 | R/W | DMA 3 control register                     | 0x0300 0000 |
| DMASTS3        | 0x1006 000C                 | R   | DMA 3 status register                      | Undefined   |
| DMACSRC3       | 0x1006 0010                 | R   | DMA 3 current source address register      | Undefined   |
| DMACDES3       | 0x1006 0014                 | R   | DMA 3 current destination address register | Undefined   |



| Register Name  | Address                     | R/W | R/W Description             |           |  |
|----------------|-----------------------------|-----|-----------------------------|-----------|--|
| MASKTRIG3      | 0x1006 0018                 | R/W | DMA 3 mask trigger register | Undefined |  |
| Reserved       | 0x1006 001C<br>~0x1006 FFFF |     | Reserved                    |           |  |
| PCI Controller |                             |     |                             |           |  |
| PCI Register   | 0x1008 001C<br>~0x1008 FFFC |     |                             |           |  |
| Reserved       | 0x1009 0000<br>~0x100F FFFF |     |                             |           |  |



| Register Name          | Address                     | R/W       | Description                              | Reset Value |
|------------------------|-----------------------------|-----------|------------------------------------------|-------------|
| <b>GPIO Controller</b> |                             |           |                                          |             |
| PCONA                  | 0x1010 0000                 | R/W       | Configures the pins of port A            | 0x0000 FFFF |
| PDATA                  | 0x1010 0004                 | R/W       | The data register for port A             | Undef.      |
| PUPA                   | 0x1010 0008                 | R/W       | Pull-up disable register for port A      | 0x0000 0000 |
| PCONB                  | 0x1010 000C                 | R/W       | Configures the pins of port B            | 0x0000 0FFF |
| PDATB                  | 0x1010 0010                 | R/W       | The data register for port B             | Undef.      |
| PUPB                   | 0x1010 0014                 | R/W       | Pull-up disable register for port B      | 0x0000 0000 |
| PCONC                  | 0x1010 0018                 | R/W       | Configures the pins of port C            | 0x0000 0000 |
| PDATC                  | 0x1010 001C                 | R/W       | The data register for port C             | Undef.      |
| PUPC                   | 0x1010 0020                 | R/W       | Pull-up disable register for port C      | 0x0000 0000 |
| PCOND                  | 0x1010 0024                 | R/W       | Configures the pins of port D            | 0x0000 0000 |
| PDATD                  | 0x1010 0028                 | R/W       | The data register for port D             | Undef.      |
| PUPD                   | 0x1010 002C                 | R/W       | Pull-up disable register for port D      | 0x0000 0000 |
| PCONE                  | 0x1010 0030                 | R/W       | Configures the pins of port E            | 0x0000 0000 |
| PDATE                  | 0x1010 0034                 | R/W       | The data register for port E             | Undef.      |
| PUPE                   | 0x1010 0038                 | R/W       | Pull-up disable register for port E      | 0x0000 0000 |
| PCONF                  | 0x1010 003C                 | R/W       | Configures the pins of port F            | 0x0000 0000 |
| PDATF                  | 0x1010 0040                 | R/W       | The data register for port F             | Undef.      |
| PUPF                   | 0x1010 0044                 | R/W       | Pull-up disable register for port F      | 0x0000 0000 |
| EXTINTR                | 0x1010 0048                 | R/W       | External Interrupt control Register      | 0x0000 0000 |
| Reserved               | 0x1010 004C<br>~0x1010 FFFF |           | Reserved                                 |             |
| Remote Control S       | Signal Receive C            | ontroller |                                          |             |
| RRCR                   | 0x1011 0000                 | R/W       | Remocon receiver control register        | 0x0000 0010 |
| FIFOD                  | 0x1011 0004                 | R         | FIFO Data register                       | -           |
| Reserved               | 0x1011 0008<br>~0x1011 FFFF |           | Reserved                                 |             |
| Watch-dog Timer        | Controller                  |           |                                          |             |
| WTPSCLR                | 0x1012 0000                 | R/W       | Watch-dog timer prescaler value Register | 0x0000 0080 |
| WTCON                  | 0x1012 0004                 | R/W       | Watch-dog timer control Register         | 0x0000 0000 |
| WTCNT                  | 0x1012 0008                 | R         | Watch-dog timer count Register           | 0x0000 0000 |
| Reserved               | 0x1012 000C<br>~0x1012 FFFF |           | Reserved                                 |             |



| Register Name    | Address                     | R/W | Description                             | Reset Value |
|------------------|-----------------------------|-----|-----------------------------------------|-------------|
| Timer Controller | 1 1                         |     | -                                       | I           |
| TMCON0           | 0x1013 0000                 | R/W | Timer 0 control register                | 0x0000 0000 |
| TMDATA0          | 0x1013 0004                 | R/W | Timer 0 Data Register                   | 0x0080 FFFF |
| TMCNT0           | 0x1013 0008                 | R   | Timer 0 count register                  | 0x0000 FFFF |
| TMDMASEL         | 0x1013 000C                 | R/W | DMA or Interrupt mode selecton register | 0x0000 0000 |
| Reserved         | 0x1013 0010<br>~0x1013 FFFF |     | Reserved                                |             |
| TMCON1           | 0x1014 0000                 | R/W | Timer 1 control register                | 0x0000 0000 |
| TMDATA1          | 0x1014 0004                 | R/W | Timer 1 Data Register                   | 0x0080 FFFF |
| TMCNT1           | 0x1014 0008                 | R   | Timer 1 count register                  | 0x0000 FFFF |
| Reserved         | 0x1014 000C<br>~0x1014 FFFF |     | Reserved                                |             |
| TMCON2           | 0x1015 0000                 | R/W | Timer 2 control register                | 0x0000 0000 |
| TMDATA2          | 0x1015 0004                 | R/W | Timer 2 Data Register                   | 0x0080 FFFF |
| TMCNT2           | 0x1015 0008                 | R   | Timer 2 count register                  | 0x0000 FFFF |
| Reserved         | 0x1015 000C<br>~0x1015 FFFF |     | Reserved                                |             |
| Real Time Clock  | Controller                  |     | ·                                       |             |
| RTCCON           | 0x1016 0000                 | R/W | RTC control Register                    | 0x0000 0000 |
| RTCALM           | 0x1016 0004                 | R/W | RTC alarm control Register              | 0x0000 0000 |
| ALMSEC           | 0x1016 0008                 | R/W | Alarm second data Register              | 0x0000 0000 |
| ALMMIN           | 0x1016 000C                 | R/W | Alarm minute data Register 0x00         |             |
| ALMHOUR          | 0x1016 0010                 | R/W | Alarm hour data Register 0x00           |             |
| ALMDAY           | 0x1016 0014                 | R/W | Alarm day data Register                 | 0x0000 0001 |
| ALMMON           | 0x1016 0018                 | R/W | Alarm month data Register               | 0x0000 0001 |
| ALMYEAR          | 0x1016 001C                 | R/W | Alarm hour data Register                | 0x0000 0000 |
| BCDSEC           | 0x1016 0020                 | R/W | BCD second Register                     | -           |
| BCDMIN           | 0x1016 0024                 | R/W | BCD minute Register                     | -           |
| BCDHOUR          | 0x1016 0028                 | R/W | BCD hour Register                       | -           |
| BCDDAY           | 0x1016 002C                 | R/W | BCD day Register                        | -           |
| BCDDATE          | 0x1016 0030                 | R/W | BCD date Register                       | -           |
| BCDMON           | 0x1016 0034                 | R/W | BCD month Register                      | -           |
| BCDYEAR          | 0x1016 0038                 | R/W | BCD year Register                       | -           |
| Reserved         | 0x1016 003C                 |     | Reserved                                |             |
| TICNT            | 0x1016 0040                 | R/W | Tick time count Register                | 0x0000 0000 |



| Register Name   | Address                          | R/W            | Description                              | Reset Value |
|-----------------|----------------------------------|----------------|------------------------------------------|-------------|
| RTCRST          | 0x1016 0044                      | R/W            | RTC round reset Register                 | -           |
| Reserved        | 0x1016 0044<br>~0x1016 FFFF      |                | Reserved                                 |             |
| UART Controller | ,                                |                |                                          |             |
| ULCON0          | 0x1017 0000                      | R/W            | UART channel 0 line control register     | 0x0000 0000 |
| UCON0           | 0x1017 0004                      | R/W            | UART channel 0 control register          | 0x0000 0000 |
| UFCON0          | 0x1017 0008                      | R/W            | UART channel 0 FIFO control register     | 0x0000 0000 |
| UMCON0          | 0x1017 000C                      | R/W            | UART channel 0 Modem control register    | 0x0000 0000 |
| UTRSTAT0        | 0x1017 0010                      | R              | UART channel 0 Tx/Rx status register     | 0x0000 0006 |
| UERSTAT0        | 0x1017 0014                      | R              | UART channel 0 Rx error status register  | 0x0000 0000 |
| UFSTAT0         | 0x1017 0018                      | R              | UART channel 0 FIFO status register      | 0x0000 0000 |
| UMSTAT0         | 0x1017 001C                      | R              | UART channel 0 Modem status register     | 0x0000 0000 |
| UTXH0           | 0x1017 0020(L)<br>0x1017 0023(B) | W<br>(by byte) | UART channel 0 transmit holding register | -           |
| URXH0           | 0x1017 0024(L)<br>0x1017 0027(B) | R<br>(by byte) | UART channel 0 receive buffer register   | -           |
| UBRDIV0         | 0x1017 0028                      | R/W            | Baud rate divisior register 0            | 0x0000 001A |
| Reserved        | 0x1017 002C<br>~0x1017 FFFF      |                | Reserved                                 |             |
| ULCON1          | 0x1018 0000                      | R/W            | UART channel 1 line control register     | 0x0000 0000 |
| UCON1           | 0x1018 0004                      | R/W            | UART channel 1 control register          | 0x0000 0000 |
| UFCON1          | 0x1018 0008                      | R/W            | UART channel 1 FIFO control register     | 0x0000 0000 |
| UMCON1          | 0x1018 000C                      | R/W            | UART channel 1 Modem control register    | 0x0000 0000 |
| UTRSTAT1        | 0x1018 0010                      | R              | UART channel 1 Tx/Rx status register     | 0x0000 0006 |
| UERSTAT1        | 0x1018 0014                      | R              | UART channel 1 Rx error status register  | 0x0000 0000 |
| UFSTAT1         | 0x1018 0018                      | R              | UART channel 1 FIFO status register      | 0x0000 0000 |
| UMSTAT1         | 0x1018 001C                      | R              | UART channel 1 Modem status register     | 0x0000 0000 |
| UTXH1           | 0x1018 0020(L)<br>0x1018 0023(B) | W<br>(by byte) | UART channel 1 transmit holding register | -           |
| URXH1           | 0x1018 0024(L)<br>0x1018 0027(B) | R<br>(by byte) | UART channel 1 receive buffer register   | -           |
| UBRDIV1         | 0x1018 0028                      | R/W            | Baud rate divisior register 1            | 0x0000 001A |
| Reserved        | 0x1018 002C<br>~0x1018 FFFF      |                | Reserved                                 |             |



| Register Name                                               | Address                     | R/W | Description                                    | Reset Value |
|-------------------------------------------------------------|-----------------------------|-----|------------------------------------------------|-------------|
| IIC Controller                                              |                             |     |                                                |             |
| IICCON0                                                     | 0x1019 0000                 | R/W | IIC-Bus 0 control register                     | 0x0000 0020 |
| IICSTAT0                                                    | 0x1019 0004                 | R/W | IIC-Bus 0 control/status register              | 0x0000 0000 |
| IICADD0                                                     | 0x1019 0008                 | R/W | IIC-Bus 0 address register                     | -           |
| IICDS0                                                      | 0x1019 000C                 | R/W | IIC-Bus 0 transmit/receive data shift register | -           |
| Reserved                                                    | 0x1019 0010<br>~0x1019 FFFF |     | Reserved                                       |             |
| IICCON1                                                     | 0x101A 0000                 | R/W | IIC-Bus 1 control register                     | 0x0000 0020 |
| IICSTAT1                                                    | 0x101A 0004                 | R/W | IIC-Bus 1 control/status register              | 0x0000 0000 |
| IICADD1                                                     | 0x101A 0008                 | R/W | IIC-Bus 1 address register                     | -           |
| IICDS1                                                      | 0x101A 000C                 | R/W | IIC-Bus 1 transmit/receive data shift register | -           |
| Reserved                                                    | 0x101A 0010<br>~0x101F FFFF |     | Reserved                                       |             |
| Special Register : 0x1000 0000 ~ 0x101F FFFF (Total 2MByte) |                             |     |                                                |             |

#### IMPORTANT NOTES ABOUT S3C44B0X SPECIAL REGISTERS

- 1. In little endian mode, (L). endian address has to be used. In Big endian mode, (B). endian address has to be used.
- 2. All registers except UART registers(UTXHn/URXHn) have to be read/written by word unit (32bit) at Little/Big endian.
- 3. It's very important that the UART registers(UTXHn/URXHn) be read/written by the specified access unit and the specified address. Also, what endian mode is used is carefully considered.
- 4. The special registers have to be accessed by the word(32-bit) access unit only. (To be accessed by LDR/STR or int type pointer(int \*)).
- 5. LDRH/STRH(half-word access) or short int type pointer(short int \*) and LDRB/STRB(byte access) or char type pointer(char \*) except UART registers(UTXHn/URXHn) have not to be used.



# **2 PROGRAMMER'S MODEL**

# ABOUT THE PROGRAMMER'S MODEL

ARM920T incorporates the ARM9TDMI Integer Core, which implements the ARMv4T Architecture. It executes the ARM and Thumb instruction sets, and includes EmbeddedICE JTAG software debug features.

The programmer's model of ARM920T is the programmer's model of ARM9TDMI extended in the following ways:

• The system control coprocessor (CP15), which is integrated within ARM920T, provides additional registers that are used to configure and control the caches, MMU, protection system, and clocking mode of ARM920T.

• The MMU page tables which reside in main memory describe the virtual to physical address mapping, access permissions, and cache and write buffer configuration. These are created by the operating system software and accessed automatically by the ARM920T MMU hardware whenever an access causes a TLB miss.

#### THE ARM9TDMI PROGRAMMERS MODEL

The ARM9TDMI processor core implements ARM Architechure v4T, and so excutes the ARM 32-bit instruction set and the compressed Thumb 16-bit instruction set.

The ARM v4T architechure specifies a small number of implementation options. The options selected in the ARM9TDMI implementation are listed in the table below. For comparison, the options selected for the ARM7TDMI implementation are also shown.

| Processor<br>Core | ARM<br>architecture | Data abort model |                      |  |  |
|-------------------|---------------------|------------------|----------------------|--|--|
| ARM7TDMI          | v4T                 | Base updated     | Address of Inst + 12 |  |  |
| ARM9TDMI          | v4T                 | Base restored    | Address of Inst + 12 |  |  |

#### Table 2-1 ARM9TDMI Implementation option

The ARM9TDMI is code compatible with the ARM7TDMI, with two exceptions:

- The ARM9TDMI implements the Base Restored Data Abort model, which significantly simplifies the software data abort handler.
- The ARM9TDMI fully implements the instruction set extension space added to the ARM(32-bit) instruction set in Architeture v4 and v4T.

These differences are explained in more detail below



# • Data abort model

The ARM9TDMI implements the Base Restored Data Abort Model, which differs from the Base updated data abort model inplemented by ARM7TDMI.

The difference in the Data Abort Model affects only a very small section of operating system code, the data abort handler. It does not affect user code. With the Base Restored Data Abort Model, when a data abort exception occurs during the excution of a memory access instruction, the base register is always restored by the processor hardware to the value the register contained before the instruction was excuted. This removes the need for the data abort handler to 'unwind' any base register update which may have been specified by the aborted instruction.

The Base Restored Data Abort Model significantly simplifies the software data abort handler.

#### Instruction set extension spaces

All ARM processors implement the undefined instruction space as one of the entry mechnisms for the Undefined Instruction Exception. That is, ARM instructions with opcode[27:25]=0b011 and opcode[4]=1 are UNDEFINED on all ARM processors including the ARM9TDMI and ARM7TDMI

ARM Architecture v4 and v4T also introduced a number of instruction set extension space to the ARM instruction set. These are:

- arithmetic instruction extension space
- control instruction extension space
- coprocessor instruction extension space
- load/store instruction extension space

Instructions in these space are UNDEFINED (they cause an Undefined Instruction Exception). The ARM9TDMI fully implements all the instruction set extension spaces defined in ARM Architecture v4T as UNDEFINED instructions, allowing emulation of future instruction set additions.

#### THE ARM920T PROGRAMMERS MODEL

The ARM920T implements uses a five-stage pipeline design. These five stages are:

- instruction fetch (F)
- instruction decode (D)
- execute (E)
- data memory access (M)
- register write (W)

ARM implementations are fully interlocked, so that software will function identically across different implementations without concern for pipeline effects. Interlock do affect instruction times. For example, the following sequence suffers a single cycle penalty due to a load-use interlock on register r0:

LDR R0,[R7] ADD R5,R0,R1



#### PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM920T can be in one of two states:

- ARM state which executes 32-bit, word-aligned ARM instructions.
- *THUMB state* which can execute 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit 1 to select between alternate halfwords.

#### NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

#### SWITCHING STATE

#### **Entering THUMB State**

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand register. Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was entered with the processor in THUMB state.

#### **Entering ARM State**

Entry into ARM state happens:

- On execution of the BX instruction with the state bit clear in the operand register.
- On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is placed in the exception mode's link register, and execution commences at the exception's vector address.

#### **MEMORY FORMATS**

ARM920T views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on. ARM920T can treat words in memory as being stored either in Big-Endian or Little-Endian format.

#### **BIG-ENDIAN FORMAT**

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines 31 through 24.

| Higher Address | 31 | 24 | 23 | 16                 | 15 | 8 | 7  | 0        | Word Address |
|----------------|----|----|----|--------------------|----|---|----|----------|--------------|
|                | 8  |    | 9  |                    | 10 |   | 11 |          | 8            |
| T              | 4  |    | 5  |                    | 6  |   | 7  |          | 4            |
|                | 0  |    | 1  |                    | 2  |   | 3  |          | 0            |
| Lower Address  |    |    |    | yte is a<br>d by b |    |   |    | signific | ant byte.    |

#### Figure 2-1. Big-Endian Addresses of Bytes within Words



### LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines 7 through 0.

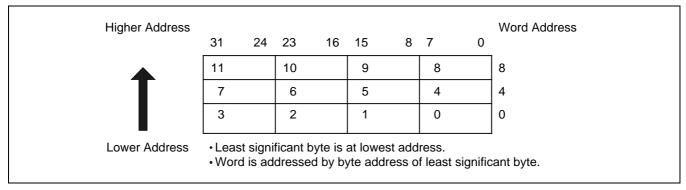



Figure 2-2. Little-Endian Addresses of Bytes whthin Words

#### **INSTRUCTION LENGTH**

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

#### Data Types

ARM920T supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-byte boundaries and half words to two-byte boundaries.



#### **OPERATING MODES**

ARM920T supports seven modes of operation:

- User (usr): The normal ARM program execution state
- FIQ (fiq): Designed to support a data transfer or channel process
- IRQ (irq): Used for general-purpose interrupt handling
- Supervisor (svc): Protected mode for the operating system
- Abort mode (abt): Entered after a data or instruction prefetch abort
- System (sys): A privileged user mode for the operating system
- Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception processing. Most application programs will execute in User mode. The non-user modes' known as privileged modes-are entered in order to service interrupts or exceptions, or to access protected resources.

#### REGISTERS

ARM9TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these cannot all be seen at once. The processor state and operating mode dictate which registers are available to the programmer.

#### The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are general-purpose, and may be used to hold either data or address values. In addition to these, there is a seventeenth register used to store status information.

| Register 14 | is used as the subroutine link register. This receives a copy of R15 when a Branch<br>and Link (BL) instruction is executed. At all other times it may be treated as a<br>general-purpose register. The corresponding banked registers R14_svc, R14_irq,<br>R14_fiq, R14_abt and R14_und are similarly used to hold the return values of R15<br>when interrupts and exceptions arise, or when Branch and Link instructions are<br>executed within interrupt or exception routines. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register 15 | holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits [31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.                                                                                                                                                                                                                                                                                                           |
| Register 16 | is the CPSR (Current Program Status Register). This contains condition code flags and the current mode bits.                                                                                                                                                                                                                                                                                                                                                                       |

FIQ mode has seven banked registers mapped to R8-14 (R8\_fiq-R14\_fiq). In ARM state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers



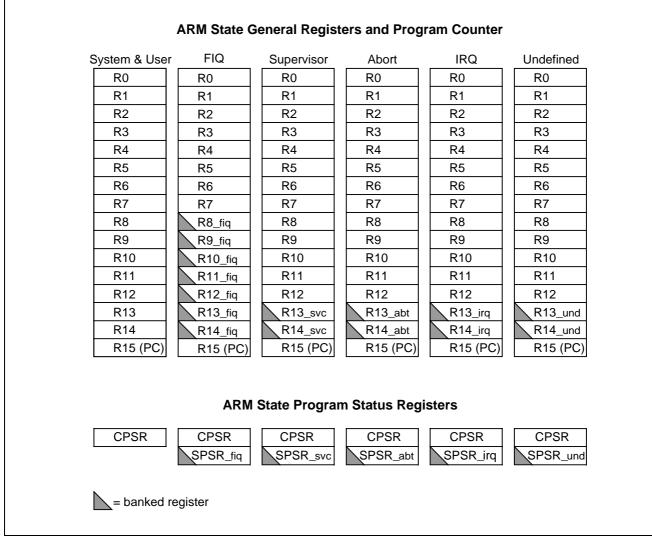



Figure 2-3. Register Organization in ARM State



#### The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR), and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each privileged mode. This is shown in Figure 2-4.

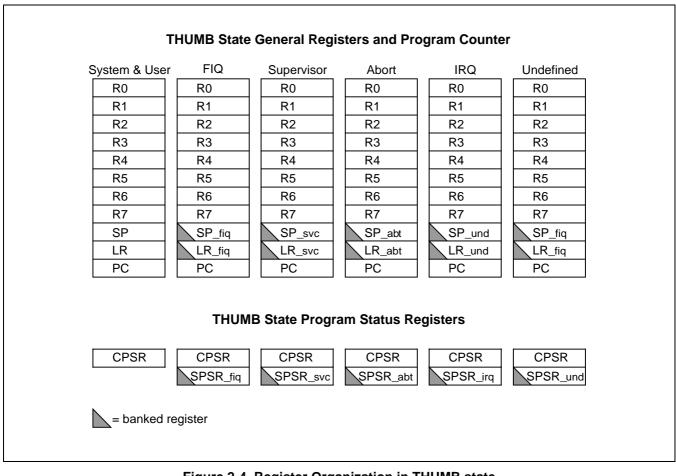



Figure 2-4. Register Organization in THUMB state



#### The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

- THUMB state R0-R7 and ARM state R0-R7 are identical
- THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical
- THUMB state SP maps onto ARM state R13
- THUMB state LR maps onto ARM state R14
- The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

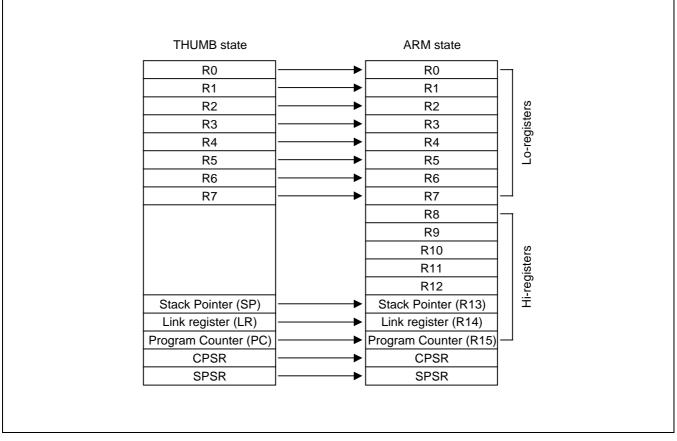



Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers



#### Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure 3-34.

#### THE PROGRAM STATUS REGISTERS

The ARM920T contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers (SPSRs) for use by exception handlers. These register's functions are:

- Hold information about the most recently performed ALU operation
- Control the enabling and disabling of interrupts
- Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

| Conc    | lition ( | Code | Flags   | \$<br>     |                                     | (R    | eserv | ed) |   |        |        |   |   | Contr | ol Bits | 6  |    | _  |
|---------|----------|------|---------|------------|-------------------------------------|-------|-------|-----|---|--------|--------|---|---|-------|---------|----|----|----|
| 1<br>31 | 30       | 29   | ا<br>28 | ו<br>27    | 26                                  | 25    | 24    | 23  |   | 1<br>8 | 1<br>7 | 6 | 5 | 4     | 3       | 2  | 1  | 0  |
| Ν       | z        | с    | V       | •          | •                                   | •     | •     | •   | • | ٠      | I      | F | т | M4    | М3      | M2 | M1 | MO |
|         |          |      |         | — (<br>— z | Overflo<br>Carry/<br>Zero<br>Negati | Borro |       |     |   |        |        |   |   |       |         |    |    |    |

Figure 2-6. Program Status Register Format



#### **The Condition Code Flags**

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

#### **The Control Bits**

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will be changed when an exception arises. If the processor is operating in a privileged mode, they can also be manipulated by software.

| The T bit              | This reflects the operating state. When this bit is set, the processor is executing in THUMB state, otherwise it is executing in ARM state. This is reflected on the <b>TBIT</b> external signal.                                                                                                                                                                                                                                                 |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Note that the software must never change the state of the <b>TBIT</b> in the CPSR. If this happens, the processor will enter an unpredictable state.                                                                                                                                                                                                                                                                                              |
| Interrupt disable bits | The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ interrupts respectively.                                                                                                                                                                                                                                                                                                                                 |
| The mode bits          | The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the processor's operating mode, as shown in Table 2-1. Not all combinations of the mode bits define a valid processor mode. Only those explicitly described shall be used. The user should be aware that if any illegal value is programmed into the mode bits, M[4:0], then the processor will enter an unrecoverable state. If this occurs, reset should be applied. |
| Reserved bits          | The remaining bits in the PSRs are reserved. When changing a PSR's flag or control bits, you must ensure that these unused bits are not altered. Also, your program should not rely on them containing specific values, since in future processors they may read as one or zero.                                                                                                                                                                  |



| Table 2-2 | 2. PSR | Mode | Bit \ | Values |
|-----------|--------|------|-------|--------|
|-----------|--------|------|-------|--------|

| M[4:0] | Mode       | Visible THUMB state registers                  | Visible ARM state registers                       |
|--------|------------|------------------------------------------------|---------------------------------------------------|
| 10000  | User       | R7R0,<br>LR, SP<br>PC, CPSR                    | R14R0,<br>PC, CPSR                                |
| 10001  | FIQ        | R7R0,<br>LR_fiq, SP_fiq<br>PC, CPSR, SPSR_fiq  | R7R0,<br>R14_fiqR8_fiq,<br>PC, CPSR, SPSR_fiq     |
| 10010  | IRQ        | R7R0,<br>LR_irq, SP_irq<br>PC, CPSR, SPSR_irq  | R12R0,<br>R14_irq, R13_irq,<br>PC, CPSR, SPSR_irq |
| 10011  | Supervisor | R7R0,<br>LR_svc, SP_svc,<br>PC, CPSR, SPSR_svc | R12R0,<br>R14_svc, R13_svc,<br>PC, CPSR, SPSR_svc |
| 10111  | Abort      | R7R0,<br>LR_abt, SP_abt,<br>PC, CPSR, SPSR_abt | R12R0,<br>R14_abt, R13_abt,<br>PC, CPSR, SPSR_abt |
| 11011  | Undefined  | R7R0<br>LR_und, SP_und,<br>PC, CPSR, SPSR_und  | R12R0,<br>R14_und, R13_und,<br>PC, CPSR           |
| 11111  | System     | R7R0,<br>LR, SP<br>PC, CPSR                    | R14R0,<br>PC, CPSR                                |

Reserved bits The remaining bits in the PSR's are reserved. When changing a PSR's flag or control bits, you must ensure that these unused bits are not altered. Also, your program should not rely on them containing specific values, since in future processors they may read as one or zero.



#### EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order. See Exception Priorities on page 2-14.

#### Action on Entering an Exception

When handling an exception, the ARM920T:

- Preserves the address of the next instruction in the appropriate Link Register. If the exception has been entered from ARM state, then the address of the next instruction is copied into the Link Register (that is, current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has been entered from THUMB state, then the value written into the Link Register is the current PC offset by a value such that the program resumes from the correct place on return from the exception. This means that the exception handler need not determine which state the exception was entered from. For example, in the case of SWI, MOVS PC, R14\_svc will always return to the next instruction regardless of whether the SWI was executed in ARM or THUMB state.
- 2. Copies the CPSR into the appropriate SPSR
- 3. Forces the CPSR mode bits to a value which depends on the exception
- 4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the PC is loaded with the exception vector address.

#### Action on Leaving an Exception

On completion, the exception handler:

- 1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the type of exception.)
- 2. Copies the SPSR back to the CPSR
- 3. Clears the interrupt disable flags, if they were set on entry

#### NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR automatically sets the T bit to the value it held immediately prior to the exception.



#### **Exception Entry/Exit Summary**

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended instruction for exiting the exception handler.

|       | Return Instruction   | Previou   | Previous State |   |  |  |  |  |
|-------|----------------------|-----------|----------------|---|--|--|--|--|
|       |                      | ARM R14_x | THUMB R14_x    |   |  |  |  |  |
| BL    | MOV PC, R14          | PC + 4    | PC + 2         | 1 |  |  |  |  |
| SWI   | MOVS PC, R14_svc     | PC + 4    | PC + 2         | 1 |  |  |  |  |
| UDEF  | MOVS PC, R14_und     | PC + 4    | PC + 2         | 1 |  |  |  |  |
| FIQ   | SUBS PC, R14_fiq, #4 | PC + 4    | PC + 4         | 2 |  |  |  |  |
| IRQ   | SUBS PC, R14_irq, #4 | PC + 4    | PC + 4         | 2 |  |  |  |  |
| PABT  | SUBS PC, R14_abt, #4 | PC + 4    | PC + 4         | 1 |  |  |  |  |
| DABT  | SUBS PC, R14_abt, #8 | PC + 8    | PC + 8         | 3 |  |  |  |  |
| RESET | NA                   | -         | -              | 4 |  |  |  |  |

| Table2-2 | Exception | Entry/Exit |
|----------|-----------|------------|
|----------|-----------|------------|

#### NOTES:

1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.

2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.

3. Where PC is the address of the Load or Store instruction which generated the data abort.

4. The value saved in R14\_svc upon reset is unpredictable.

#### FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead of context switching).

FIQ is externally generated by taking the **nFIQ** input LOW. This input can except either synchronous or asynchronous transitions, depending on the state of the **ISYNC** input signal. When **ISYNC** is LOW, **nFIQ** and **nIRQ** are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the interrupt by executing

SUBS PC,R14\_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag is clear, ARM920T checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.



#### IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the **nIRQ** input. IRQ has a lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from the interrupt by executing

SUBS PC,R14\_irq,#4

#### Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external **ABORT** input. ARM920T checks for the abort exception during memory access cycles.

There are two types of abort:

- Prefetch abort: occurs during an instruction prefetch.
- Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

- Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be aware of this.
- The swap instruction (SWP) is aborted as though it had not been executed.
- Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15 (always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort, make the requested data available, and retry the aborted instruction. The application program needs no knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or Thumb):

| SUBS | PC,R14_abt,#4 | ; | for a prefetch abort, or |
|------|---------------|---|--------------------------|
| SUBS | PC,R14_abt,#8 | ; | for a data abort         |

This restores both the PC and the CPSR, and retries the aborted instruction.



#### Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or Thumb):

MOV PC,R14\_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

#### NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM920T CPU core.

#### **Undefined Instruction**

When ARM920T comes across an instruction which it cannot handle, it takes the undefined instruction trap. This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM or Thumb):

MOVS PC,R14\_und

This restores the CPSR and returns to the instruction following the undefined instruction.

#### **Exception Vectors**

The following table shows the exception vector addresses.

| Address   | Exception             | Mode in Entry |
|-----------|-----------------------|---------------|
| 0x0000000 | Reset                 | Supervisor    |
| 0x0000004 | Undefined instruction | Undefined     |
| 0x0000008 | Software Interrupt    | Supervisor    |
| 0x000000C | Abort (prefetch)      | Abort         |
| 0x0000010 | Abort (data)          | Abort         |
| 0x0000014 | Reserved              | Reserved      |
| 0x0000018 | IRQ                   | IRQ           |
| 0x000001C | FIQ                   | FIQ           |

#### **Table 2-4. Exception Vectors**



#### **Exception Priorites**

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are handled:

Highest priority:

- 1. Reset
- 2. Data abort
- 3. FIQ
- 4. IRQ
- 5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

#### Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear), ARM920T enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be added to worst-case FIQ latency calculations.



#### **INTERRUPT LATENCIES**

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to pass through the synchroniser (*Tsyncmax* if asynchronous), plus the time for the longest instruction to complete (*Tldm*, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data abort entry (*Texc*), plus the time for FIQ entry (*Tfiq*). At the end of this time ARM920T will be executing the instruction at 0x1C.

*Tsyncmax* is 3 processor cycles, *Tldm* is 20 cycles, *Texc* is 3 cycles, and *Tfiq* is 2 cycles. The total time is therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (*Tsyncmin*) plus *Tfiq*. This is 4 processor cycles.

#### RESET

When the **nRESET** signal goes LOW, ARM920T abandons the executing instruction and then continues to fetch instructions from incrementing word addresses.

When **nRESET** goes HIGH again, ARM920T:

- 1. Overwrites R14\_svc and SPSR\_svc by copying the current values of the PC and CPSR into them. The value of the saved PC and SPSR is not defined.
- 2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.
- 3. Forces the PC to fetch the next instruction from address 0x00.
- 4. Execution resumes in ARM state.



# ARM920T SYSTEM CONTROL COPROCESSOR (CP15) REGISTER SUMMARY

Throughout this section the following terms and abbreviations are used:

| Term           | Abbreviation | Description                                                                                                                                                                                                                                  |
|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unpredictable  | UNP          | For reads: the data returned when reading from this location<br>is unpredictable; it could have any value. For writes: writing to<br>this location will cause unpredictable behavior, or an<br>unpredictable change in device configuration. |
| undefined      |              | An instruction that accesses CP15 in the manner indicated will take the undefined instruction trap.                                                                                                                                          |
| should be zero | SBZ          | When writing to this location, all bits of this field should be 0.                                                                                                                                                                           |
| should be one  |              | When writing to this location, all bits in this field should be 1.                                                                                                                                                                           |

In all cases, reading from, or writing any data values to any CP15 registers, including those fields specified as unpredictable or should be zero, will not cause any permanent damage.

CP15 defines 16 registers. Table 2-2 on page 2-4 shows which registers are defined forreading and which registers are defined for writing. All CP15 register bits that aredefined and contain state, are set to zero by **Reset** except V-Bit in register 1, which takes the value of macrocell input **VINITH**.

CP15 registers can only be accessed with MRC and MCR instructions in a privileged mode. The instruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1. The assembler for these instructions is

MCR/MRC{cond} P15,opcode\_1,Rd,CRn,CRm,opcode\_2



| 31   | 28 | 27 | 24 | 23  | 21   | 20 | 19 |     | 16 | 15 | -  | 12 | 11   | 8 | 7     | 5   | 4 | 3 | 0   |
|------|----|----|----|-----|------|----|----|-----|----|----|----|----|------|---|-------|-----|---|---|-----|
| Cond |    | 11 | 10 | орс | od_1 | L  |    | CRn |    |    | Rd |    | 1111 |   | opcod | e_2 | 1 |   | CRm |

#### Figure 2-1 CP15 MRC and MCR bit pattern

Instructions CDP, LDC and STC, along with unprivileged MRC and MCR instructions to CP15 will cause the undefined instruction trap to be taken. The CRn field of MRC and MCR instructions specifies the coprocessor register to access. The CRm field and  $opcode_2$  field are used to specify a particular action when addressing registers.

Attempting to read from a non-readable register, or writing to a non-writable register will cause unpredictable results.

The opcode\_1, opcode\_2 and CRm fields should be zero, except when the values specified should be used to select the desired operations, in all instructions which access CP15. Using other values will result in unpredictable behavior.

| Register | Reads                  | Writes                 |  |  |  |  |  |
|----------|------------------------|------------------------|--|--|--|--|--|
| 0        | ID                     | Unpredictable          |  |  |  |  |  |
| 1        | Control                | Control                |  |  |  |  |  |
| 2        | Translation table base | Translation table base |  |  |  |  |  |
| 3        | Domain access control  | Domain access control  |  |  |  |  |  |
| 4        | Unpredictable          | Unpredictable          |  |  |  |  |  |
| 5        | Fault status           | Fault status           |  |  |  |  |  |
| 6        | Fault address          | Fault address          |  |  |  |  |  |
| 7        | Unpredictable          | Cache operations       |  |  |  |  |  |
| 8        | Unpredictable          | TLB operations         |  |  |  |  |  |
| 9        | Cache lock down        | Cache lock down        |  |  |  |  |  |
| 10       | TLB lock down          | TLB lock down          |  |  |  |  |  |
| 11       | Unpredictable          | Unpredictable          |  |  |  |  |  |
| 12       | Unpredictable          | Unpredictable          |  |  |  |  |  |
| 13       | Process ID             | Process ID             |  |  |  |  |  |
| 14       | Unpredictable          | Unpredictable          |  |  |  |  |  |
| 15       | Test configuration     | Test configuration     |  |  |  |  |  |

#### Table 2-1 CP15 abbreviations



# 2.2.1 CP15 REGISTERS

# **REGISTER 0: ID REGISTER**

Register 0 is the ID register and cache configuration register.

Reading from this register will return the device ID or the ICache and DCache sizes and line lengths of the device, depending on the value of opcode\_2 used.

The CRm fields should be zero when reading:

• opcode\_2 = 0 gives the ID value 0x4102920r, where r is the revision

• opcode\_2 = 1 gives the ICache and DCache sizes, associativity and line lengths encoded as 0x0D172172

Writing to register 0 is unpredictable.

| Function         | Data                   | Instruction          |
|------------------|------------------------|----------------------|
| Read ID          | ARM920T device ID      | MRC p15,0,Rd,c0,c0,0 |
| Read cache sizes | ICache and DCache type | MRC p15,0,Rd,c0,c0,1 |

#### Table 2-3 Reading from register 0

| 31    | 28 | 27    | 24 | 23  | 21  | 19 |    | 16 | 15 |     | 12 | 11 |     | 8 | 7 | 5     | 3 0      |
|-------|----|-------|----|-----|-----|----|----|----|----|-----|----|----|-----|---|---|-------|----------|
| 0 1 0 | 0  | 0 0 0 | 1  | 0 0 | 0 0 | 0  | 01 | 0  | 1  | 0 0 | 1  | 0  | 0 1 | 0 | 0 | 0 0 0 | Revision |

# Figure 2-2 Register 0 read device ID

Bits [31:24] contain the ASCII code of implementers trademark (0x41 = ARM).

Bits [23:16] contain the architecture 0x02 = Version 4T.

Bits [15:4] contain the 3-digit part number in BCD format 0x920.

Bits [3:0] contain the revision number for the processor.



| 31  | 28  | 27 |   |   |   | 23 |   |   | 21 |   |   |   | 16 |   |   |   | 12 |   |   |   | 8 | 7 |   |   | 5 | 3 |   |   | 0 |
|-----|-----|----|---|---|---|----|---|---|----|---|---|---|----|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 0 | 0 0 | 1  | 1 | 0 | 1 | 0  | 0 | 0 | 1  | 0 | 1 | 1 | 1  | 0 | 0 | 1 | 0  | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |

# Figure 2-3 Register 0 read cache type

| Register0                    | Bits                      | Function                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                              | [31:29]                   | Reserved as 0b000                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|                              |                           | Indicate which major cache class the implementation falls into. 0x6 means that the cache provides:                                                                          |  |  |  |  |  |  |  |  |  |
|                              | [28:25]                   | cache-clean-step operation                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                              |                           | <ul> <li>cache-flush-step operation</li> </ul>                                                                                                                              |  |  |  |  |  |  |  |  |  |
|                              |                           | lock-down facilities.                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|                              | [24]                      | Contains the cache Harvardness. 1 = Harvard                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                              | [23:21] Reserved as 0b000 |                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|                              |                           | Data cache size                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Data cache size              | [20:18]                   | 000 = 512B001 = 1KB010 = 2KB011 = 4KB100 = 8KB101 = 16KB110 = 32KB111 = 64KB                                                                                                |  |  |  |  |  |  |  |  |  |
|                              |                           | Cache associativity encoding                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Data cache<br>associativity. | [17:15]                   | 000 = Direct mapped001 = 2 Associativity010 = 4 Associativity011 = 8 Associativity100 = 16 Associativity101 = 32 Associativity110 = 64 Associativity111 = 128 Associativity |  |  |  |  |  |  |  |  |  |
|                              | [14]                      | Reserved 0                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                              |                           | Line length encoding                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| data cache line length.      | [13:12]                   | 00 = 2 word/Line         01 = 4 word/Line           10 = 8 word/Line         11 = 16 word/Line                                                                              |  |  |  |  |  |  |  |  |  |
|                              |                           |                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |



# **3** CLOCK & POWER MANAGEMENT(Preliminary)

# **OVERVIEW**

The Clock Generator in S3C2800X can generate the necessary clocks signals for the CPU as well as peripherals. The Clock Generator has the controllability of supplying or disconnecting clock to each peripheral block by S/W, which will reduce the power by having the selection on necessary peripherals suitable for given task. As well as this kind of S/W controllability, S3C2800X has various power management schemes to keep the optimal power consumption for the operation of given task.

The power management in S3C2800X consists of three mode : Normal mode, Slow mode, Idle mode.

The Normal mode is to supply clocks to CPU as well as all peripherals in S3C2800X. In this case, the power consumption will be maximized when all peripherals are turn on. The user can control the operation of peripherals by S/W. For example, if user does not need timer and DMA, user can disconnect the clock to timer and DMA to reduce the power.

The Slow mode is non-PLL mode. The difference from Normal mode is that the Slow mode uses external crystal clock directly as master clock in S3C2800X without PLL. In this case, the power consumption depends on the frequency of external crystal clock and the power consumption due to PLL itself should be excluded, compared to Normal mode.

The Idle mode disconnects the clock to CPU core only while it supply the clock to all peripherals. By using this Idle mode, we can reduce the power consumption due to CPU core. The wake-up from Idle mode can be done by all kind of interrupt request to CPU.

#### FEATURE

- Input frequency range : 4MHz ~ 10MHz.
- Output frequency range : 20MHz ~ 150MHz.
- Frequency changed by programmable divider.
- Power management : Normal, Slow, Idle.
- Reset controller : Hardware, Software, Watchdog reset.



# **FUNCTION DESCRIPTION**

#### **CLOCK GENERATION**

Figure 5-1 shows a block diagram of the clock generator. The main clock source is coming from an external crystal clock. The clock generator has an oscillator(Oscillation Amplifier) which should be connected to an external crystal, and also has a PLL (Phase-Locked-Loop) which takes the low frequency oscillator output as its input and generates the high frequency clock required by S3C2800X. The clock generator block has the logic to generate a stable clock frequency after a reset because it takes time to stabilize the clock.

#### Maximum Bus Frequencies

Table 5-1 lists the maximum operating frequencies for the S3C2800X. When selecting strap settings, ensure that the bus divider ratios result in bus frequencies that do not exceed these maximums.

| Internal Bus | Maximum<br>Frequency | Module on the Internal Bus                                          | Symbol |
|--------------|----------------------|---------------------------------------------------------------------|--------|
| CPU          | 150MHz               | CPU Core, I/D cache, R/W Buffer, MMU                                | CPUCLK |
| AHB          | 75MHz                | DMA, Interrupt, Clock & Power, PCI, Memory controller               | AHBCLK |
| APB          | 50MHz                | IIC, GPIO, UART, Timer, Remote Signal Receive, RTC, Watchdog timer. | APBCLK |

#### **Table3-1 Maximum Bus Frequencies**

| CPU Frequency(CPUCLK) | AHB Frequency(AHBCLK) | APB Frequency(APBCLK)  |
|-----------------------|-----------------------|------------------------|
| 150MHz                | 75MHz ( = CPUCLK/2)   | 37.5MHz ( = AHBCLK/2)  |
| 133MHz                | 66.5MHz ( = CPUCLK/2) | 33.25MHz ( = AHBCLK/2) |
| 100MHz                | 50MHz ( = CPUCLK/2)   | 50MHz ( = AHBCLK)      |
| 75MHz                 | 75MHz ( = CPUCLK)     | 37.5MHz ( = AHBCLK/2)  |



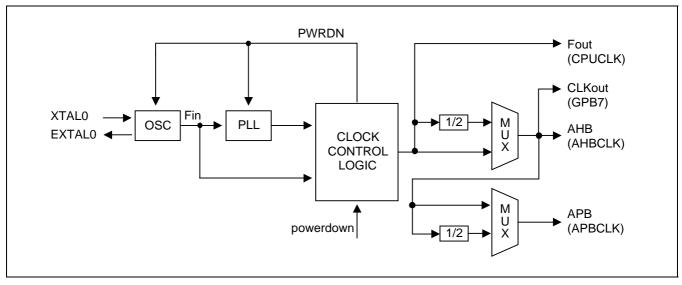



Figure 3-1. Clock Generator Block Diagram

#### NOTES:

 Although the PLL starts its operate just after a reset, the PLL output can not be used as Fpllo until S/W writes valid settings to the PLLCON register. Before this valid setting, the clock from crystal oscillator clock source will be used as Fout directly until lock time is started. Even if user want to maintain the default value of PLLCON register, user should write the same value into PLLCON register.



#### PLL (PHASE-LOCKED-LOOP)

The PLL within the clock generator is the circuit which synchronizes an output signal with a reference or input signal in terms of frequency as well as phase. In this application, it includes the following basic blocks (Figure 5-2 show the PLL block diagram), the VCO(Voltage Controlled Oscillator) to generate the output frequency proportional to input DC voltage, the divider P to divide the reference frequency by p, the divider M to divide the VCO output frequency by m which is input to PFD(Phase Frequency Detector), the divider S to divide the VCO output frequency by s which is Fpllo(the output frequency from PLL block), the phase detector, charge pump, and loop filter. The output clock frequency Fpllo is related to the reference input clock frequency Fin by the following equation:

Fpllo = (m \* Fin) / (p \*  $2^{s}$ ) m = M (the value for divider M)+ 8, p = P(the value for divider P) + 2

The following sections describe the PLL operation that includes the phase detector, charge pump, VCO (Voltage controlled oscillator), and loop filter.

#### **Phase Detector**

The phase detector monitors the phase difference between the Fref (the reference frequency as shown in Fig. 5-2) and Fvco (the output frequency from VCO and Divider M block), and generates a control signal(tracking signal) when it detects difference between two.

#### **Charge Pump**

The charge pump converts the phase detector control signal into a proportional charge in voltage across the external filter that drives the VCO.

#### Loop Filter

The control signal that the phase detector generates for the charge pump, may generate large excursions(ripples) each time the VCO output is compared to the system clock. To avoid overloading the VCO, a low pass filter samples and filters the high-frequency components out of the control signal. The filter is typically a single-pole RC filter consisting of a resistor and capacitor.

A recommended capacitance in external loop filter(Capacitance as shown in Figure 5-2) is 700pF.

#### Voltage Controlled Oscillator (VCO)

The output voltage from the loop filter drives the VCO, causing its oscillation frequency to increase or decrease linearly as a function of variations in average voltage. When the VCO output matches the system clock in terms of frequency as well as phase, the phase detector stops sending a control signal to the charge pump, which in turn stabilizes the input voltage to the loop filter. The VCO frequency then remains constantly, and the PLL remains locked onto the system clock.

#### **Usual Condition for PLL & Clock Generator**

The following condition is used usually.

| Loop filter capacitance             | 320 pF     |
|-------------------------------------|------------|
| External X-tal frequency            | 4 ~ 10 Mhz |
| External capacitance used for X-tal | 15 ~ 22 pF |



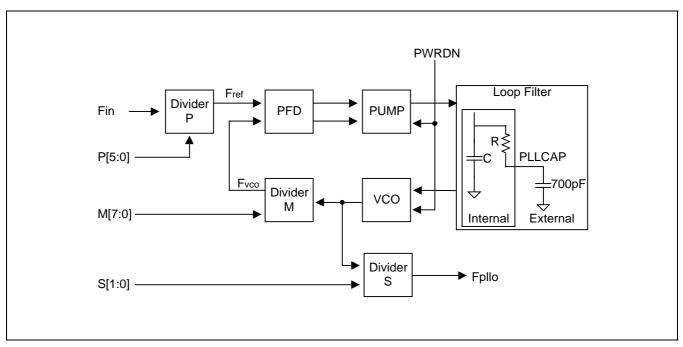



Figure 3-2. PLL (Phase-Locked Loop) Block Diagram

# CLOCK CONTROL LOGIC

The clock control logic determines which clock source should be used, i.e., the PLL clock or the direct OSC clock. When PLL is configured to new frequency value, the clock control logic disables the Fpllo up to when PLL output is stabilized through the PLL locking time. The clock control logic is also activated when the power-on reset and wake-up from power-down mode happens.

# PLL Lock Time

The lock time is the minimum time that is needed until the PLL output is stabilized. The lock time is a minimum 200us. After reset, the lock-time is inserted automatically by internal logic with lock time count register. The automatically inserted lock time is calculated as follows;

t\_lock(the PLL lock time by H/W logic) = (1/ Fin) x n, (n = LTIMECNT value)

# Power-On Reset

Figure 5-3 shows the clock behavior during the power-on reset sequence. The crystal oscillator begins oscillation within several milliseconds. When nRESET is released after the stabilization of OSC clock, the PLL begins the operation according to the default PLL configuration. But, as it is known that the PLL output is unstable after power-on reset, the Fin is feed to Fout directly instead of the Fpllo(PLL output) before new configuration on PLLCON by S/W. Even if the user want to use the default value of PLLCON register after Reset, the user should write the same value into PLLCON register by S/W.

Only after PLL is configured to have a new frequency by S/W, the PLL begins the lockup sequence again toward the new frequency. Just after the lock time, the Fout can be configured to be PLL output(Fpllo).



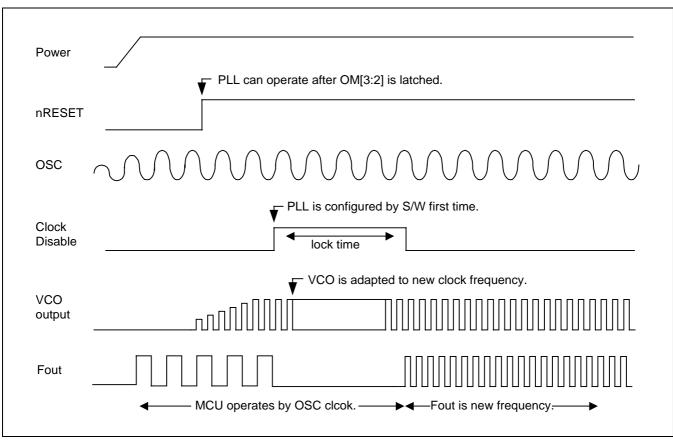



Figure 3-3. Power-On Reset Sequence

# **Change PLL Settings In Normal Operation Mode**

During the operation of S3C2800X in Normal mode, if user want to change the frequency by writing PMS value, the PLL lock time is automatically inserted. During the lock time, the clock is not supplied to internal blocks in S3C2800X. The timing diagram is as follow.

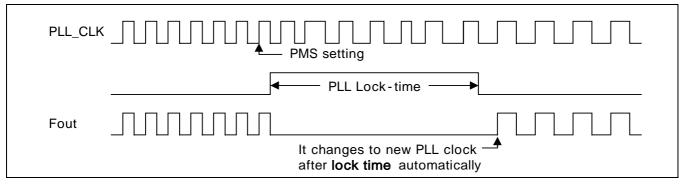



Figure 5-4. The case that change Slow clock by setting PMS value



#### POWER MANAGEMENT

The power management block controls the system clocks by software for reduction of power consumption in S3C2800X. These schemes are related with PLL, clock control logic, peripheral clock control, and wake-up signal.

S3C2800X has four power-down modes. The following section describes each power managing mode. The transition between the modes isn't allowed freely. For available transitions among the modes, please refer to Figure 5-10.

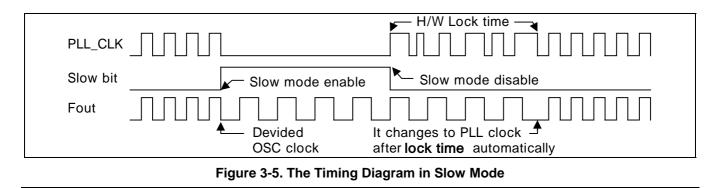
#### **Normal Mode**

In normal mode, All peripherals(UART, DMA, Timer, and so on) and the basic blocks(CPU core, bus controller, memory controller, interrupt controller, and power management block) may operate fully. But, the clock to each peripheral, except the basic blocks, can be stopped selectively by S/W for the reduction of power consumption.

**NOTE :** The basic blocks consist of the CPU core, bus controller, memory controller, interrupt controller, and power management.

#### **IDLE Mode**

In IDLE mode, the clock to CPU core among the basic blocks is stopped except bus controller, memory controller, interrupt controller, and power management block. To exit IDLE mode, EXTINT[7:0], or RTC alarm interrupt, or the other interrupts should be activated. (If users are willing to use EXTINT[7:0], GPIO block has to be turned on before the activation).


#### SLOW Mode (non-PLL Mode)

The SLOW mode can reduce the power consumption if we apply slow clock and because we can exclude the power consumption due to PLL itself. The Fout is the frequency of divide\_by\_n of Fin without PLL. The divider ratio is determined by SLOW\_VAL in the CLKSLOW control register.

Fout = Fin / (2 x SLOW\_VAL), when SLOW\_VAL is bigger than 0 Fout = Fin , when SLOW\_VAL is 0

In SLOW mode, the PLL will be turned off to reduce the PLL power consumption. When PLL is turned off in SLOW mode and users change power mode from SLOW mode to NORMAL mode, the PLL need clock stabilization time(PLL lock time). This PLL stabilization time is automatically inserted by internal logic with lock time count register. The PLL stability time will be taken 200us after PLL is turn on. During PLL lock time, the Fout is SLOW clock.

Users can change the frequency by enabling SLOW mode bit in CLKSLOW register. The SLOW clock is generated during SLOW mode. The timing diagram is as follow.





#### Entering IDLE Mode

If CLKCON[2] is set to 1 to enter the IDLE mode, S3C2800X will enter into IDLE mode after some delay(Up to when the power control logic receives ACK signal from the CPU wrapper).

## PLL On/Off

The PLL can only be turned off for power saving in slow mode.

#### POWER MANAGEMENT STATE MACHINE

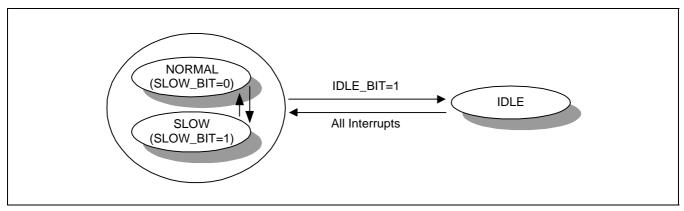



Figure 3-6. Power Management State Machine



## **CLOCK GENERATOR & POWER MANAGEMENT SPECIAL REGISTER**

## PLL CONTROL REGISTER (PLLCON)

 $\begin{array}{l} \mbox{Fpllo} = (m \ ^* \ \mbox{Fin}) \ / \ (p \ ^* \ 2^s) \\ \mbox{m} = (MDIV + 8), \quad p = (PDIV + 2), \quad s = SDIV \\ \end{array}$ 

#### Table 5-2. For example, A value of MDIV, PDIV, SDIV(M=MDIV, P=PDIV, S=SDIV)

| Fin<br>Fout | 4 MHz<br>(M / P / S) | 5 MHz<br>(M / P / S) | 6 MHz<br>(M / P / S) | 7 MHz<br>(M / P / S) | 8 MHz<br>(M / P / S) | 9 MHz<br>(M / P / S) | 10 MHz<br>(M / P / S) |
|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|
| 20 MHz      | 0x20/0/2             | 0x38/0/3             | 0x48 / 1 / 3         | -                    | 0x48 / 2 / 3         | -                    | 0x48/3/3              |
| 40 MHz      | 0x48 / 0 / 2         | 0x78/0/3             | 0x98 / 1 / 3         | -                    | 0x98 / 2 / 3         | -                    | 0x98 / 3 / 3          |
| 66 MHz      | 0x3A / 0 / 1         | -                    | 0x7C / 1 / 2         | -                    | 0x7C / 2 / 2         | 0xA8 / 1 / 3         | 0x7C / 3 / 2          |
| 80 MHz      | 0x48 / 0 / 1         | 0xF8/0/3             | 0x98 / 1 / 2         | -                    | 0x98 / 2 / 2         | -                    | 0x98/3/2              |
| 100 MHz     | 0xC0/0/2             | 0x98/0/2             | 0xC0/1/2             | -                    | 0xC0/2/2             | -                    | 0xC0/3/2              |
| 120 MHz     | 0xE8/0/2             | 0xB8/0/2             | 0xE8/1/2             | -                    | 0x8E / 3 / 1         | 0x98 / 1 / 2         | 0xE8/3/2              |
| 133 MHz     | 0x7D / 0 / 1         | -                    | 0x7D / 1 / 1         | 0xDC / 1 / 2         | 0x7D / 2 / 1         | -                    | 0x7D / 3 / 1          |
| 150 MHz     | 0x8E / 0 / 1         | 0xE8/0/2             | 0x8E / 1 / 1         | -                    | 0xD9/1/2             | 0xC0 / 1 / 2         | 0xE8/2/2              |

note : This value may be calculated using  $\ensuremath{\mathsf{PLLSET.EXE}}$  utility from Samsung.

This PLL is not guaranteed that the PMS values are all zero.

## PLL VALUE SELECTION GUIDE

1. (Fin/p) must be equal or above than 2MHz (p=PDIV+2).

## PLL CONFIGURATION REGISTER(PLLCON)

| Register | Address     | R/W | Description                | Reset Value |
|----------|-------------|-----|----------------------------|-------------|
| PLLCON   | 0x1000 0000 | R/W | PLL configuration Register | 0x000C 0002 |

| PLLCON   | Bit     | Description          | Initial State |
|----------|---------|----------------------|---------------|
| Reserved | [31:20] | Reserved             |               |
| MDIV     | [19:12] | Main divider control | 0xC0          |
| Reserved | [11:10] | Reserved             | 0             |
| PDIV     | [9:4]   | Pre-divider control  | 0x00          |
| Reserved | [3:2]   | Reserved             | 00            |
| SDIV     | [1:0]   | Post divider control | 10            |



## **CLOCK CONTROL REGISTER (CLKCON)**

| Register | Address     | R/W | Description                      | Reset Value |
|----------|-------------|-----|----------------------------------|-------------|
| CLKCON   | 0x1000 0004 | R/W | Clock generator control Register | 0x0000 1FFC |

| CLKCON   | Bit  | Description                                                                                                       | Initial State |
|----------|------|-------------------------------------------------------------------------------------------------------------------|---------------|
|          |      | APB divide ratio from AHB                                                                                         |               |
| APBCLK   | [12] | 0 = AHBLCK<br>1 = AHBCLK/2                                                                                        | 1             |
|          |      | AHB divide ratio from CPU                                                                                         |               |
| AHBCLK   | [11] | 0 = CPUCLK<br>1 = CPUCLK/2                                                                                        | 1             |
| PCI      | [10] | Controls CPUCLK into PCI block                                                                                    | 1             |
| FOI      | [10] | 0 = Disable, 1 = Enable                                                                                           | 1             |
| IIC1     | [9]  | Controls APBCLK into IIC0 block                                                                                   | 1             |
|          | [3]  | 0 = Disable, 1 = Enable                                                                                           | 1             |
| IIC0     | [8]  | Controls APBCLK into IIC1 block                                                                                   | 1             |
|          | [0]  | 0 = Disable, 1 = Enable                                                                                           | Ι             |
| RTC      | [7]  | Controls APBCLK into RTC control block.<br>Even if this bit is cleared to 0, RTC timer is alive.                  | 1             |
|          |      | 0 = Disable, 1 = Enable                                                                                           |               |
| UART1    | [6]  | Controls APBCLK into UART1 block                                                                                  | 1             |
| UARTI    | [0]  | 0 = Disable, 1 = Enable                                                                                           | Ι             |
| UART0    | [5]  | Controls APBCLK into UART0 block                                                                                  | 1             |
| UARTU    | [5]  | 0 = Disable, 1 = Enable                                                                                           | Ι             |
|          |      | Controls AHBCLK into DMA channel 2,3 block                                                                        |               |
| DMA2,3   | [4]  | 0 = Disable, 1 = Enable<br>( If DMA is turned off, the peripherals in the peripheral bus<br>may not be accessed ) | 1             |
|          |      | Controls AHBCLK into DMA channel 0,1 block                                                                        |               |
| DMA0,1   | [3]  | 0 = Disable, 1 = Enable<br>( If DMA is turned off, the peripherals in the peripheral bus<br>may not be accessed ) | 1             |
|          | [0]  | Controls APBCLK into TIMER block                                                                                  | <u>,</u>      |
| TIMER    | [2]  | 0 = Disable, 1 = Enable                                                                                           | 1             |
| IDLE BIT | [1]  | Enters IDLE mode. This bit cleared automatically by wake-up.<br>0 = Disable, 1 = Transition to IDLE(SL_IDLE) mode | 0             |
| Reserved | [0]  | Reserved<br>This bit must be 0.                                                                                   | 0             |



#### CLOCK SLOW CONTROL REGISTER (CLKSLOW)

| Register | Address     | R/W | Description                 | Reset Value |
|----------|-------------|-----|-----------------------------|-------------|
| CLKSLOW  | 0x1000 0008 | R/W | Slow clock control register | 0x0000 0000 |

| CLKSLOW  | Bit    | Description                                                                                                                                                                                                                                            | Initial State |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved | [31:5] | Reserved                                                                                                                                                                                                                                               |               |
| SLOW_BIT | [4]    | <ul> <li>Slow mode enable or Disable</li> <li>0 : Disable slow mode (Normal mode)<br/>Fout = Fpllo (PLL output)</li> <li>1 : Enable slow mode (Slow mode)<br/>Fout = Fin / (2 x SLOW_VAL), (SLOW_VAL &gt; 0)<br/>Fout = Fin, (SLOW_VAL = 0)</li> </ul> | 0x0           |
| SLOW_VAL | [3:0]  | The divider value for slow clock when SLOW_BIT is on.                                                                                                                                                                                                  | 0x0           |

#### LOCK TIME COUNT REGISTER (LOCKTIME)

| Register | Address     | R/W | Description                  | Reset Value |
|----------|-------------|-----|------------------------------|-------------|
| LOCKTIME | 0x1000 000C | R/W | PLL lock time count register | 0x0000 0FFF |

| LOCKTIME  | Bit     | Description               | Initial State |
|-----------|---------|---------------------------|---------------|
| Reserved  | [31:12] | Reserved                  |               |
| LTIME CNT | [11:0]  | PLL lock time count value | 0xFFF         |

## **RESET CONTROLLER**

The reset controller manages the various reset sources within the S3C2800X. From a programmer's view, it is visible as two registers: one used to invoke software reset and one to read status after booting to indicate why the processor was reset.

The three types of reset in the S3C2800X include:

#### HARDWARE RESET

Hardware reset is invoked when the nRESET pin is asserted and resets all units in the S3C2800X to a known state. Hardware reset is intended to be used for power-up only. Because the memory controller receives a full reset, all dynamic memory(DRAM/SDRAM) contents will be lost during hardware reset.

The nRESET\_OUT pin is asserted during hardware reset.



#### SOFTWARE RESET

Software reset is invoked when the software reset (SWR) bit in the SWRCON is set by software. After the SWR bit is set, the S3C2800X stays reset for 128 processor clocks(APBCLK) and then is allowed to boot again.

The nRESET\_OUT pin is asserted during software reset

#### WATCHDOG RESET

Watchdog reset is invoked when the watchdog enable bits in the WTCON[7:0] is set and the WTCNT matches the watchdog timer counter. When watchdog reset is invoked, the rest of the reset sequence is identical to software reset. After the WTCNT matches the watchdog timer counter, the S3C2800X stays reset for 128 processor clocks(APBCLK) and then is allowed to boot again.

The nRESET\_OUT pin is asserted during watchdog reset

After booting from a reset, software can examine the reset and RTC alarm match status register (RAMSR) to determine which types of reset caused the reset condition.

## **RESET CONTROLLER REGISTERS**

The reset controller contains two registers, the software reset control register (SWRCON) and the reset and RTC alarm match status register (RAMSR).

The software reset control register has a software reset bit, which when set, causes a reset of the S3C2800X. The software reset bit (SWR) is located within the least significant bit of the write-only software reset register (SWRCON). Writing a one to this bit causes all on-chip resources to reset but does not cause the PLL to go out of lock. The software reset bit is self-resetting. It is automatically cleared to zero several system clock cycles after a one is written to it. Writing zero to the software reset bit has no effect. Care should be taken to restrict access to this register by programming MMU permissions.

The following table shows the SWRCON.

#### SOFTWARE RESET CONTROL REGISTER (SWRCON)

| Register | Address     | R/W | Description                     | Reset Value |
|----------|-------------|-----|---------------------------------|-------------|
| SWRCON   | 0x1000 0010 | W   | Software reset control register | 0x0000 0000 |

| SWRCON   | Bit    | Description                                                                                                                                                                                                                      | Initial State |
|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved | [31:1] | Reserved                                                                                                                                                                                                                         |               |
| SWR      | [0]    | Software reset.<br>0 = Do not invoke a software reset of the chip.<br>1 = Invoke a software reset of the chip.<br>This bit is self-resetting, and is automatically cleared several<br>system clock cycles after it has been set. | 0             |



## **RESET & RTC ALARM MATCH STATUS REGISTER (RAMSR)**

The reset status register (RSR) is used by the CPU to determine the last cause or causes of the reset. The S3C2800X has three sources of reset:

- Hardware reset
- Software reset
- Watchdog reset

Each RSR status bit is set by a different source of reset, and can be cleared by setting a one of the other reset status bits. Note that the hardware reset state of software and watchdog reset bits is zero.

The RTC alarm match status bit is set when the RTC alarm is matched only, and can be cleared by writing a zero to that bit.

The table below shows the status bits within RAMSR.

#### RESET AND RTC ALARM MATCH STATUS REGISTER (RAMSR)

| Register | Address     | R/W | Description                               | Reset Value |
|----------|-------------|-----|-------------------------------------------|-------------|
| RAMSR    | 0x1000 0014 | R/W | Reset and RTC alarm match status register | 0x0000 0001 |

| RAMSR       | Bit    | Description                                                                                                                                                                                                                  | Initial State |
|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved    | [31:4] | Reserved                                                                                                                                                                                                                     |               |
| Alarm Match | [3]    | RTC alarm match<br>0 = RTC alarm match has not occurred.<br>1 = RTC alarm match has occurred.<br>This bit can be cleared by writing a zero.                                                                                  | 0             |
| WDR         | [2]    | Watchdog reset.(Read only)<br>0 = Watchdog reset has not occurred.<br>1 = Watchdog reset has occurred<br>This bit can be cleared only by setting a one of the other<br>reset status bits.                                    | 0             |
| SWR         | [1]    | Software reset.(Read only)<br>0 = Software reset has not occurred.<br>1 = Software reset has occurred<br>This bit can be cleared only by setting a one of the other<br>reset status bits.                                    | 0             |
| HWR         | [0]    | <ul> <li>Hardware reset.(Read only)</li> <li>0 = Hardware reset has not occurred.</li> <li>1 = Hardware reset has occurred</li> <li>This bit can be cleared only by setting a one of the other reset status bits.</li> </ul> | 1             |



| Register | Address     | R/W | Description                               | Reset Value |
|----------|-------------|-----|-------------------------------------------|-------------|
| PLLCON   | 0x1000 0000 | R/W | PLL configuration Register                | 0x0008 E011 |
| CLKCON   | 0x1000 0004 | R/W | Clock generator control Register          | 0x0000 1FFC |
| CLKSLOW  | 0x1000 0008 | R/W | Slow clock control register               | 0x0000 0000 |
| LOCKTIME | 0x1000 000C | R/W | PLL lock time count register              | 0x0000 0FFF |
| SWRCON   | 0x1000 0010 | W   | Software reset control register           | 0x0000 0000 |
| RAMSR    | 0x1000 0014 | R/W | Reset and RTC alarm match status register | 0x0000 0001 |

## **Clock & Power Control Register**





## **OVERVIEW**

We support 4 DMA controllers. They are located between the system bus and the peripheral bus. Each of DMA controllers can perform the data movement among the devices in the system bus and/or peripheral bus with no restrictions.

For example, we can perform

- 1) memory to memory transfer (both source and destination are in the system bus(AHB)),
- 2) memory to an I/O device in the peripheral bus(APB),
- 3) I/O device to memory (source is in the peripheral bus(APB) and destination is in the system bus(ASB)), and
- 4) I/O device to I/O device (both source and destination are in the peripheral bus(APB)).

The main advantage of DMA is that it can transfer the data without CPU intervention. The operation of DMA can be initiated by S/W, the request from internal peripherals or the external request pins(nXDREQ0,nXDREQ1).



## DMA OPERATION

The details of DMA operation can be explained using three-state FSM as follows:

- State-1. As an initial state, it waits for the DMA request. If it comes, go to state-2. At this state, DMA ACK and INT REQ are low.
- State-2. In this state, DMA ACK becomes high and TC is loaded from the SRC register. Note that DMA ACK remains high until it is cleared.
- State-3. In this state, sub-FSM handling the actual operation of DMA is initiated.

The sub-FSM reads the data from the source address and then writes it to destination address. In this operation, data size and transfer size (single and burst) are considered. This operation is repeated until TC reaches in the whole service mode, while performed only once in a single service mode.

The main FSM (this FSM) counts down the TC when the sub-FSM finishes each of writing operation. In addition, this main FSM asserts the INT REQ signal when TC reaches and the interrupt setting of CNT register is set to one. In addition, it clears DMA ACK if 1) TC reaches in the whole service mode, or 2) writing operation finishes in the single service mode.

Note that in the single service mode, these three states of main FSM are performed and then stops, and waits for another DMA REQ. And if DMA REQ comes in all the three states are repeated. Therefore, DMA ACK is asserted and then de-asserted for each transfer. In contrast, in the whole service mode, main FSM waits at state-3 until TC reaches. Therefore, DMA ACK is asserted during all the transfers and then de-asserted when TC reaches.

However, INT REQ is asserted only if TC reaches regardless of the service mode (single service mode or whole service mode).

The DMA requesting sources should assert DMA request if and only if the DMA ACK is low. Otherwise, the request may be lost.

Figure 7-1 shows the internal diagram of a DMA block. The DMA is in Bridge, which is the interface layer between AHB and APB. The main role of DMA is to transfer the data between external memory and internal peripherals like UART, Timer, etc, which are attached to APB. The Timer can also request DMA operation every time. Usually, CPU or other master device should access to external memory through memory controller, which is attached to AHB. Please remind that the DMA is also a kind of master device. To transfer the data from memory(peripheral devices) to peripheral devices(memory) attached to APB(AHB), we should use the memory controller attached to AHB. Because the DMA is in the Bridge, which is an interface layer between AHB and APB, it can transfer the data between two devices, which are attached to AHB as well as APB.

In the DMA, there is a temporary buffer which enable the multiple transfer to enhance the bus utilization as well as transfer speed. In other word, S3C2800X has a 4-word FIFO-type buffer to support the 4-word burst transfer during DMA operation. For example, during the DMA operation between memories, a 4-word burst write happens after a 4-word burst read.



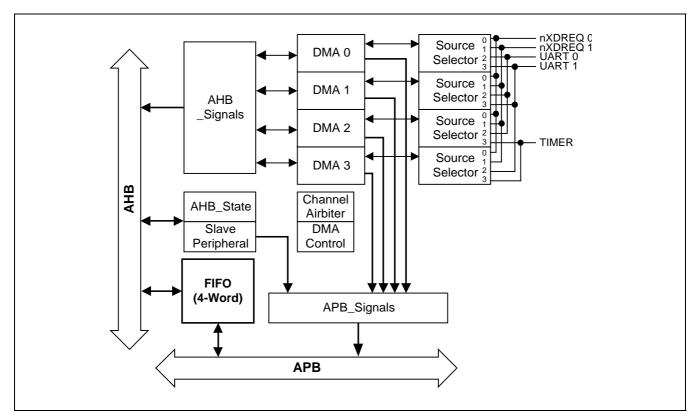



Figure 4-1. DMA Controller Block Diagram



#### DMA REQ/ACK PROTOCOL

There are two types of DMA request/acknowledge protocol. Each type defines how the signals like DMA request and acknowledge are related to these protocol.

#### Single service Mode

The single service mode means that there are two DMA acknowledge cycles indicating DMA read and write cycle. In the single service mode, the bus mastership can be handed over to other bus master between Read and Write. During the inactive period of nXDACK, i.e., between Read and Write cycle, the bus controller re-evaluates the bus priority to determine the new bus mastership.

When the DMA request signal goes low, the bus controller indicates the bus allocation for the DMA operation by lowering the DMA Acknowledge signal if there is not higher priority bus request except this DMA request. During the first low level period of the DMA Acknowledge signal, there will be a DMA read cycle. After the DMA read cycle, there will be a rising of the DMA Acknowledge signal to indicate the end of the DMA read cycle. Simultaneously, the next DMA write cycle will happen if the DMA request signal is still low at the rising edge of DMA acknowledge. But, if the DMA request signal is already high at the rising edge of DMA acknowledge, the next DMA write cycle will be delayed to the new coming of DMA request signal activation. These two cases are shown in below Figure 7-2a and Figure 7-2b.

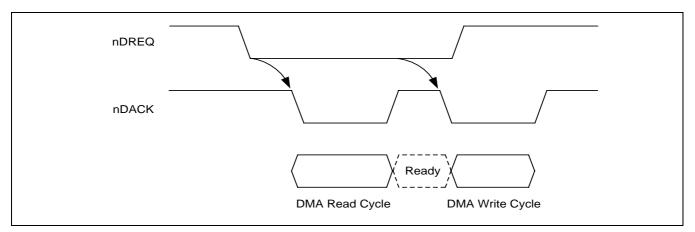
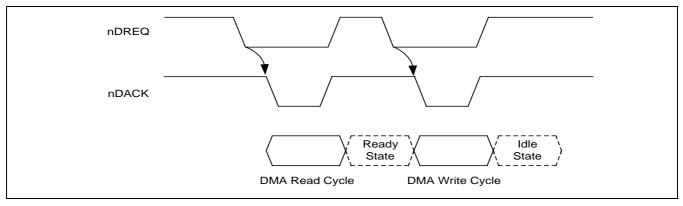




Figure 4-2a. Single Service Mode (Case 1)







#### Whole Service Mode

The whole service mode means that the specified number of DMA operations, i.e., number of DMA operations based on transfer count, will be initiated by a single activation of DMA Request, and will be proceeded without further activation of DMA requests. The below figure shows how the whole service mode proceeds. The nDACK signal will be active until the end of whole DMA operations.

If the number of DMA transfer operation is too large, the long bus occupation during the whole service mode of DMA operation may make problem because the other bus services can't be provided. To solve this kind of problem, the DMA releases the bus mastership in the whole service mode every time when one unit (1byte, or 1 half-word, or 1 word) is transferred. When the DMA release the bus mastership, the other bus masters, such as CPU, the other DMA, etc,may have bus mastership. This feature in whole service mode can provide the optimal bus sharing, preventing the monopoly of bus mastership by DMA. If the other master intercept the bus mastership as shown in Fig 7-3b, the remained DMA operation can be done again after the service of impinged bus mastership, without the re-activation of nDREQ.

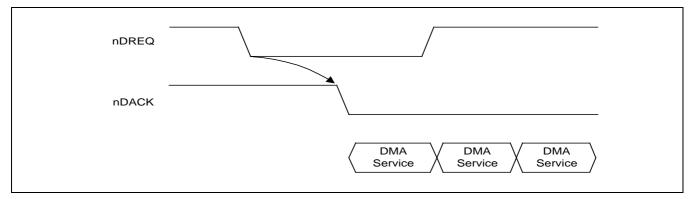



Figure 4-3a. Whole Service Mode

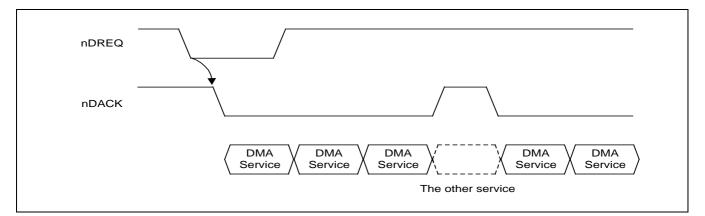



Figure 4-3b. Whole Service Mode When the Other Bus Master Acquires Bus Mastership.



#### DMA TRANSFER MODE

There are tow types of DMA transfer mode (Single transfer mode, Burst transfer mode). Different from the DMA request/acknowledge protocol, the DMA transfer mode defines the number of read/write per unit transfer as shown in the following table.

| DMA Transfer Mode | Read/Write                                 |
|-------------------|--------------------------------------------|
| Single transfer   | 1 unit read, then 1 unit write             |
| Burst transfer    | 4 unit burst read, then 4 unit burst write |

#### Single Transfer Mode

The single transfer mode means that the paired DMA read/write cycle happens corresponding each DMA request as shown in below Figure. Figure 7-4 shows the example case of the unit transfer mode at the sigle service mode.

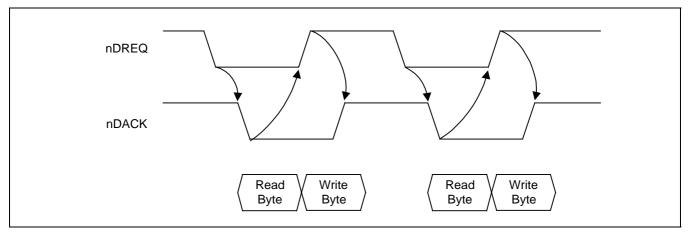



Figure 4-4. Single Transfer Mode with single service mode



#### Burst (4-word) Transfer Mode

The burst (4-word) transfer mode means that the successive 4-word DMA read cycle happens before successive 4-word DMA write cycles as shown in Figure 7-5. Figure 7-5 shows the example of the burst transfer mode with single service mode.

If the burst transfer mode is used, the total data size to be transferred should be the multiple of 16 bytes. In other word, the minimum transfer size is 16 bytes, i.e., 4 words. Because the DMA count is defined by byte unit, we should have 16 as DMA transfer count for the case of 4 words transfer. If the transfer size or DMA count is not multiple of 16, for example 16, 32, 48, 64, and so on, the DMA can not transfer the data completely. If we are assuming 100 bytes transfer(DMA count is 100), 100- 6x16 = 96 bytes can be transferred by block transfer mode of DMA. But, the remained 4 bytes can not be transferred because DMA operation will be stopped after 96 bytes transfer. The users should be aware of this characteristics when they select the block transfer mode of DMA.

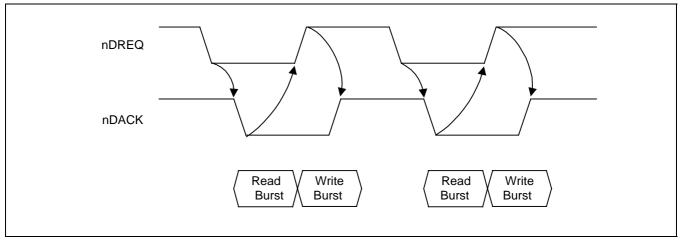



Figure 4-5. Burst Transfer Mode With Single Service Mode

#### DMA REQUEST SOURCE SELECTION

In the DMA request sources are S/W or H/W by writing the SSH(bit 23) field as 0 or 1 in DMACONn register. The S/W trigger can be done by writing the SWTRIG(bit 0) field as 1 in MASKTRIGn register, i.e., the start of DMA. Before the start of DMA, we should configure DMA-related parameter, for example source address, destination address, transfer count and so on. Based-on these configuration, the DMA operation will start when we write the SWTRIG field as 1. In this case of S/W trigger, the DMA operations will continue as long as the bust mastership is allocated to DMA master and as long as the DMA transfer count or TC(Terminal Count) reach to zero, i.e., the completion of DMA operation. If the higher bus master acquire the bus mastership, the DMA operations will be continued again after the service of higher priority. The DMA operations can also be initiated by nDREQ(DMA request signal) as well as S/W when the DMA is configured to have an external trigger mode, i.e., enable External DMA request by writing MASK bit as 0 in MASKTRIG register.

In DMA, there are seven hardware request sources like nXDREQ0, nXDREQ1, UART0, UART1, Timer ,SPDIF and IIS. The DMA can be initiated by software. These kinds of sources can be selected by writing the QSC field in DMACONn register.



## DMA SPECIAL REGISTERS

## DMA SOURCE ADDRESS REGISTER (DMASRCn)

| Register | Address     | R/W | Description                   | Reset Value |
|----------|-------------|-----|-------------------------------|-------------|
| DMASRC0  | 0x1003 0000 | R/W | DMA 0 Source address register | 0x0000 0000 |
| DMASRC1  | 0x1004 0000 | R/W | DMA 1 Source address register | 0x0000 0000 |
| DMASRC2  | 0x1005 0000 | R/W | DMA 2 Source address register | 0x0000 0000 |
| DMASRC3  | 0x1006 0000 | R/W | DMA 3 Source address register | 0x0000 0000 |

| DMASRCn | Bit    | Description                                                                                                                                                                                                                                                                                                                                                                                                              | Initial State |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SLS     | [31]   | Select the location of source<br>0 = Source is in the System bus(AHB)<br>1 = Source is in the Peripheral bus(APB)                                                                                                                                                                                                                                                                                                        | 0             |
| SAI     | [30]   | <ul> <li>Select the source address increment</li> <li>0 = Increment<br/>The address is increased by its data size after each<br/>transfer in burst and single transfer mode</li> <li>1 = Fixed(Not changed)<br/>The address is not changed after the transfer. In the burst<br/>mode, address is increased during the burst transfer, but<br/>the address is recovered to its first value after the transfer.</li> </ul> | 0             |
| SRCADDR | [29:0] | Base address (start address) of source for the transfer                                                                                                                                                                                                                                                                                                                                                                  | 0x0000 0000   |



## DMA DESTINATION ADDRESS REGISTER (DMASRCn)

| Register | Address     | R/W | Description                        | Reset Value |
|----------|-------------|-----|------------------------------------|-------------|
| DMADES0  | 0x1003 0004 | R/W | DMA 0 Destination address register | 0x0000 0000 |
| DMADES1  | 0x1004 0004 | R/W | DMA 1 Destination address register | 0x0000 0000 |
| DMADES2  | 0x1005 0004 | R/W | DMA 2 Destination address register | 0x0000 0000 |
| DMADES3  | 0x1006 0004 | R/W | DMA 3 Destination address register | 0x0000 0000 |

| DMASRCn  | Bit                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                       | Initial State |
|----------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SLD [31] |                                                                                            | Select the location of destination                                                                                                                                                                                                                                                                                                                                                                |               |
|          | 0 = Destination is in the System bus(AHB)<br>1 = Destination is in the Peripheral bus(APB) | 0                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|          |                                                                                            | Select the destination address increment                                                                                                                                                                                                                                                                                                                                                          |               |
| DAI      | [30]                                                                                       | <ul> <li>0 = Increment <ul> <li>The address is increased by its data size after each transfer in burst and single transfer mode</li> </ul> </li> <li>1 = Fixed(Not changed) <ul> <li>The address is not changed after the transfer. In the burst mode, address is increased during the burst transfer, but the address is recovered to its first value after the transfer.</li> </ul> </li> </ul> | 0             |
| DESADDR  | [29:0]                                                                                     | Base address (start address) of destination for the transfer                                                                                                                                                                                                                                                                                                                                      | 0x0000 0000   |



## DMA CONTROL REGISTER (DMACONn)

| Register | Address     | R/W | Description            | Reset Value |
|----------|-------------|-----|------------------------|-------------|
| DMACON0  | 0x1003 0008 | R/W | DMA 0 control register | 0x0000 0000 |
| DMACON1  | 0x1004 0008 | R/W | DMA 1 control register | 0x0100 0000 |
| DMACON2  | 0x1005 0008 | R/W | DMA 2 control register | 0x0200 0000 |
| DMACON3  | 0x1006 0008 | R/W | DMA 3 control register | 0x0300 0000 |

| DMACONn | Bit     | Description                                                                                                                                                                                                                                                                                                                                                                                                           | Initial State         |
|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| INTEN   | [28]    | Interrupt enable<br>0 = Interrupt disable (Software polling)<br>1 = Interrupt enable<br>Interrupt request is generated when all the transfer is<br>done.                                                                                                                                                                                                                                                              | 0                     |
| TSZ     | [27]    | Transfer size<br>0 = Single transfer size<br>1 = Burst transfer size(4-word length)                                                                                                                                                                                                                                                                                                                                   | 0                     |
| SMT     | [26]    | <ul> <li>Service mode for transfer</li> <li>0 = Single service mode <ul> <li>is elected in which after each transfer (single or burst of length four) DMA stops and waits for another request.</li> </ul> </li> <li>1 = Whole service mode <ul> <li>is selected in which DMA transfer is performed until the required transfer count is met. In this mode, additional request is not required.</li> </ul> </li> </ul> | 0                     |
| QSC     | [25:24] | Selection of hardware DMA request<br>Refer to Table 7-1                                                                                                                                                                                                                                                                                                                                                               | Refer to<br>Table 7-1 |
| SSH     | [23]    | Select the DMA source between software and hardware<br>0 = Software triggering is selected as the DMA request<br>1 = Hardware request is selected                                                                                                                                                                                                                                                                     | 0                     |
| MOA     | [22]    | Used to set the mask off automatically when transfer count<br>(TC) reaches (i.e., all the transfers are performed).<br>0 = Not automatically<br>1 = Mask off automatically<br>mask off bit of MASKTREG register is set automatically<br>when TC reaches.                                                                                                                                                              | 0                     |
| DSZ     | [21:20] | Data size for transfer $00 = Byte$ $01 = Half word$ $1x = Word$                                                                                                                                                                                                                                                                                                                                                       | 00                    |
| тс      | [19:0]  | Transfer count<br>Note that the actual number of bytes that are transferred is<br>computed by the following equation: DSZ x TSZ x TC, where<br>DSZ, TSZ, and TC represent data size (bit 21-20), transfer<br>size (bit 27), and transfer count, respectively.                                                                                                                                                         | 0x0 0000              |



#### Table 4-1 DMA Source selection

| Register           | Bit     |                                                     | Description                                                 | Initial State |
|--------------------|---------|-----------------------------------------------------|-------------------------------------------------------------|---------------|
| DMACON0<br>(DMA 0) |         | Selection of hardware<br>00 = nXDREQ0<br>10 = UART0 | DMA request for DMA channel 0<br>01 = nXDREQ1<br>11 = UART1 | 00            |
| DMACON1<br>(DMA 1) |         | Selection of hardware<br>00 = nXDREQ0<br>10 = UART0 | DMA request for DMA channel 1<br>01 = nXDREQ1<br>11 = UART1 | 01            |
| DMACON2<br>(DMA 2) | [25:24] | Selection of hardware<br>00 = nXDREQ0<br>10 = UART0 | DMA request for DMA channel 2<br>01 = nXDREQ1<br>11 = TIMER | 10            |
| DMACON3<br>(DMA 3) |         | Selection of hardware<br>00 = nXDREQ0<br>10 = UART1 | DMA request for DMA channel 3<br>01 = nXDREQ1<br>11 = TIMER | 11            |



#### DMA STATUS REGISTER (DMASTSn)

| Register | Address     | R/W | Description           | Reset Value |
|----------|-------------|-----|-----------------------|-------------|
| DMASTS0  | 0x1003 000C | R   | DMA 0 status register | Undefined   |
| DMASTS1  | 0x1004 000C | R   | DMA 1 status register | Undefined   |
| DMASTS2  | 0x1005 000C | R   | DMA 2 status register | Undefined   |
| DMASTS3  | 0x1006 000C | R   | DMA 3 status register | Undefined   |

| DMASTSn | Bit    | Description                                                                                 | Initial State |
|---------|--------|---------------------------------------------------------------------------------------------|---------------|
| SDMA    | [20]   | Status of the DMA controller<br>0 = Ready for another DMA request<br>1 = Busy for transfers | Undefined     |
| STC     | [19:0] | Shows the current value of transfer count                                                   | Undefined     |

## DMA CURRENT SOURCE ADDRESS REGISTER (DMACSRCn)

| Register | Address     | R/W | Description                           | Reset Value |
|----------|-------------|-----|---------------------------------------|-------------|
| DMACSRC0 | 0x1003 0010 | R   | DMA 0 current source address register | Undefined   |
| DMACSRC1 | 0x1004 0010 | R   | DMA 1 current source address register | Undefined   |
| DMACSRC2 | 0x1005 0010 | R   | DMA 2 current source address register | Undefined   |
| DMACSRC3 | 0x1006 0010 | R   | DMA 3 current source address register | Undefined   |

| DMACSRCn | Bit    | Description                      | Initial State |
|----------|--------|----------------------------------|---------------|
| CSADDR   | [29:0] | Shows the current source address | Undefine      |

## DMA CURRENT DESTINATION ADDRESS REGISTER (DMACSRCn)

| Register | Address     | R/W | Description                                | Reset Value |
|----------|-------------|-----|--------------------------------------------|-------------|
| DMACDES0 | 0x1003 0014 | R   | DMA 0 current destination address register | Undefined   |
| DMACDES1 | 0x1004 0014 | R   | DMA 1 current destination address register | Undefined   |
| DMACDES2 | 0x1005 0014 | R   | DMA 2 current destination address register | Undefined   |
| DMACDES3 | 0x1006 0014 | R   | DMA 3 current destination address register | Undefined   |

| DMACDESn | Bit    | Description                           | Initial State |
|----------|--------|---------------------------------------|---------------|
| CDADDR   | [29:0] | Shows the current destination address | Undefine      |



## DMA MASK TRIGGER REGISTER (MASKTRIGn)

| Register  | Address     | R/W | Description                 | Reset Value |
|-----------|-------------|-----|-----------------------------|-------------|
| MASKTRIG0 | 0x1003 0018 | R/W | DMA 0 mask trigger register | Undefined   |
| MASKTRIG1 | 0x1004 0018 | R/W | DMA 0 mask trigger register | Undefined   |
| MASKTRIG2 | 0x1005 0018 | R/W | DMA 0 mask trigger register | Undefined   |
| MASKTRIG3 | 0x1006 0018 | R/W | DMA 0 mask trigger register | Undefined   |

| MASKTRIGn | Bit | Description                                                                                                                                                                                                                                                                                                                                           | Initial State |
|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| MASK [1]  |     | The mask bit.<br>0 = Masked off<br>the DMA request to this DMA controller is masked off<br>and not handled.                                                                                                                                                                                                                                           | Undefined     |
|           |     | 1 = Not masked<br>DMA request is not masked and can be handled.                                                                                                                                                                                                                                                                                       |               |
| SWTRIG    | [0] | The software trigger<br>If it is 1, it requests a DMA operation to this controller.<br>However, note that for this trigger to have real effects<br>software request has to be selected (bit 23 of DMACONn)<br>and mask bit has to be 1. If these conditions are met and<br>DMA controller receives the request, this bit is automatically<br>cleared. | Undefined     |



# **DMA Register**

| Register  | Address     | R/W | Description                                | Reset Value |
|-----------|-------------|-----|--------------------------------------------|-------------|
| DMASRC0   | 0x1003 0000 | R/W | DMA 0 Source address register              | 0x0000 0000 |
| DMADES0   | 0x1003 0004 | R/W | DMA 0 Destination address register         | 0x0000 0000 |
| DMACON0   | 0x1003 0008 | R/W | DMA 0 control register                     | 0x0000 0000 |
| DMASTS0   | 0x1003 000C | R   | DMA 0 status register                      | Undefined   |
| DMACSRC0  | 0x1003 0010 | R   | DMA 0 current source address register      | Undefined   |
| DMACDES0  | 0x1003 0014 | R   | DMA 0 current destination address register | Undefined   |
| MASKTRIG0 | 0x1003 0018 | R/W | DMA 0 mask trigger register                | Undefined   |
| DMASRC1   | 0x1004 0000 | R/W | DMA 1 Source address register              | 0x0000 0000 |
| DMADES1   | 0x1004 0004 | R/W | DMA 1 Destination address register         | 0x0000 0000 |
| DMACON1   | 0x1004 0008 | R/W | DMA 1 control register                     | 0x0100 0000 |
| DMASTS1   | 0x1004 000C | R   | DMA 1 status register                      | Undefined   |
| DMACSRC1  | 0x1004 0010 | R   | DMA 1 current source address register      | Undefined   |
| DMACDES1  | 0x1004 0014 | R   | DMA 1 current destination address register | Undefined   |
| MASKTRIG1 | 0x1004 0018 | R/W | DMA 0 mask trigger register                | Undefined   |
| DMASRC2   | 0x1005 0000 | R/W | DMA 2 Source address register              | 0x0000 0000 |
| DMADES2   | 0x1005 0004 | R/W | DMA 2 Destination address register         | 0x0000 0000 |
| DMACON2   | 0x1005 0008 | R/W | DMA 2 control register                     | 0x0200 0000 |
| DMASTS2   | 0x1005 000C | R   | DMA 2 status register                      | Undefined   |
| DMACSRC2  | 0x1005 0010 | R   | DMA 2 current source address register      | Undefined   |
| DMACDES2  | 0x1005 0014 | R   | DMA 2 current destination address register | Undefined   |
| MASKTRIG2 | 0x1005 0018 | R/W | DMA 0 mask trigger register                | Undefined   |
| DMASRC3   | 0x1006 0000 | R/W | DMA 3 Source address register              | 0x0000 0000 |
| DMADES3   | 0x1006 0004 | R/W | DMA 3 Destination address register         | 0x0000 0000 |
| DMACON3   | 0x1006 0008 | R/W | DMA 3 control register                     | 0x0300 0000 |
| DMASTS3   | 0x1006 000C | R   | DMA 3 status register                      | Undefined   |
| DMACSRC3  | 0x1006 0010 | R   | DMA 3 current source address register      | Undefined   |
| DMACDES3  | 0x1006 0014 | R   | DMA 3 current destination address register | Undefined   |
| MASKTRIG3 | 0x1006 0018 | R/W | DMA 0 mask trigger register                | Undefined   |



# 5 I/O PORTS(Preliminary)

## **OVERVIEW**

S3C2800X has 48 multi-functional input/output port pins. There are six ports:

— Six 8-bit input/output ports.

Each port can be easily configured by software to meet various system configuration and design requirements. You have to define which function of each pin is used before starting the main program. If the multiplexed functions on a pin are not used, the pin can be configured as I/O ports.

The initial pin states, before pin configurations, are configured elegantly to avoid some problems.



| Port A | Selectable Pin functions |               |  |  |
|--------|--------------------------|---------------|--|--|
| Port A | Function 1               | Function 2    |  |  |
| GPA0   | Input/output             | nSCS1         |  |  |
| GPA1   | Input/output             | nSCS2         |  |  |
| GPA2   | Input/output             | nSCS3         |  |  |
| GPA3   | Input/output             | nSDCS1/nDRAS1 |  |  |
| GPA4   | Input/output             | nSDCS2/nDRAS2 |  |  |
| GPA5   | Input/output             | nSDCS3/nDRAS3 |  |  |
| GPA6   | Input/output             | nDCAS0        |  |  |
| GPA7   | Input/output             | nDCAS1        |  |  |

## Table 5-1. S3C2800X Port Configuration Overview

| Port B | Selectable F | Pin functions   |
|--------|--------------|-----------------|
| Port B | Function 1   | Function 2      |
| GPB0   | Input/output | nDCAS2/nSDCAS   |
| GPB1   | Input/output | nDCAS3/nSDRAS   |
| GPB2   | Input/output | nBE0/nWBE0/DQM0 |
| GPB3   | Input/output | nBE1/nWBE1/DQM1 |
| GPB4   | Input/output | nBE2/nWBE2/DQM2 |
| GPB5   | Input/output | nBE3/nWBE3/DQM3 |
| GPB6   | Input/output | nWAIT           |
| GPB7   | Input/output | CLKout          |

| Port C | Selectable Pin functions |              |  |  |  |
|--------|--------------------------|--------------|--|--|--|
| Port C | Function 1               | Function 2   |  |  |  |
| GPC0   | Input/output             | -            |  |  |  |
| GPC1   | Input/output             | -            |  |  |  |
| GPC2   | Input/output             | -            |  |  |  |
| GPC3   | Input/output             | -            |  |  |  |
| GPC4   | Input/output             | -            |  |  |  |
| GPC5   | Input/output             | -            |  |  |  |
| GPC6   | Input/output             | -            |  |  |  |
| GPC7   | ENDIAN                   | output only- |  |  |  |

**NOTE** : ENDIAN(GPC7) is used only when nRESET is Low.



#### Table 5-1. S3C2800X Port Configuration Overview (Continued)

| Port D | Selectable Pin functions |            |  |  |  |
|--------|--------------------------|------------|--|--|--|
| Port D | Function 1               | Function 2 |  |  |  |
| GPD0   | Input/output             | IICSDA0    |  |  |  |
| GPD1   | Input/output             | IICSCLK0   |  |  |  |
| GPD2   | Input/output             | IICSDA1    |  |  |  |
| GPD3   | Input/output             | IICSCLK1   |  |  |  |
| GPD4   | Input/output             | RxD0       |  |  |  |
| GPD5   | Input/output             | TxD0       |  |  |  |
| GPD6   | Input/output             | nCTS0      |  |  |  |
| GPD7   | Input/output             | nRTS0      |  |  |  |

| Port E | Selectable Pin functions |            |  |  |  |
|--------|--------------------------|------------|--|--|--|
| Port E | Function 1               | Function 2 |  |  |  |
| GPE0   | Input/output             | RxD1       |  |  |  |
| GPE1   | Input/output             | TxD1       |  |  |  |
| GPE2   | Input/output             | nCTS1      |  |  |  |
| GPE3   | Input/output             | nRTS1      |  |  |  |
| GPE4   | Input/output             | nXDREQ0    |  |  |  |
| GPE5   | Input/output             | nXDACK0    |  |  |  |
| GPE6   | Input/output             | nXDREQ1    |  |  |  |
| GPE7   | Input/output             | nXDACK1    |  |  |  |

| Port F | Selectable Pin functions |            |  |  |
|--------|--------------------------|------------|--|--|
| FOILF  | Function 1               | Function 2 |  |  |
| GPF0   | Input/output EXTINT0     |            |  |  |
| GPF1   | Input/output             | EXTINT1    |  |  |
| GPF2   | Input/output             | EXTINT2    |  |  |
| GPF3   | Input/output EXTINT3     |            |  |  |
| GPF4   | Input/output EXTINT4     |            |  |  |
| GPF5   | Input/output EXTINT5     |            |  |  |
| GPF6   | Input/output EXTINT6     |            |  |  |
| GPF7   | Input/output EXTINT7     |            |  |  |

#### NOTES:

1. The <u>underlined</u> function name is selected just after a reset.

2. IICSDAn and IICSCLKn pins are open-drain pin. So, this pin needs pull-up resisters when used as output port(GPD[3:0]).



## PORT CONTROL DESCRIPTIONS

#### PORT CONFIGURATION REGISTER (PCONA-F)

In S3C2800X, most pins are multiplexed pins. So, It is determined which function is selected for each pins. The PCONn (port control register) determines which function is used for each pin.

If GPF0 – GPF7 is used for the wakeup signal in power down mode, these ports must be configured in interrupt mode.

#### PORT DATA REGISTER (PDATA-F)

If Ports are configured as output ports, data can be written to the corresponding bit of PDATn. If Ports are configured as input ports, the data can be read from the corresponding bit of PDATn.

#### PORT PULL-UP REGISTER (PUPA-F)

The port pull-up register controls the pull-up resister enable/disable of each port group. When the corresponding bit is 0, the pull-up resister of the pin is enabled. When 1, the pull-up resister is disabled.

#### EXTERNAL INTERRUPT CONTROL REGISTER

The 8 external interrupts are requested by various signaling methods. The EXTINT register configures the signaling method among the low level trigger, high level trigger, falling edge trigger, rising edge trigger, and both edge trigger for the external interrupt request

Because each external interrupt pin has a digital filter, the interrupt controller can recognize the request signal that is longer than 3 clocks.



## **I/O PORT CONTROL REGISTER**

## PORT A CONTROL REGISTERS (PCONA, PDATA, PUPA)

Port A control registers are shown in Table 8-2:

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONA    | 0x1010 0000 | R/W | Configures the pins of port A       | 0x0000 FFFF |
| PDATA    | 0x1010 0004 | R/W | The data register for port A        | Undef.      |
| PUPA     | 0x1010 0008 | R/W | Pull-up disable register for port A | 0x0000 0000 |

## Table 5-2. Port of Group A Control Registers (PCONA, PDATA, PUPA)

| PCONA | Bit     |                                  | Description |
|-------|---------|----------------------------------|-------------|
| GPA7  | [15:14] | 00 = Input<br>1x = nDCAS1        | 01 = Output |
| GPA6  | [13:12] | 00 = Input<br>1x = nDCAS0        | 01 = Output |
| GPA5  | [11:10] | 00 = Input<br>1x = nSDCS3/nDRAS3 | 01 = Output |
| GPA4  | [9:8]   | 00 = Input<br>1x = nSDCS2/nDRAS2 | 01 = Output |
| GPA3  | [7:6]   | 00 = Input<br>1x = nSDCS1/nDRAS1 | 01 = Output |
| GPA2  | [5:4]   | 00 = Input<br>1x = nSCS3         | 01 = Output |
| GPA1  | [3:2]   | 00 = Input<br>1x = nSCS2         | 01 = Output |
| GPA0  | [1:0]   | 00 = Input<br>1x = nSCS1         | 01 = Output |

| PDATA    | Bit   | Description                                                                                                                                                                         |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPA[7:0] | [7:0] | When the port is configured as output port, the pin state is the same as the corresponding bit.<br>When the port is configured as functional pin, the undefined value will be read. |

| PUPA     | Bit   | Description                                                                                                                                  |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| GPA[7:0] | 17:11 | <ul><li>0: the pull up register attached to to the corresponding port pin is enabled.</li><li>1: the pull up register is disabled.</li></ul> |



## PORT B CONTROL REGISTERS (PCONB, PDATB, PUPB)

Port B control registers are shown in Table 5-3:

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONB    | 0x1010 000C | R/W | Configures the pins of port B       | 0x0000 0FFF |
| PDATB    | 0x1010 0010 | R/W | The data register for port B        | Undef.      |
| PUPB     | 0x1010 0014 | R/W | Pull-up disable register for port B | 0x0000 0000 |

## Table 5-3. Port of Group C Control Registers (PCONB, PDATB, PUPB)

| PCONB | Bit     | C                                  | Description |
|-------|---------|------------------------------------|-------------|
| GPB7  | [15:14] | 00 = Input<br>1x = AHBCLK out      | 01 = Output |
| GPB6  | [13:12] | 00 = Input<br>1x = nWAIT           | 01 = Output |
| GPB5  | [11:10] | 00 = Input<br>1x = nBE3/nWBE3/DQM3 | 01 = Output |
| GPB4  | [9:8]   | 00 = Input<br>1x = nBE2/nWBE2/DQM2 | 01 = Output |
| GPB3  | [7:6]   | 00 = Input<br>1x = nBE1/nWBE1/DQM1 | 01 = Output |
| GPB2  | [5:4]   | 00 = Input<br>1x = nBE0/nWBE0/DQM0 | 01 = Output |
| GPB1  | [3:2]   | 00 = Input<br>1x = nDCAS3/nSDRAS   | 01 = Output |
| GPB0  | [1:0]   | 00 = Input<br>1x = nDCAS2/nSDCAS   | 01 = Output |

| PDATA    | Bit   | Description                                                                                                                                                                         |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPB[7:0] | [7:0] | When the port is configured as output port, the pin state is the same as the corresponding bit.<br>When the port is configured as functional pin, the undefined value will be read. |

| PUPA     | Bit   | Description                                                                                                                                  |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| GPB[7:0] | 17:01 | <ul><li>0: the pull up register attached to to the corresponding port pin is enabled.</li><li>1: the pull up register is disabled.</li></ul> |



# PORT C CONTROL REGISTERS (PCONC, PDATC, PUPC)

Port C control registers are shown in Table 5-4:

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONC    | 0x1010 0018 | R/W | Configures the pins of port C       | 0x0000 0000 |
| PDATC    | 0x1010 001C | R/W | The data register for port C        | Undef.      |
| PUPC     | 0x1010 0020 | R/W | Pull-up disable register for port C | 0x0000 0000 |

## Table 5-4. Port of Group C Control Registers (PCONC, PDATC, PUPC)

| PCONC | Bit     | Description                                                                                                                            |
|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------|
| GPC7  | [15:14] | 0x = Reserved(ENDIAN)<br>1x = Output<br>GPC7 can be used as ENDIAN only during reset cycle.<br>It is written by 1x to use output state |
| GPC6  | [13:12] | 0x = Input<br>1x = Output                                                                                                              |
| GPC5  | [11:10] | 0x = Input<br>1x = Output                                                                                                              |
| GPC4  | [9:8]   | 0x = Input<br>1x = Output                                                                                                              |
| GPC3  | [7:6]   | 0x = Input<br>1x = Output                                                                                                              |
| GPC2  | [5:4]   | 0x = Input<br>1x = Output                                                                                                              |
| GPC1  | [3:2]   | 0x = Input<br>1x = Output                                                                                                              |
| GPC0  | [1:0]   | 0x = Input<br>1x = Output                                                                                                              |

| PDATC    | Bit   | Description                                                                                                                                                                         |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPC[7:0] | [7:0] | When the port is configured as output port, the pin state is the same as the corresponding bit.<br>When the port is configured as functional pin, the undefined value will be read. |

| PUPC Bit |       | Description                                                                                                                                                                                          |  |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GPC[6:0] | [6:0] | <ul><li>0 : the pull up register attached to to the corresponding port pin is enabled.</li><li>1 : the pull up register is disabled.</li><li>GPC7 don't have programmale pull-up register.</li></ul> |  |



## PORT D CONTROL REGISTERS (PCOND, PDATD, PUPD)

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCOND    | 0x1010 0024 | R/W | Configures the pins of port D       | 0x0000 0000 |
| PDATD    | 0x1010 0028 | R/W | The data register for port D        | Undef.      |
| PUPD     | 0x1010 002C | R/W | Pull-up disable register for port D | 0x0000 0000 |

Port D control registers are shown in Table 5-5:

## Table 5-5. Port of Group D Control Registers (PCOND, PDATD, PUPD)

| PCONA | Bit     |                             | Description |
|-------|---------|-----------------------------|-------------|
| GPD7  | [15:14] | 00 = Input<br>1x = nRTS0    | 01 = Output |
| GPD6  | [13:12] | 00 = Input<br>1x = nCTS0    | 01 = Output |
| GPD5  | [11:10] | 00 = Input $1x = TxD0$      | 01 = Output |
| GPD4  | [9:8]   | 00 = Input $1x = RxD0$      | 01 = Output |
| GPD3  | [7:6]   | 00 = Input<br>1x = IICSCLK1 | 01 = Output |
| GPD2  | [5:4]   | 00 = Input<br>1x = IICSDA1  | 01 = Output |
| GPD1  | [3:2]   | 00 = Input<br>1x = IICSCLK0 | 01 = Output |
| GPD0  | [1:0]   | 00 = Input<br>1x = IICSDA0  | 01 = Output |

| PDATD    | Bit   | Description                                                                                                                                                                         |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPD[7:0] | [7:0] | When the port is configured as output port, the pin state is the same as the corresponding bit.<br>When the port is configured as functional pin, the undefined value will be read. |

| PUPD     | Bit   | Description                                                                                                                                  |  |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| GPD[7:0] | 17.01 | <ul><li>0: the pull up register attached to to the corresponding port pin is enabled.</li><li>1: the pull up register is disabled.</li></ul> |  |



## PORT E CONTROL REGISTERS (PCONE, PDATE, PUPE)

Port E control registers are shown in Table 5-6:

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONE    | 0x1010 0030 | R/W | Configures the pins of port E       | 0x0000 0000 |
| PDATE    | 0x1010 0034 | R/W | R/W The data register for port E    |             |
| PUPE     | 0x1010 0038 | R/W | Pull-up disable register for port E | 0x0000 0000 |

## Table 5-6. Port of Group E Control Registers (PCONE, PDATE, PUPE)

| PCONB | Bit     |                            | Description |
|-------|---------|----------------------------|-------------|
| GPE7  | [15:14] | 00 = Input<br>1x = nXDACK1 | 01 = Output |
| GPE6  | [13:12] | 00 = Input<br>1x = nXDREQ1 | 01 = Output |
| GPE5  | [11:10] | 00 = Input<br>1x = nXDACK0 | 01 = Output |
| GPE4  | [9:8]   | 00 = Input<br>1x = nXDREQ0 | 01 = Output |
| GPE3  | [7:6]   | 00 = Input<br>1x = nRTS1   | 01 = Output |
| GPE2  | [5:4]   | 00 = Input<br>1x = nCTS1   | 01 = Output |
| GPE1  | [3:2]   | 00 = Input<br>1x = TxD1    | 01 = Output |
| GPE0  | [1:0]   | 00 = Input<br>1x = RxD1    | 01 = Output |

| PDATE    | Bit   | Description                                                                                                                                                                              |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPE[7:0] | [7:0] | When the port is configured as an output port, the pin state is the same as the corresponding bit.<br>When the port is configured as a functional pin, the undefined value will be read. |

| PUPE Bit |       | Description                                                                                                                                  |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| GPE[7:0] | 17.11 | <ul><li>0: the pull up register attached to to the corresponding port pin is enabled.</li><li>1: the pull up register is disabled.</li></ul> |



## PORT F CONTROL REGISTERS (PCONF, PDATF, PUPF)

Port F control registers are shown in Table 5-7:

If GPF0 - GPF7 will be used for wake-up signals at power down mode, the ports will be set in interrupt mode.

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONF    | 0x1010 003C | R/W | Configures the pins of port F       | 0x0000 0000 |
| PDATF    | 0x1010 0040 | R/W | R/W The data register for port F    |             |
| PUPF     | 0x1010 0044 | R/W | Pull-up disable register for port F | 0x0000 0000 |

## Table 5-7. Port of Group F Control Registers (PCONF, PDATF, PUPF)

| PCONF | Bit     |                            | Description |
|-------|---------|----------------------------|-------------|
| GPF7  | [15:14] | 00 = Input<br>1x = EXTINT7 | 01 = Output |
| GPF6  | [13:12] | 00 = Input<br>1x = EXTINT6 | 01 = Output |
| GPF5  | [11:10] | 00 = Input<br>1x = EXTINT5 | 01 = Output |
| GPF4  | [9:8]   | 00 = Input<br>1x = EXTINT4 | 01 = Output |
| GPF3  | [7:6]   | 00 = Input<br>1x = EXTINT3 | 01 = Output |
| GPF2  | [5:4]   | 00 = Input<br>1x = EXTINT2 | 01 = Output |
| GPF1  | [3:2]   | 00 = Input<br>1x = EXTINT1 | 01 = Output |
| GPF0  | [1:0]   | 00 = Input<br>1x = EXTINT0 | 01 = Output |

| PDATF    | Bit   | Description                                                                                                                                                                                 |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPF[7:0] | [7:0] | When the port is configured as an input port, the corresponding bit is the pin state.<br>When the port is configured as output port, the pin state is the same as the<br>corresponding bit. |
|          |       | When the port is configured as a functional pin, the undefined value will be read.                                                                                                          |

| PUPF     | Bit   | Description                                                                                                                                  |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| GPF[7:0] | [7:0] | <ul><li>0: the pull up register attached to to the corresponding port pin is enabled.</li><li>1: the pull up register is disabled.</li></ul> |



## EXTINTR (EXTERNAL INTERRUPT CONTROL REGISTER)

The 8 external interrupts can be requested by various signaling methods. The EXTINTR register configures the signaling method between the level trigger and edge trigger for the external interrupt request, and also configures the signal polarity.

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| EXTINTR  | 0x1010 0048 | R/W | External Interrupt control Register | 0x0000 0000 |

| EXTINT  | Bit     | Description                                                                                                                                                                        |                                  |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| EXTINT7 | [30:28] | Setting the signaling method of the EXTINT7. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $01x =$ Rising  | evel interrupt<br>edge triggered |
| EXTINT6 | [26:24] | Setting the signaling method of the EXTINT6. $000 = Low$ level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $001 =$ High le | evel interrupt<br>edge triggered |
| EXTINT5 | [22:20] | Setting the signaling method of the EXTINT5. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $01x =$ Rising  | evel interrupt<br>edge triggered |
| EXTINT4 | [18:16] | Setting the signaling method of the EXTINT4. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $01x =$ Rising  | evel interrupt<br>edge triggered |
| EXTINT3 | [14:12] | Setting the signaling method of the EXTINT3. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered                 | evel interrupt<br>edge triggered |
| EXTINT2 | [10:8]  | Setting the signaling method of the EXTINT2. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $001 =$ High le | evel interrupt<br>edge triggered |
| EXTINT1 | [6:4]   | Setting the signaling method of the EXTINT1. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $01x =$ Rising  | evel interrupt<br>edge triggered |
| EXTINTO | [2:0]   | Setting the signaling method of the EXTINTO. $000 =$ Low level interrupt $001 =$ High le $01x =$ Falling edge triggered $10x =$ Rising $11x =$ Both edge triggered $10x =$ Rising  | evel interrupt<br>edge triggered |

**NOTE**: Because each external interrupt pins has a digital filter, the interrupt controller can recognize a request signal that is longer than 3 clocks.



## NOTES

# **GPIO Control Register**

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| PCONA    | 0x1010 0000 | R/W | Configures the pins of port A       | 0x0000 FFFF |
| PDATA    | 0x1010 0004 | R/W | The data register for port A        | Undef.      |
| PUPA     | 0x1010 0008 | R/W | Pull-up disable register for port A | 0x0000 0000 |
| PCONB    | 0x1010 000C | R/W | Configures the pins of port B       | 0x0000 0FFF |
| PDATB    | 0x1010 0010 | R/W | The data register for port B        | Undef.      |
| PUPB     | 0x1010 0014 | R/W | Pull-up disable register for port B | 0x0000 0000 |
| PCONC    | 0x1010 0018 | R/W | Configures the pins of port C       | 0x0000 0000 |
| PDATC    | 0x1010 001C | R/W | The data register for port C        | Undef.      |
| PUPC     | 0x1010 0020 | R/W | Pull-up disable register for port C | 0x0000 0000 |
| PCOND    | 0x1010 0024 | R/W | Configures the pins of port D       | 0x0000 0000 |
| PDATD    | 0x1010 0028 | R/W | The data register for port D        | Undef.      |
| PUPD     | 0x1010 002C | R/W | Pull-up disable register for port D | 0x0000 0000 |
| PCONE    | 0x1010 0030 | R/W | Configures the pins of port E       | 0x0000 0000 |
| PDATE    | 0x1010 0034 | R/W | The data register for port E        | Undef.      |
| PUPE     | 0x1010 0038 | R/W | Pull-up disable register for port E | 0x0000 0000 |
| PCONF    | 0x1010 003C | R/W | Configures the pins of port F       | 0x0000 0000 |
| PDATF    | 0x1010 0040 | R/W | The data register for port F        | Undef.      |
| PUPF     | 0x1010 0044 | R/W | Pull-up disable register for port F | 0x0000 0000 |
| EXTINTR  | 0x1010 0048 | R/W | External Interrupt control Register | 0x0000 0000 |



# 6 16-BIT TIMERS(Preliminary)

## OVERVIEW

The S3C2800X has the three 16-bit timers, each of timer can operate in interrupt-based or DMA-based mode. The Timers 0, 1, 2, These timers can operate in interval mode.

The timer 0,1,2 have an 8-bit prescaler. Each timer has a clock-divider which has 4 different divided signals (1/4, 1/8, 1/16, 1/32). Each timer block receives its own clock signals from the clock-divider which receives the clock from the corresponding 8-bit prescaler. The 8-bit prescaler is programmable and divides the APBCLK signal depending on the loading value which is stored in TMDATAn register.

Each timer has its own 16-bit down-counter which is driven by the timer clock. When the down-counter reaches zero, the timer interrupt request is generated to inform the CPU that the timer operation is completed. When the timer counter reaches zero, the value of corresponding TMDATAn is automatically loaded into the down-counter to continue the next operation. However, if the timer stops, for example, by clearing the count enable bit of TMCONn during the timer running mode, the value of TMDATAn will not be reloaded into the counter.

#### FEATURE

- Three 16-bit timers with DMA-based or interrupt-based operation
- Three 8-bit prescalers & Three 5-bit dividers
- Auto reload operation
- Max frequency source is 50MHz (APBCLKmax=50MHz@AHBCLK=50MHz)



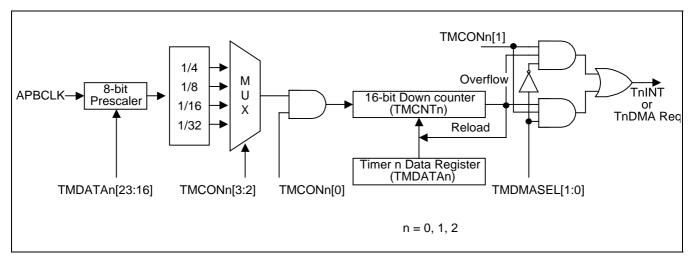



Figure 6-1. 16-bit Timer Block Diagram

## **16-BIT TIMER OPERATION**

#### **PRESCALER & DIVIDER**

8-bit prescaler & independent divider make following output frequencies: (APBCLKmax = 50MHz)

#### Table 6-1. Example for interval timing.

| Ddivider settings          | Minimum resolution<br>(prescaler = 1) | Maximum resolution<br>(prescaler = 255) | maximum interval<br>(TCNTBn = 65535) |
|----------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|
| 1/4 (APBCLK = 50 MHz)      | 0.16 us (6.25 MHz )                   | 20.48 us (48.83 KHz )                   | 1.342 sec                            |
| 1/8 (APBCLK = 50 MHz)      | 0.32 us (3.125 MHz )                  | 40.96 us (24.42 KHz )                   | 2.684 sec                            |
| 1/16 ( APBCLK = 50 MHz )   | 0.64 us (1.563 MHz )                  | 81.92 us (12.21 KHz )                   | 5.368 sec                            |
| 1/32 ( APBCLK = 50 MHz )   | 1.28 us (0.782 MHz )                  | 163.84 us (6.11 KHz )                   | 10.736 sec                           |
| 1/4 (APBCLK = 37.5 MHz)    | 0.21 us (4.688 MHz )                  | 27.31 us (36.62 KHz )                   | 1.786 sec                            |
| 1/8 (APBCLK = 37.5 MHz)    | 0.42 us (2.344 MHz )                  | 54.61 us (18.31 KHz )                   | 3.579 sec                            |
| 1/16 ( APBCLK = 37.5 MHz ) | 0.84 us (1.172 MHz )                  | 109.22 us (9.16 KHz )                   | 7.158 sec                            |
| 1/32 ( APBCLK = 37.5 MHz ) | 1.71 us (0.586 MHz )                  | 218.44 us (4.58 KHz )                   | 14.316 sec                           |



# DMA REQUEST MODE

The timer can generate DMA request every specific times. The timer keeps DMA request signal low until the timer receive the ACK signal. When receives the ACK signal, it makes the request signal inactive. One of 3 timers can generate DMA request. The timer, that generates the DMA request, is determined by setting DMA mode bits(in TMCON1 register). If a timer is configured as DMA request mode, the timer does not generate an interrupt request. The others can generate interrupt normally.

# DMA MODE CONFIGURATION AND DMA / INTERRUPT OPERATION

| DMA mode | DMA request | Timer0 INT | Timer1 INT | Timer2 INT |
|----------|-------------|------------|------------|------------|
| 00       | No select   | ON         | ON         | ON         |
| 01       | Timer0      | OFF        | ON         | ON         |
| 10       | Timer1      | ON         | OFF        | ON         |
| 11       | Timer2      | ON         | ON         | OFF        |

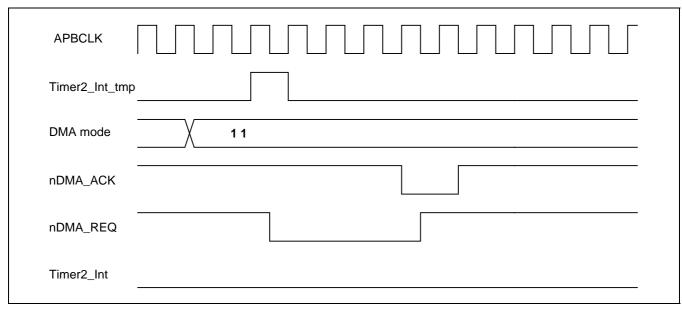



Figure 6-2. The Timer2 DMA mode operation



# TIMER CONTROL REGISTERS

# TIMER DMA SELECTION REGISTER1 (TMDMA)

| Register | Address     | R/W | Description                             | Reset Value |
|----------|-------------|-----|-----------------------------------------|-------------|
| TMDMASEL | 0x1013 000C | R/W | DMA or Interrupt mode selecton register | 0x0000 0000 |

| TMDMASEL | Bit   | Desc                                                                       | cription                   | Initial State |
|----------|-------|----------------------------------------------------------------------------|----------------------------|---------------|
| DMA mode | [1:0] | Select DMA request channel<br>00 = No select(All interrupt)<br>10 = Timer1 | 01 = Timer0<br>11 = Timer2 | 0             |

# TIMER CONTROL REGISTER0 (TMCON0 ~ TMCON2)

Timer input clock Frequency = APBCLK / {prescaler value+1} / {divider value} {prescaler value} = 1~255 (TMDATAn[23:16]) {divider value} = 4,8,16,32

| Register | Address     | R/W | Description              | Reset Value |
|----------|-------------|-----|--------------------------|-------------|
| TMCON0   | 0x1013 0000 | R/W | Timer 0 control register | 0x0000 0800 |
| TMCON1   | 0x1014 0000 | R/W | Timer 1 control register | 0x0000 0800 |
| TMCON2   | 0x1015 0000 | R/W | Timer 2 control register | 0x0000 0800 |

| TMCONn        | Bit   | Description                                                                                                                                                                                                                                                                                                                                                                  | Initial State |
|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|               |       | Select MUX input                                                                                                                                                                                                                                                                                                                                                             |               |
| MUX           | [3:2] | $\begin{array}{ccc} 00 = 1/4 & 01 = 1/8 \\ 10 = 1/16 & 11 = 1/32 \end{array}$                                                                                                                                                                                                                                                                                                | 00            |
| Interrupt/DMA |       | Interrupt or DMA Enable                                                                                                                                                                                                                                                                                                                                                      | 0             |
| Enable        | [1]   | 0 = Disable 1 = Enable                                                                                                                                                                                                                                                                                                                                                       | 0             |
|               |       | Timer down counter run or stop                                                                                                                                                                                                                                                                                                                                               |               |
| Count Enable  | [0]   | 0 = Stop 1 = Run<br>This bit enables or disables timer. When the bit is set to "0",<br>the 16-bit down counter is clear to "0x0000", and then it is<br>stops.<br>When it is "1", the 16-bit timer down counter starts counting<br>again after reload the timer data value and pre-scaler value,<br>and then the counter value decrements by one on accepting<br>every clock. | 0             |



# TIMER DATA REGISTER (TMDATAn)

The timer data registers, TMDATA0, TMDATA1, and TMDATA2, contain a value that specifies the time-out duration for each timer. The formula for calculating time-out duration is (Timer data + 1) cycles.

| Register | Address     | R/W | Description           | Reset Value |
|----------|-------------|-----|-----------------------|-------------|
| TMDATA0  | 0x1013 0004 | R/W | Timer 0 Data Register | 0x0080 FFFF |
| TMDATA1  | 0x1014 0004 | R/W | Timer 1 Data Register | 0x0080 FFFF |
| TMDATA2  | 0x1015 0004 | R/W | Timer 2 Data Register | 0x0080 FFFF |

| TMDATAn          | Bit     | Description                                                                                                                                                                                                                                                                                                                                                                                           | Initial State |
|------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Pre-scaler       | [23:16] | These 8 bits determine prescaler value ( $1 \sim 255$ )<br>0 = not supported.                                                                                                                                                                                                                                                                                                                         | 0x80          |
| Timer data value | [15:0]  | [15:0] Timer data value<br>This field specifies the time-out period of the corresponding<br>timer. The time-out period is calculated as (Timer data + 1)<br>cycles.Therefore, a maximum time-out period of 65,536 cycles<br>is possible (when the timer data value is 0xfff). The minimum<br>time-out period (2 cycles) is obtained by writing the value<br>0x0001h to the timer data register field. | 0x0000 FFFF   |

# TIMER COUNT REGISTER (TMCNTn)

The timer count registers, TMCNT0, TMCNT1, and TMCNT2, contain current timer 0, 1, and 2 count value, respectively. The timer count registers operate as a decrement counter.

| Register | Address     | R/W | Description            | Reset Value |
|----------|-------------|-----|------------------------|-------------|
| TMCNT0   | 0x1013 0008 | R   | Timer 0 count register | 0x0000 FFFF |
| TMCNT1   | 0x1014 0008 | R   | Timer 1 count register | 0x0000 FFFF |
| TMCNT2   | 0x1015 0008 | R   | Timer 2 count register | 0x0000 FFFF |

| TMCNTn            | Bit    | Description                                                                                                                                                                                                                                                                                                                                                                                         | Initial State |
|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Timer count value | [15:0] | [15:0] Counting value<br>This field specifies the time-out period of the corresponding<br>timer. The time-out period is calculated as (Timer data + 1)<br>cycles.Therefore, a maximum time-out period of 65,536 cycles<br>is possible (when the timer data value is 0xfff). The minimum<br>time-out period (2 cycles) is obtained by writing the value<br>0x0001h to the timer data register field. |               |



# NOTES

# **Timer Register**

| Register | Address     | R/W | Description                             | Reset Value |
|----------|-------------|-----|-----------------------------------------|-------------|
| TMDMASEL | 0x1013 000C | R/W | DMA or Interrupt mode selecton register | 0x0000 0000 |
| TMCON0   | 0x1013 0000 | R/W | Timer 0 control register                | 0x0000 0000 |
| TMDATA0  | 0x1013 0004 | R/W | Timer 0 Data Register                   | 0x0080 FFFF |
| TMCNT0   | 0x1013 0008 | R   | Timer 0 count register                  | 0x0000 FFFF |
| TMCON1   | 0x1014 0000 | R/W | Timer 1 control register                | 0x0000 0000 |
| TMDATA1  | 0x1014 0004 | R/W | Timer 1 Data Register                   | 0x0080 FFFF |
| TMCNT1   | 0x1014 0008 | R   | Timer 1 count register                  | 0x0000 FFFF |
| TMCON2   | 0x1015 0000 | R/W | Timer 2 control register                | 0x0000 0000 |
| TMDATA2  | 0x1015 0004 | R/W | Timer 2 Data Register                   | 0x0080 FFFF |
| TMCNT2   | 0x1015 0008 | R   | Timer 2 count register                  | 0x0000 FFFF |



# **UART(Preliminary)**

# **OVERVIEW**

The S3C2800X UART (Universal Asynchronous Receiver and Transmitter) unit provides two independent asynchronous serial I/O ports, each of which can operate in interrupt-based or DMA-based mode. In other words, UART can generate an interrupt or DMA request to transfer data between CPU and UART. It can support bit rates of up to 230.4Kbps. Each UART channel contains two 16-byte FIFOs for receive and transmit.

The S3C2800X UART includes programmable baud-rates, infra-red (IR) transmit/receive, one or two stop bit insertion, 5-bit, 6-bit, 7-bit or 8-bit data width and parity checking.

Each UART contains a baud-rate generator, transmitter, receiver and control unit, as shown in Figure10-1. The baud-rate generator can be clocked by APBCLK. The transmitter and the receiver contain 16-byte FIFOs and data shifters. Data, which is to be transmitted, is written to FIFO and then copied to the transmit shifter. It is then shifted out by the transmit data pin (TxDn). The received data is shifted from the receive data pin (RxDn), and then copied to FIFO from the shifter.

# FEATURE

- RxD0,TxD0,RxD1,TxD1 with DMA-based or interrupt-based operation
- UART Ch 0 with IrDA 1.0 & 16-byte FIFO
- UART Ch 1 with IrDA 1.0 & 16-byte FIFO
- Supports handshake transmit / receive
- Baud-rate(max) = 230.4Kbps



# **BLOCK DIAGRAM**

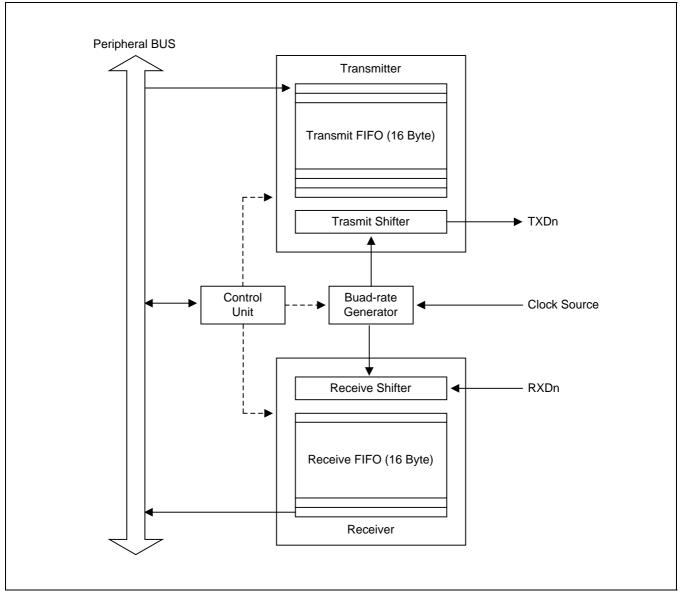



Figure 7-1. UART Block Diagram (with FIFO)



# UART OPERATION

The following sections describe the UART operations that include data transmission, data reception, interrupt generation, baud-rate generation, loopback mode, infra-red mode, auto flow control.

### **Data Transmission**

The data frame for transmission is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit and 1 to 2 stop bits, which can be specified by the line control register (UCONn). The transmitter can also produce the break condition. The break condition forces the serial output to logic 0 state for a duration longer than one frame transmission time. This block transmit break signal after the present transmissive word transmits perfectly. After the break signal transmit, continously transmit data into the Tx FIFO (Tx holding register in the case of Non-FIFO mode).

### **Data Reception**

Like the transmission, the data frame for reception is also programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit and 1 to 2 stop bits by settings in the line control register (UCONn). The receiver can detect overrun error, parity error, frame error and break condition, each of which can set an error flag.

- The overrun error indicates that new data has overwritten the old data before the old data has been read.
- The parity error indicates that the receiver has detected unexpected parity condition.
- The frame error indicates that the received data does not have a valid stop bit.
- The break condition indicates that the RxDn input is held in the logic 0 state for a duration longer than one frame transmission time.

Receive time-out condition occurs when it does not receive data during the 3 word time and the Rx FIFO is not empty state at FIFO mode.

### Auto Flow Control(AFC)

S3C2800X's UART supports auto flow control with nRTS and nCTS signal, in this case should have to connect UART to UART. If users connect UART to Modem, disable auto flow control bit in UMCONn register and control the signal of nRTS by software.

In AFC, nRTS is controlled by condition of receiver and operation of transmitter is controlled by nCTS signal. The UART's transmitter transfer the data in FIFO only when nCTS signal is activated(In AFC, nCTS means that the other UART's FIFO is ready to receive data). Before the UART receives data, nRTS has to be activated when its receive FIFO has the spare more than 2-byte and has to be inactivated when its receive FIFO has the spare under 1-byte(In AFC, nRTS means that own receive FIFO is ready to receive data).

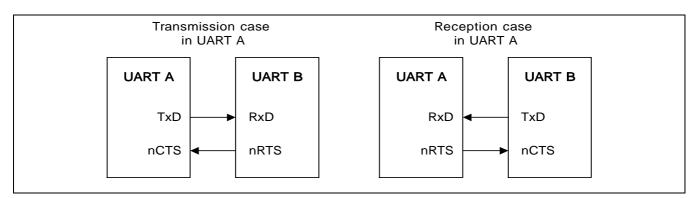



Figure 7-2. UART AFC interface



# Non Auto-Flow control(Controlling nRTS and nCTS by S/W)

### **Rx operation**

- 1. Select receive mode(Interrupt or DMA mode).
- Check the value of Rx FIFO count in UFSTATn register. If the value is less than 15, users have to set the value of UMCONn[0] to '1'(activate nRTS), and if it is equal or larger than 15 users have to set the value to '0'(inactivate nRTS).
- 3. Repeat 2 item.

### Tx operation

- 1. Select transmit mode(Interrupt or DMA mode)
- 2. Check the value of UMSTATn[0]. If only the value is '1'(nCTS is activated), users write the data in Tx buffer or Tx FIFO register.

### **RS-232C** interface

If users connect to modem interface(not equal null modem), need nRTS, nCTS, nDSR, nDTR, DCD and nRI signals, In this case, users control these signals with general I/O ports by S/W because the AFC does not support RS-232C interface.



### Interrupt/DMA Request Generation

Each UART of S3C2800X has seven status(Tx/Rx/Error) signals: Overrun error, Parity error, Frame error, Break, Receive FIFO/buffer data ready, Transmit FIFO/buffer empty, and Transmit shifter empty, all of which are indicated by the corresponding UART status register (UTRSTATn/UERSTATn).

The overrun error, parity error, frame error and break condition are referred to as the receive error status, each of which can cause the receive error status interrupt request, if the receive-error-status-interrupt-enable bit is set to one in the control register UCONn. When a receive-error-status-interrupt-request is detected, you can know the signal which causes the request by reading UERSTSTn.

When the receiver transfers the data of the receive shifter to the receive FIFO, it activates the receive FIFO full status signal which will cause the receive interrupt, if the receive mode in control register is selected as the interrupt mode.

When the transmitter transfers data from its transmit FIFO to its transmit shifter, the transmit FIFO empty status signal is activated. The signal causes the transmit interrupt if the transmit mode in control register is selected as that interrupt mode.

The receive-FIFO-full and transmit-FIFO-empty status signals can also be connected to generate the DMA request signals if the receive/transmit mode is selected as the DMA mode.

| Туре            | FIFO Mode                                                                                                                         | Non-FIFO Mode                                                                                                        |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                 | Each time receive data gets to the trigger level of receive FIFO, the Rx interrupt will be generated.                             | Each time receive data becomes full                                                                                  |  |
| Rx interrupt    | When the FIFO is not empty and does not receive data during 3 word time, the Rx interrupt will be generated(receive time out).    | receive shift register, generates interrupt.                                                                         |  |
| Tx interrupt    | Each time transmit data gets to the trigger level of transmit FIFO, the Tx interrupt will be generated.                           | Each time transmit data become empty,<br>the transmit holding register generates<br>interrupt.                       |  |
| Error interrupt | Framing error, parity error, and break signal are detected as each byte which is received, the error interrupt will be generated. | All errors generate an error interrupt<br>immediately. However if another error<br>occurs at the same time, only one |  |
| •               | When it gets to the top of the receive FIFO, the error interrupt will be generated(overrun error).                                | interrupt is generated.                                                                                              |  |

# Table 7-1. Interrupts In Connection With FIFO



# UART Error Status FIFO

UART has the status FIFO aside from the Rx FIFO register. The status FIFO indicates which data, among FIFO registers, is received with an error. The error interrupt will be issued only when the data, which has an error, is ready to read out. To clear the status FIFO, the URXHn, that has an error, and UERSTATn has to be read out.

# For example,

It is assumed that the UART FIFO receives A, B, C, D, E characters sequentially, and the frame error is occurred while receiving the 'B', and the frame error is occurred while receiving the 'D'.

Although the UART error has been occurred, the error interrupt will not occur because the character, which has been received with an error, is not read yet. The error interrupt will occur when the character is read out.

| Time | Sequence flow                 | Error interrupt                         | Note                       |
|------|-------------------------------|-----------------------------------------|----------------------------|
| #0   | When no character is read out | -                                       |                            |
| #1   | After A is read out           | The frame error(in B) interrupt occurs  | The 'B' has to be read out |
| #2   | After B is read out           | -                                       |                            |
| #3   | After C is read out           | The parity error(in D) interrupt occurs | The 'D' has to be read out |
| #4   | After D is read out           | -                                       |                            |
| #5   | After E is read out           | -                                       |                            |

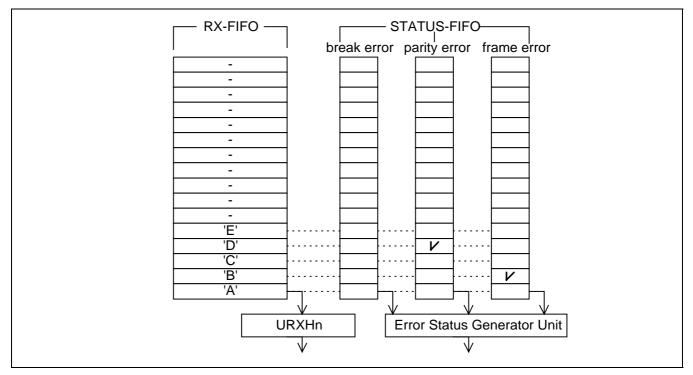



Figure 7-3. The Case that UART Receives 5 Characters Including 2 Errors



### **Baud-Rate Generation**

Each UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the baud-rate generator can be selected with the S3C2800X's internal system clock. The baud-rate clock is generated by dividing the source clock by 16 and a 16-bit divisor specified by the UART baud-rate divisor register (UBRDIVn). The UBRDIVn can be determined as follows:

```
UBRDIVn = (round_off)(APBCLK/(bps x 16)) -1
```

where the divisor should be from 1 to  $(2^{16}-1)$ . For example, if the baud-rate is 230400 bps and APBCLK is 37.5MHz , UBRDIVn is:

```
UBRDIVn = (int)(37500000/(230400 x 16)+0.5) -1
= (int)(10.2+0.5) -1
= 10 -1 = 9
```

# Loop-back Mode

The S3C2800X UART provides a test mode referred to as the loopback mode, to aid in isolating faults in the communication link. In this mode, the transmitted data is immediately received. This feature allows the processor to verify the internal transmit and to receive the data path of each SIO channel. This mode can be selected by setting the loopback-bit in the UART control register (UCONn).

# **Break Condition**

The break is defined as a continuous low level signal on the transmit data output with a duration more than one frame transmission time.



# IR (Infra-Red) Mode

The S3C2800X UART block supports infra-red (IR) transmission and reception, which can be selected by setting the infra-red-mode bit in the UART control register (ULCONn). The implementation of the mode is shown in Figure 10-3.

In IR transmit mode, the transmit period is pulsed at a rate of 3/16 as at the normal serial transmit rate (when the transmit data bit is zero); In IR receive mode, the receiver must detect the 3/16 pulsed period to recognize a zero value (refer to the frame timing diagrams shown in Figures 10-5 and 10-6).

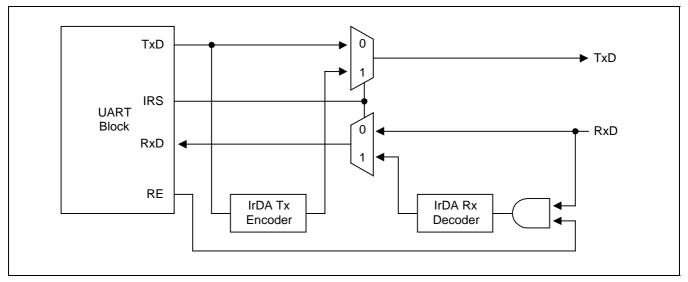



Figure 7-3. IrDA Function Block Diagram





Figure 7-4. Serial I/O Frame Timing Diagram (Normal UART)



Figure 7-5. Infra-Red Transmit Mode Frame Timing Diagram

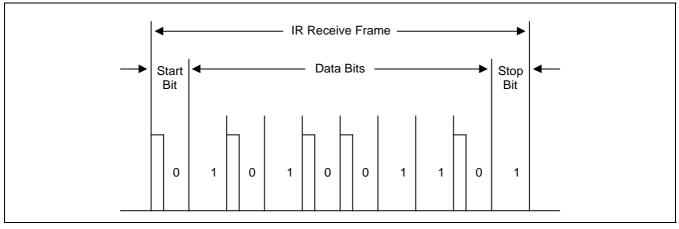



Figure 7-6. Infra-Red Receive Mode Frame Timing Diagram



# **UART SPECIAL REGISTERS**

# UART LINE CONTROL REGISTER

There are two UART line control registers, ULCON0 and ULCON1 in the UART block.

| Register | Address     | R/W | Description                          | Reset Value |
|----------|-------------|-----|--------------------------------------|-------------|
| ULCON0   | 0x1017 0000 | R/W | UART channel 0 line control register | 0x0000 0000 |
| ULCON1   | 0x1018 0000 | R/W | UART channel 1 line control register | 0x0000 0000 |

| ULCONn             | Bit    | Description                                                                                                                         | Initial State |
|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved           | [31:8] | Reserved                                                                                                                            | 0             |
| Infra-Red Mode     | [7]    | The Infra-Red mode determines whether or not to use the<br>Infra-Red mode.<br>0 = Normal mode operation<br>1 = Infra-Red Tx/Rx mode | 0             |
|                    |        | The parity mode specifies how parity generation and checking are to be performed during UART transmit and receive operation.        |               |
| Parity Mode        | [6:4]  | 0xx = No parity<br>100 = Odd parity<br>101 = Even parity<br>110 = Parity forced/checked as 1<br>111 = Parity forced/checked as 0    | 000           |
| Reserved           | [3]    | Reserved                                                                                                                            | 0             |
| Number of stop bit | [2]    | The number of stop bits specify how many stop bits are use d to signal end-of-frame.<br>0 = One stop bit per frame                  | 0             |
|                    |        | 1 = Two stop bit per frame                                                                                                          |               |
| Mond longth        | [1:0]  | The word length indicates the number of data bits to be transmitted or received per frame.                                          | 00            |
| Word length        | [1.0]  | 00 = 5-bits         01 = 6-bits           10 = 7-bits         11 = 8-bits                                                           | 00            |



# UART CONTROL REGISTER

There are two UART control registers, UCON0 and UCON1 in the UART block.

| Register | Address     | R/W | Description                     | Reset Value |
|----------|-------------|-----|---------------------------------|-------------|
| UCON0    | 0x1017 0004 | R/W | UART channel 0 control register | 0x0000 0000 |
| UCON1    | 0x1018 0004 | R/W | UART channel 1 control register | 0x0000 0000 |

| UCONn                               | Bit     | Description                                                                                                                                                                                                                                                                                              | Initial State |
|-------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved                            | [31:10] | Reserved                                                                                                                                                                                                                                                                                                 |               |
| Tx interrupt type                   | [9]     | Interrupt request type<br>0 = Pulse (Just when Tx buffer is empty)<br>1 = Level (While Tx buffer is empty)                                                                                                                                                                                               | 0             |
| Rx interrupt type                   | [8]     | Interrupt request type<br>0 = Pulse (Just when Rx buffer receives the data)<br>1 = Level (While Rx buffer has the received data)                                                                                                                                                                         | 0             |
| Rx time out<br>enable               | [7]     | Enable/Disable Rx time out interrupt when UART FIFO is enabled.<br>The interrupt is receive interrupt.<br>0 = Disable 1 = Enable                                                                                                                                                                         | 0             |
| Rx error status<br>interrupt enable | [6]     | <ul> <li>This bit enables the UART to generate an interrupt if an exception, such as a break, frame error, parity error, or overrun error occurs during a receive operation.</li> <li>0 = Do not generate receive error status interrupt</li> <li>1 = Generate receive error status interrupt</li> </ul> | 0             |
| Loop-back Mode                      | [5]     | Setting loop-back bit to 1 causes the UART to enter loop-back<br>mode. This mode is provided for test purposes only.<br>0 = Normal operation 1 = Loop-back mode                                                                                                                                          | 0             |
| Send Break<br>Signal                | [4]     | Setting this bit causes the UART to send a break during 1 frame<br>time. This bit is auto-cleared after sending break signal.<br>0 = Normal transmit 1 = Send break signal                                                                                                                               | 0             |
| Transmit Mode                       | [3:2]   | These two bits determine which function is currently able to write Txdata to the UART transmit holding register. $00 = Disable$ $1x = DMA$ request                                                                                                                                                       | 00            |
| Receive Mode                        | [1:0]   | These two bits determine which function is currently able to readdata from UART receive buffer register.00 = Disable,01 = Interrupt request1x = DMA request                                                                                                                                              | 00            |



# UART FIFO CONTROL REGISTER

There are two UART FIFO control registers, UFCON0 and UFCON1 in the UART block.

| Register | Address     | R/W | Description                          | Reset Value |
|----------|-------------|-----|--------------------------------------|-------------|
| UFCON0   | 0x1017 0008 | R/W | UART channel 0 FIFO control register | 0x0000 0000 |
| UFCON1   | 0x1018 0008 | R/W | UART channel 1 FIFO control register | 0x0000 0000 |

| UFCONn                | Bit    | Description                                                                                                           | Initial State |
|-----------------------|--------|-----------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved              | [31:8] |                                                                                                                       | 0             |
| Tx FIFO Trigger Level | [7:6]  | These two bits determine trigger level of transmit FIFO. $00 = Empty$ $01 = 4$ -byte $10 = 8$ -byte $11 = 12$ -byte   | 00            |
| Rx FIFO Trigger Level | [5:4]  | These two bits determine trigger level of receive FIFO. $00 = 4$ -byte $01 = 8$ -byte $10 = 12$ -byte $11 = 16$ -byte | 00            |
| Reserved              | [3]    |                                                                                                                       | 0             |
| Tx FIFO Reset         | [2]    | This bit is auto-cleared after resetting FIFO0 = Normal1= Tx FIFO reset                                               | 0             |
| Rx FIFO Reset         | [1]    | This bit is auto-cleared after resetting FIFO0 = Normal1= Rx FIFO reset                                               | 0             |
| FIFO Enable           | [0]    | 0 = FIFO disable 1 = FIFO mode                                                                                        | 0             |

**Note :** When the UART does not get to FIFO trigger level and does not receive data during 3 word time in DMA receive mode with FIFO, the Rx interrupt will be generated(receive time out), and users should have to check the FIFO status and read out the rest.

# UART MODEM CONTROL REGISTER

There are two UART MODEM control registers, UMCON0 and UMCON1 in the UART block.

| Register | Address     | R/W | Description                           | Reset Value |
|----------|-------------|-----|---------------------------------------|-------------|
| UMCON0   | 0x1017 000C | R/W | UART channel 0 Modem control register | 0x0000 0000 |
| UMCON1   | 0x1018 000C | R/W | UART channel 1 Modem control register | 0x0000 0000 |

| UMCONn                 | Bit    | Description                                                                                                                                                                                                                                    | Initial State |
|------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved               | [31:2] | Reserved                                                                                                                                                                                                                                       |               |
| AFC(Auto Flow Control) | [1]    | 0 = Disable 1 = Enable                                                                                                                                                                                                                         | 0             |
| Request to Send        | [0]    | If AFC bit is enabled, this value will be ignored. In this case<br>the S3C2800X will control nRTS automatically.<br>If AFC bit is disabled, you have to control nRTS by S/W.<br>0 = 'H' level(Inactivate nRTS)<br>1 = 'L' level(Activate nRTS) | 0             |



# UART TX/RX STATUS REGISTER

There are two UART Tx/Rx status registers, UTRSTAT0 and UTRSTAT1 in the UART block.

| Register | Address     | R/W | Description                          | Reset Value |
|----------|-------------|-----|--------------------------------------|-------------|
| UTRSTAT0 | 0x1017 0010 | R   | UART channel 0 Tx/Rx status register | 0x0000 0006 |
| UTRSTAT1 | 0x1018 0010 | R   | UART channel 1 Tx/Rx status register | 0x0000 0006 |

| UTRSTATn                                              | Bit    | Description                                                                                                                                                                                                                                    | Initial State |
|-------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved                                              | [31:3] | Reserved                                                                                                                                                                                                                                       |               |
| Transmit shifter empty                                | [2]    | This bit is automatically set to 1 when the transmit shift<br>register has no valid data to transmit and the transmit shift<br>register is empty.<br>0 = Not empty<br>1 = Transmit holding & shifter register empty                            | 1             |
| Transmit FIFO empty/<br>Transmit buffer empty         | [1]    | This bit is automatically set to 1 when the transmit FIFO/buffer register does not contain valid data.<br>$0 = 1$ -byte $\leq$ FIFO $\leq$ 16-byte/The buffer register is not empty 1 = Empty                                                  | 1             |
| Receive FIFO data ready/<br>Receive buffer data ready | [0]    | This bit is automatically set to 1 whenever the receive FIFO/buffer data register contains valid data received over the RXDn port.<br>0 = Completely empty<br>$1 = 1$ -byte $\leq$ FIFO $\leq$ 16-byte/The buffer register has a received data | 0             |



# UART ERROR STATUS REGISTER

There are two UART Rx error status registers, UERSTAT0 and UERSTAT1 in the UART block.

| Register | Address     | R/W | Description                             | Reset Value |
|----------|-------------|-----|-----------------------------------------|-------------|
| UERSTAT0 | 0x1017 0014 | R   | UART channel 0 Rx error status register | 0x0000 0000 |
| UERSTAT1 | 0x1018 0014 | R   | UART channel 1 Rx error status register | 0x0000 0000 |

| UERSTATn      | Bit    | Description                                                                                                                                                  | Initial State |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved      | [31:4] | Reserved                                                                                                                                                     |               |
| Break Detect  | [3]    | This bit is automatically set to 1 to indicate that a break signal<br>has been received.<br>0 = No break receive<br>1 = Break receive                        | 0             |
| Frame Error   | [2]    | This bit is automatically set to 1 whenever a frame error occurs<br>during receive operation.<br>0 = No frame error during receive<br>1 = Frame error        | 0             |
| Parity Error  | [1]    | This bit is automatically set to 1 whenever a parity error occurs<br>during receive operation.<br>0 = No parity error during receive<br>1 = Parity error     | 0             |
| Overrun Error | [0]    | This bit is automatically set to 1 whenever an overrun error<br>occurs during receive operation.<br>0 = No overrun error during receive<br>1 = Overrun error | 0             |

NOTE : These bits (UERSATn[3:0]) are automatically cleared to 0 when you read the UART error status register.



# **UART FIFO STATUS REGISTER**

Only the UARTn has a 16-byte transmit FIFO & a 16-byte receive FIFO.

There are two UART FIFO status registers, UFSTAT0 and UFSTAT1 in the UART block.

| Register | Address     | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| UFSTAT0  | 0x1017 0018 | R   | UART channel 0 FIFO status register | 0x0000 0000 |
| UFSTAT1  | 0x1018 0018 | R   | UART channel 1 FIFO status register | 0x0000 0000 |

| UFSTATn       | Bit    | Description                                                                                                                                              | Initial State |
|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved      | 31:10] |                                                                                                                                                          | 0             |
| Tx FIFO Full  | [9]    | This bit is automatically set to 1 whenever transmit FIFO is full during transmit operation $0 = 0$ -byte $\leq Tx$ FIFO data $\leq 15$ -byte $1 = Full$ | 0             |
| Rx FIFO Full  | [8]    | This bit is automatically set to 1 whenever receive FIFO is full during receive operation $0 = 0$ -byte $\leq Rx$ FIFO data $\leq 15$ -byte $1 = Full$   | 0             |
| Tx FIFO Count | [7:4]  | Number of data in Tx FIFO                                                                                                                                | 0             |
| Rx FIFO Count | [3:0]  | Number of data in Rx FIFO                                                                                                                                | 0             |



# UART MODEM STATUS REGISTER

There are two UART modem status register, UMSTAT0 and UMSTAT1 in the UART block.

| Register | Address     | R/W | Description                          | Reset Value |
|----------|-------------|-----|--------------------------------------|-------------|
| UMSTAT0  | 0x1017 001C | R   | UART channel 0 Modem status register | 0x0000 0000 |
| UMSTAT1  | 0x1018 001C | R   | UART channel 1 Modem status register | 0x0000 0000 |

| UMSTATn       | Bit    | Description                                                                                                                                                                       | Initial State |
|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved      | [31:2] | Reserved                                                                                                                                                                          | 0             |
| Delta CTS     | [1]    | This bit indicates that the nCTS input to S3C2800X has<br>changed state since the last time it was read by CPU.<br>(Refer to Fig. 10-7)<br>0 = Has not changed<br>1 = Has changed | 0             |
| Clear to Send | [0]    | 0 = CTS signal is not activated(nCTS pin is high)<br>1 = CTS signal is activated(nCTS pin is low)                                                                                 | 0             |

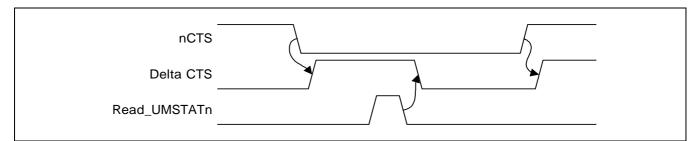



Figure 7-7. nCTS and Delta CTS Timing diagram



# UART TRANSMIT HOLDING(BUFFER) REGISTER & FIFO REGISTER

UTXHn has an 8-bit data for transmissive data (Byte access only)

| Register | Address                          | R/W            | Description                              | Reset Value |
|----------|----------------------------------|----------------|------------------------------------------|-------------|
| UTXH0    | 0x1017 0020(L)<br>0x1017 0023(B) | W<br>(by byte) | UART channel 0 transmit holding register | -           |
| UTXH1    | 0x1018 0020(L)<br>0x1018 0023(B) | W<br>(by byte) | UART channel 1 transmit holding register | -           |

| UTXHn   | Bit   | Description             | Initial State |
|---------|-------|-------------------------|---------------|
| TXDATAn | [7:0] | Transmit data for UARTn | -             |

### NOTE :

- (L) : When the endian mode is Little endian
- (B) : When the endian mode is Big endian.

# **UART RECEIVE HOLDING (BUFFER) REGISTER & FIFO REGISTER**

URXHn has an 8-bit data for received data (Byte access only).

| Register | Address                          | R/W            | Description                            | Reset Value |
|----------|----------------------------------|----------------|----------------------------------------|-------------|
| URXH0    | 0x1017 0024(L)<br>0x1017 0027(B) | R<br>(by byte) | UART channel 0 receive buffer register | -           |
| URXH1    | 0x1018 0024(L)<br>0x1018 0027(B) | R<br>(by byte) | UART channel 1 receive buffer register | -           |

| URXHn   | Bit   | Description            | Initial State |
|---------|-------|------------------------|---------------|
| RXDATAn | [7:0] | Receive data for UARTn | -             |

### NOTE:

When an overrun error is occurred, the URXHn has to be read out. If not, the next received data will also make an overrun error, although the overrun bit of USTATn is cleared.

(L) : When the endian mode is Little endian

(B) : When the endian mode is Big endian.



# UART BAUD RATE DIVISION REGISTER

The value stored in the baud rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate (baud rate) as follows:

UBRDIVn = (round\_off)(APBCLK / (bps x 16)) -1

where the divisor should be from 1 to (2<sup>16</sup>-1). For example1, if the baud-rate is 230.4Kbps and APBCLK is 25MHz , UBRDIVn is:

> UBRDIVn = (int)(25000000 / (230400 x 16)+0.5) -1 = (int)(6.8+0.5) -1 = 7 -1 = 6 (=0x6)

For example2, if the baud-rate is 115.2Kbps and APBCLK is 25MHz , UBRDIVn is:

UBRDIVn = (int)(25000000 / (115200 x 16)+0.5) -1 = (int)(13.6+0.5) -1 = 14 -1 = 13 (=0xD)

| Register | Address     | R/W | Description                   | Reset Value |
|----------|-------------|-----|-------------------------------|-------------|
| UBRDIV0  | 0x1017 0028 | R/W | Baud rate divisior register 0 | 0x0000 000D |
| UBRDIV1  | 0x1018 0028 | R/W | Baud rate divisior register 1 | 0x0000 000D |

| UBRDIV n | Bit    | Description                            | Initial State |
|----------|--------|----------------------------------------|---------------|
| UBRDIV   | [15:0] | Baud rate division value<br>UBRDIVn >0 | 0x000D        |



# NOTES

# **UART Register**

| Register | Address                          | R/W            | Description                              | Reset Value |
|----------|----------------------------------|----------------|------------------------------------------|-------------|
| ULCON0   | 0x1017 0000                      | R/W            | UART channel 0 line control register     | 0x0000 0000 |
| UCON0    | 0x1017 0004                      | R/W            | UART channel 0 control register          | 0x0000 0000 |
| UFCON0   | 0x1017 0008                      | R/W            | UART channel 0 FIFO control register     | 0x0000 0000 |
| UMCON0   | 0x1017 000C                      | R/W            | UART channel 0 Modem control register    | 0x0000 0000 |
| UTRSTAT0 | 0x1017 0010                      | R              | UART channel 0 Tx/Rx status register     | 0x0000 0006 |
| UERSTAT0 | 0x1017 0014                      | R              | UART channel 0 Rx error status register  | 0x0000 0000 |
| UFSTAT0  | 0x1017 0018                      | R              | UART channel 0 FIFO status register      | 0x0000 0000 |
| UMSTAT0  | 0x1017 001C                      | R              | UART channel 0 Modem status register     | 0x0000 0000 |
| UTXH0    | 0x1017 0020(L)<br>0x1017 0023(B) | W<br>(by byte) | UART channel 0 transmit holding register | -           |
| URXH0    | 0x1017 0024(L)<br>0x1017 0027(B) | R<br>(by byte) | UART channel 0 receive buffer register   | -           |
| UBRDIV0  | 0x1017 0028                      | R/W            | Baud rate divisior register 0            | 0x0000 000D |
| ULCON1   | 0x1018 0000                      | R/W            | UART channel 1 line control register     | 0x0000 0000 |
| UCON1    | 0x1018 0004                      | R/W            | UART channel 1 control register          | 0x0000 0000 |
| UFCON1   | 0x1018 0008                      | R/W            | UART channel 1 FIFO control register     | 0x0000 0000 |
| UMCON1   | 0x1018 000C                      | R/W            | UART channel 1 Modem control register    | 0x0000 0000 |
| UTRSTAT1 | 0x1018 0010                      | R              | UART channel 1 Tx/Rx status register     | 0x0000 0006 |
| UERSTAT1 | 0x1018 0014                      | R              | UART channel 1 Rx error status register  | 0x0000 0000 |
| UFSTAT1  | 0x1018 0018                      | R              | UART channel 1 FIFO status register      | 0x0000 0000 |
| UMSTAT1  | 0x1018 001C                      | R              | UART channel 1 Modem status register     | 0x0000 0000 |
| UTXH1    | 0x1018 0020(L)<br>0x1018 0023(B) | W<br>(by byte) | UART channel 1 transmit holding register | -           |
| URXH1    | 0x1018 0024(L)<br>0x1018 0027(B) | R<br>(by byte) | UART channel 1 receive buffer register   | -           |
| UBRDIV1  | 0x1018 0028                      | R/W            | Baud rate divisior register 1            | 0x0000 000D |



# 8 INTERRUPT CONTROLLER(Preliminary)

# **OVERVIEW**

Interrupt controller in S3C2800X receives 29 interrupt requests from interrupt sources such as DMA, UART, etc.

The role of the interrupt controller is to generate FIQ or IRQ interrupt request to the ARM920T core after the arbitration(FIQ or IRQ, Interrupt mask) process when there are multiple interrupt requests from internal peripherals and/or external interrupt request pins.

The arbitration process is performed by Interrupt mode(IRQ or FIQ) & interrupt mask logic and the result is written to the interrupt pending register(FIQ/IRQ) that can be read by the users in the interrupt service routine.

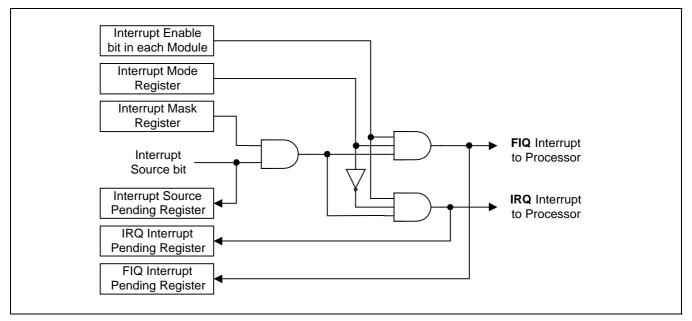



Figure 8-1. Interrupt Controller Block Diagram



# INTERRUPT CONTROLLER OPERATION

### F-bit and I-bit of PSR (program status register)

If the F-bit of PSR (program status register in ARM920T CPU) is set to 1, the FIQ (fast interrupt request) of the interrupt controller is not accepted by CPU. If I-bit of PSR (program status register in ARM920T CPU) is set to 1, the IRQ (interrupt request) of the interrupt controller is not accepted by CPU. So, to enable the interrupt reception, the F-bit or I-bit of PSR has to be cleared to 0 and also the corresponding bit of INTMSK has to be cleared to 0.

### **Interrupt Mode**

ARM920T has 2 types of interrupt mode, FIQ or IRQ. All the interrupt sources determine what mode of interrupt will be used at requesting the interrupt.

# **CONTROL REGISTERS**

There are five control registers in the interrupt controller: source pending register(SRCPND), interrupt mode register(INTMOD), mask register(INTMSK), and interrupt pending registers(IRQPND,FIQPND).

All the interrupt requests from the interrupt sources are first registered in the source pending register. They are divided into two groups based on the interrupt mode register, i.e., one FIQ request and the remaining IRQ requests. Masked interrupt source is don't set in the interrupt pending registers. The details of each control registers are as follows.

### SOURCE PENDING REGISTER (SRCPND)

SRCPND register is composed of 29 bits each of which is related to an interrupt source. Each bit is set to 1 if the corresponding interrupt source generates the interrupt request and waits for the interrupt to be serviced. Note that each bit of SRCPND register is automatically set by the interrupt sources regardless of the masking bits in the INTMSK register.

In the interrupt service routine for a specific interrupt source, the corresponding bit of SRCPND register has to be cleared to get the interrupt request from the same source correctly. If you return from the ISR without clearing the bit, interrupt controller operates as if another interrupt request comes in from the same source. In other words, if a specific bit of SRCPND register is set to 1, it is always considered as a valid interrupt request waiting to be serviced.

You can clear the specific bit of SRCPND register as follows: In the interrupt service routine for IRQ or FIQ, write 1 to SRCPND register. And then automatically It clears the interrupt pending registers(IRQPND,FIQPND).

### **INTERRUPT MODE REGISTER (INTMOD)**

This register is composed of 29 bits each of which is related to an interrupt source. If a specific bit is set to 1, the corresponding interrupt is processed in the FIQ (fast interrupt) mode. Otherwise, it is processed in the IRQ mode (normal interrupt).

Note that at most only one interrupt source can be serviced in the FIQ mode in the interrupt controller. (You should use the FIQ mode only for the urgent interrupt.) Thus, only one bit of INTMOD can be set to 1 at most.



# **INTERRUPT MASK REGISTER (INTMSK)**

Each of the 29 bits in the interrupt mask register is related to an interrupt source. If you clear a specific bit to 0, the interrupt request from the corresponding interrupt source is not serviced by the CPU. (Note that even in such a case, the corresponding bit of SRCPND register is set to 1). If the mask bit is 1, the interrupt request can be serviced.

# **INTERRUPT PENDING REGISTER (IRQPND, FIQPND)**

The IRQPND and the FIQPND contain one flag per interrupt (29 total) that indicates an interrupt request has been made by a unit. Inside the interrupt service routine, the IRQPND and FIQPND are read to determine the interrupt source.

Bits within the IRQPND and FIQPND are read only. Once an interrupt has been serviced, the handler clears the pending bit at the interrpt service routine by writing a one to the necessary bit in the source pendign register(SRCPND). Clearing the interrupt source pending bit at the interrupt service routine, automatically clears the corresponding bit in the IRQPND and FIQPND register.

This is a read-only register.



# **INTERRUPT SOURCES**

Interrupt controller supports 29 interrupt sources as follows table 11-1. User can get to know the interrupt source in the interrupt service routine by reading the IRQPND & FIQPND register.

| Corresponding bit | Sources    | Descriptions                          |
|-------------------|------------|---------------------------------------|
| [28]              | INT_RTC    | RTC alarm interrupt                   |
| [27]              | INT_TICK   | RTC Time tick interrupt               |
| [26]              | INT_FULL   | Remocon data FIFO full interrupt      |
| [25]              | INT_RMT    | Remote control signal input interrupt |
| [24]              | INT_UERR1  | UART 1 error Interrupt                |
| [23]              | INT_UERR0  | UART 0 error Interrupt                |
| [22]              | INT_TxD1   | UART1 transmit interrupt              |
| [21]              | INT_TxD0   | UART0 transmit interrupt              |
| [20]              | INT_ RxD1  | UART 1 receive interrupt              |
| [19]              | INT_RxD0   | UART 0 receive interrupt              |
| [18]              | INT_IIC1   | IIC 1 interrupt                       |
| [17]              | INT_ IIC0  | IIC 0 interrupt                       |
| [16]              | INT_TIMER2 | Timer 2 interrupt                     |
| [15]              | INT_TIMER1 | Timer 1 interrupt                     |
| [14]              | INT_TIMER0 | Timer 0 interrupt                     |
| [13]              | INT_DMA3   | General DMA 3 interrupt               |
| [12]              | INT_DMA2   | General DMA 2 interrupt               |
| [11]              | INT_DMA1   | General DMA 1 interrupt               |
| [10]              | INT_DMA0   | General DMA 0 interrupt               |
| [9]               | INT_SERR   | External PCI SERR interrupt           |
| [8]               | INT_PCI    | PCI interrupt                         |
| [7]               | EXTINT7    | External interrupt 7                  |
| [6]               | EXTINT6    | External interrupt 6                  |
| [5]               | EXTINT5    | External interrupt 5                  |
| [4]               | EXTINT4    | External interrupt 4                  |
| [3]               | EXTINT3    | External interrupt 3                  |
| [2]               | EXTINT2    | External interrupt 2                  |
| [1]               | EXTINT1    | External interrupt 1                  |
| [0]               | EXTINT0    | External interrupt 0                  |

| Table 8-1 | . Interrupt | Source | & | Corresponding Bit |
|-----------|-------------|--------|---|-------------------|
|-----------|-------------|--------|---|-------------------|



# INTERRUPT CONTROLLER SEPCIAL REGISTERS

# INTERRUPT SOURCE PENDING REGISTER (SRCPND)

Each of the 29 bits in the interrupt source pending register, SRCPND, corresponds to an interrupt source (**Refer to Table 11-1**). When an interrupt request is generated, it will be set by 1. The interrupt service routine must then clear the pending condition by writing '1' to the corresponding bit. Although several interrupt sources generate requests simultaneously, the SRCPND will indicate all interrupt sources that generate the interrupt requests. Although the interrupt source is masked by INTMSK, the corresponding pending bit is able to be set to 1.

| Register | Address     | R/W | Description                             | Reset Value |
|----------|-------------|-----|-----------------------------------------|-------------|
| SRCPND   | 0x1002 0000 | R/W | Indicates the interrupt request status. | 0x0000 0000 |

| SRCPND                | Bit    | Description                            | Initial State |
|-----------------------|--------|----------------------------------------|---------------|
| EIN_xx                | [28.0] | Indicates the interrupt request status | 0x0000 0000   |
| (Refer to Table 11-1) | [28:0] | 0 = Not requested, $1 = Requested$     | 0x0000 0000   |

# **INTERRUPT MODE REGISTER (INTMOD)**

Each of the 29 bits in the interrupt mode register, INTMOD, corresponds to an interrupt source (**Refer to Table 11-1**). When the interrupt mode bit for each source is set to 1, the interrupt is processed by the ARM920T core in the FIQ (fast interrupt) mode. Otherwise, it is processed in the IRQ mode (normal interrupt).

| Register | Address     | R/W | Description             | Reset Value |
|----------|-------------|-----|-------------------------|-------------|
| INTMOD   | 0x1002 0004 | R/W | Interrupt mode Register | 0x0000 0000 |

| INTMOD                | Bit    | Description               | initial state |
|-----------------------|--------|---------------------------|---------------|
| INT_xx                | [28:0] | Interrupt mode Register   | 0,0000,0000   |
| (Refer to Table 11-1) |        | 0 = IRQ mode 1 = FIQ mode | 0x0000 0000   |



# **INTERRUPT MASK REGISTER (INTMSK)**

Each of the 29 bits in the interrupt mask register, INTMSK, corresponds to an interrupt source (**Refer to Table 11-1**). When a source interrupt mask bit is 0 and the corresponding interrupt event occurs, the interrupt is not serviced by the CPU. If the mask bit is 1, the interrupt is serviced upon a request.

| Register | Address     | R/W | Description                                                                                    | Reset Value |
|----------|-------------|-----|------------------------------------------------------------------------------------------------|-------------|
| INTMSK   | 0x1002 0008 | R/W | Determines which interrupt source is masked. The masked interrupt source will not be serviced. | 0x0000 0000 |

| INTMSK                          | Bit    | Description                                                                                          | initial state |
|---------------------------------|--------|------------------------------------------------------------------------------------------------------|---------------|
| INT_xx<br>(Refer to Table 11-1) | [28:0] | Determines which interrupt source is masked.<br>The masked interrupt source will not be<br>serviced. | 0x0000 0000   |
| · · · ·                         |        | 0 = Masked 1 = Service available                                                                     |               |

# **IRQ/FIQ INTERRUPT PENDING REGISTER (IRQPND/FIQPND)**

The IRQPND and the FIQPND contain one flag per interrupt (29 total-refer to Table 11-1) that indicates an interrupt request has been made by a unit. Inside the interrupt service routine, the IRQPND and FIQPND are read to determine the interrupt source.

| Register | Address     | R/W | Description                            | Reset Value |
|----------|-------------|-----|----------------------------------------|-------------|
| IRQPND   | 0x1002 000C | R   | IRQ interrupt service pending register | 0x0000 0000 |
| FIQPND   | 0x1002 0010 | R   | FIQ interrupt service pending register | 0x0000 0000 |

| IRQPND/FIQPND         | Bit    | Description                                | Initial State |
|-----------------------|--------|--------------------------------------------|---------------|
| INT_xx                | [28:0] | IRQ/FIQ interrupt service pending register | 0,0000,0000   |
| (Refer to Table 11-1) |        | 0 = not requested 1 = requested now        | 0x0000 0000   |

# **IMPORTANT NOTE**

To clear the IRQPND/FIQPND, the following two rules has to be obeyed.

1) The pending bit in source pending register(SRCPND) should have to clear by writing 1.

2) And then it is cleared the pending bit in interrupt pending register(IRQPND/FIQPND) auatomatically.



# NOTES

# Interrupt Control Register

| Register | Address     | R/W | Description                                  | Reset Value |
|----------|-------------|-----|----------------------------------------------|-------------|
| SRCPND   | 0x1002 0000 | R/W | Indicates the interrupt request status.      | 0x0000 0000 |
| INTMOD   | 0x1002 0004 | R/W | Interrupt mode Register                      | 0x0000 0000 |
| INTMSK   | 0x1002 0008 | R/W | Determines which interrupt source is masked. | 0x0000 0000 |
| IRQPND   | 0x1002 000C | R   | IRQ interrupt service pending register       | 0x0000 0000 |
| FIQPND   | 0x1002 0010 | R   | FIQ interrupt service pending register       | 0x0000 0000 |



# **9** REMOCON RECEIVER

# **OVERVIEW**

The S3C2800X has the ability to capture pulse signals which are externally input using H/W. It is able to transmit up to 8 different 8-bit capture data using the remocon receiver control register, RRCR, and FIFOD. The remocon receiver block operates with the remocon input interrupt bit, RRCR[10] set to "1". It can choose rising edge, falling edge or rising/falling edge, and is the input pulse width from 32,768Hz for filtering. The frequency division of the 8-bit counter clock input is chosen from 1, 2, 4, or 8 of 32768 Hz. The FIFOs empty status flag is set when all FIFOs are empty, and the FIFOs full status flag is set when all FIFOs are full. An interrupt is generated when data is transmitted to all 8 FIFOs.

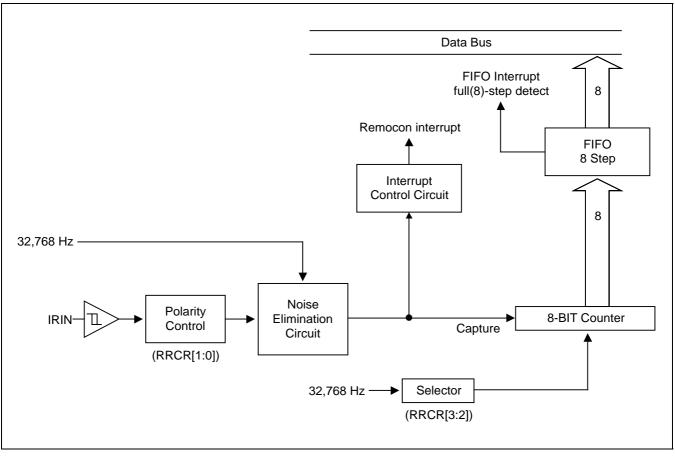



Figure 9-1. Remocon Receiver Circuit Block Diagram



# **REMOCON RECEIVER SPECIAL REGISTERS**

# **REMOCON RECEIVER CONTROL REGISTER (RRCR)**

| Register | Address     | R/W | Description                       | Reset Value |
|----------|-------------|-----|-----------------------------------|-------------|
| RRCR     | 0x1011 0000 | R/W | Remocon receiver control register | 0x0000 0010 |

| RRCR                      | Bit    | Description                                                                                                                    | Initial State |
|---------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved                  | [31:9] | Reserved                                                                                                                       |               |
| Counter overflow status   | 101    | Counter overflow status flag                                                                                                   | 0             |
| flag                      | [8]    | 0 = Not overflow 1 = Overflow                                                                                                  | 0             |
| FIFO full (8)-step detect |        | Enable FIFO full(8)-step detect interrupt                                                                                      |               |
| interrupt                 | [7]    | 0 = Disable the FIFO full (8)-step detect interrupt<br>1 = Enable the FIFO full (8)-step detect interrupt                      | 0             |
|                           |        | Enable reomocon input interrupt                                                                                                |               |
| Remocon Input Interrupt   | [6]    | 0 = Disable the remocon input interrupt<br>1 = Enable the remocon input interrupt                                              | 0             |
| EIEO full Status flog     | [5]    | FIFO full(8) status flag (Read only)                                                                                           | 0             |
| FIFO full Status flag     |        | 0 = Not full $1 = Full$                                                                                                        | 0             |
| FIFO Empty Status flag    | [4]    | FIFO empty status flag (Read only)                                                                                             | 1             |
| FIFO Emply Status hay     |        | 0 = Not empty 1 = Empty                                                                                                        | I             |
| Counter clock selection   | [3:2]  | 8-bit counter clock selection Maximum pulse<br>width<br>00 = 32,768 Hz/1 01 = 32,768 Hz/2<br>10 = 32,768 Hz/4 11 = 32,768 Hz/8 | 00            |
|                           |        | Polarity control flag for remocon input interrupt                                                                              |               |
| Polarity control flag     | [1:0]  | 0x = Rising edge mode<br>10: Falling edge mode<br>11: Rising & Falling edge mode                                               | 00            |

**NOTE:** If all FIFOs are full, the next input data does not go into FIFO.

# **REMOCON FIFO DATA REGISTER (FIFOD)**

| Register | Address     | R/W | Description        | Reset Value |
|----------|-------------|-----|--------------------|-------------|
| FIFOD    | 0x1011 0004 | R   | FIFO Data register | 0xX         |

| RRCR            | Bit   | Description       | Initial State |
|-----------------|-------|-------------------|---------------|
| Reserved [31:8] |       | Reserved          |               |
| FIFO Data       | [7:0] | FIFO Data (8-bit) | x             |



# NOTES

# Reomcon receiver control Register

| Register | Address     | R/W | Description                       | Reset Value |
|----------|-------------|-----|-----------------------------------|-------------|
| RRCR     | 0x1011 0000 | R/W | Remocon receiver control register | 0x0000 0040 |
| FIFOD    | 0x1011 0004 | R   | FIFO Data register                | -           |



# **10** RTC (REAL TIME CLOCK)-Preliminary

# **OVERVIEW**

The RTC (Real Time Clock) unit can be operated by the backup battery although the system power is turned off. The RTC can transmit 8-bit data to CPU as BCD (Binary Coded Decimal) values using STRB/LDRB ARM operation. The data include second, minute, hour, date, day, month, and year. The RTC unit works with an external 32.768 KHz crystal and also can perform the alarm function.

# FEATURE

- BCD number : second, minute, hour, date, day, month, year
- Leap year generator
- Alarm function : alarm interrupt
- Year 2000 problem is removed.
- Supports millisecond tick time interrupt for RTOS kernel time tick.
- Round reset function



# **REAL TIME CLOCK OPERATION**

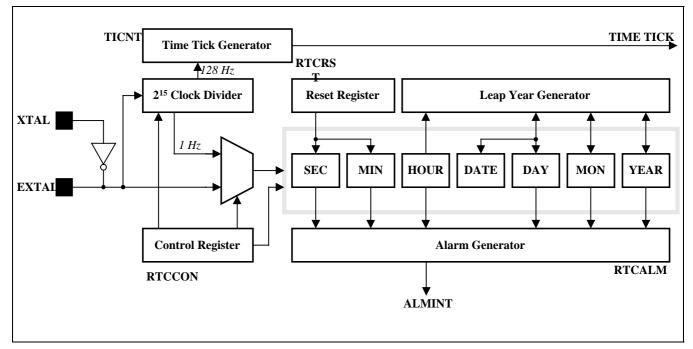



Figure 10-1. Real Time Clock Block Diagram

# LEAP YEAR GENERATOR

This block can determine whether the last date of each month is 28, 29, 30, or 31, based on data from BCDDAY, BCDMON, and BCDYEAR. This block can also consider the leap year in deciding the last date. An 8-bit counter can only represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. For example, it can not discriminate between 1900 and 2000. To solve this problem, the RTC block in S3C2800X has hard-wired logic to support the leap year in 2000. Please note 1900 is not leap year while 2000 is leap year. Therefore, two digits of 00 in S3C2800X denote 2000, not 1900.

# **READ/WRITE REGISTERS**

It is required to set bit 0 of the RTCCON register to read and write the register in RTC block. To display the sec., min., hour, day, month, and year, the CPU should read the data in BCDSEC, BCDMIN, BCDHOUR, BCDDAY, BCDDATE, BCDMON, and BCDYEAR register in RTC block. But, there may be one second deviation because of multiple register read. For example, when user read registers from BCDYEAR to BCDMIN register, we assume that the result was 1959(Year), 12(Month), 31(Date), 23(Hour) and 59(Minute). When user read BCDSEC register, if the result is value from 1 to 59(Second), there is no problem. But, if the result is 0 sec., there will be possibility for year, month, data, hour, and minute to be changed into 1960(Year), 1(Month), 1(Date), 0(Hour) and 0(Minute) because of one second deviation as above-mentioned. In this case, user should read from BCDYEAR to BCDSEC is zero.



# ALARM FUNCTION

The RTC generates an alarm signal at a specified time. The alarm interrupt (ALMINT) is activated. The RTC alarm register, RTCALM, can determine the alarm enable/disable and the condition of the alarm time setting.

# TICK TIME INTERRUPT

The RTC tick time is used for interrupt request. The TICNT register has a interrupt enable bit and the count value for interrupt. The value of count is reached to '0' the tick time interrupt is occur and the period of interrupt is as follow:

Period = (n+1)/128 second n : Tick time count value  $(1\sim127)$ 

This RTC time tick may be used for RTOS(real time operating system) kernel time tick. If time tick is generated by RTC time tick, the time related function of RTOS will always synchronized with real time.

### **ROUND RESET FUNCTION**

The round reset function can be performed by the RTC round reset register, RTCRST. You can select the round boundary (30, 40, or 50 sec) of the second carry generation and the second value is rounded to zero value in the round reset operation. For example, when the current time is 23:37:47 and the round boundary is selected as 40 sec, the round reset operation changes the current time with 23:38:00.

# 32.768KHZ X-TAL CONNECTION EXAMPLE

The Figure 13-2 is example circuit for 32.768Khz oscillation for RTC unit.

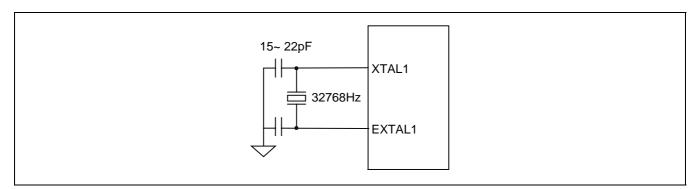



Figure 10-2. Main Oscillator Circuit Examples



# **REAL TIME CLOCK SPECIAL REGISTERS**

#### **REAL TIME CLOCK CONTROL REGISTER (RTCCON)**

The RTCCON register consists of 4 bits such as RTCEN which controls the read/write enable of the BCD registers, CLKSEL, CNTSEL, and CLKRST for testing.

RTCEN bit can control all interfaces between the CPU and the RTC, so it should be set to 1 in an RTC control routine to enable data read/write after a system reset. Also before power off, the RTCEN bit should be cleared to 0 to prevent an inadvertent writing into RTC registers.

| Register | Address     | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| RTCCON   | 0x1016 0000 | R/W | RTC control Register | 0x0000 0000 |

| RTCCON | Bit | Description                                                                        | Initial State |
|--------|-----|------------------------------------------------------------------------------------|---------------|
| CLKRST | [3] | RTC clock count reset<br>0 = No reset, 1 = Reset                                   | 0             |
| CNTSEL | [2] | BCD count select<br>0 = Merge BCD counters<br>1 = Reserved (Separate BCD counters) | 0             |
| CLKSEL | [1] | BCD clock select<br>$0 = XTAL 1/2^{15}$ divided clock<br>1 = Reserved (XTAL clock) | 0             |
| RTCEN  | [0] | RTC read/write enable<br>0 = Disable, 1 = Enable                                   | 0             |



#### **RTC ALARM CONTROL REGISTER (RTCALM)**

RTCALM register determines the alarm enable and the alarm time. Note that the RTCALM register generates the alarm signal through ALMINT.

| Register | Add   | ress   | R/W | R/W Description                                |   | eset Value    |
|----------|-------|--------|-----|------------------------------------------------|---|---------------|
| RTCALM   | 0x101 | 6 0004 | R/W | RTC alarm control Register                     | 0 | x0000 0000    |
| RTCALI   | M     | Bit    |     | Description                                    |   | Initial State |
| Reserved |       | [7]    |     |                                                |   | 0             |
| ALMEN    |       | [6]    |     | Alarm global enable<br>) = Disable, 1 = Enable |   | 0             |
| YEAREN   |       | [5]    |     | Year alarm enable<br>0 = Disable, 1 = Enable   |   | 0             |
| MONREN   |       | [4]    |     | Month alarm enable<br>0 = Disable, 1 = Enable  |   | 0             |
| DAYEN    |       | [3]    |     | Day alarm enable<br>0 = Disable, 1 = Enable    |   | 0             |
| HOUREN   |       | [2]    |     | Hour alarm enable<br>0 = Disable, 1 = Enable   |   | 0             |
| MINEN    |       | [1]    |     | Minute alarm enable<br>0 = Disable, 1 = Enable |   | 0             |
| SECEN    |       | [0]    |     | alarm enable<br>able, 1 = Enable               |   | 0             |



# ALARM SECOND DATA REGISTER (ALMSEC)

| Register | Address     | R/W | Description                | Reset Value |
|----------|-------------|-----|----------------------------|-------------|
| ALMSEC   | 0x1016 0008 | R/W | Alarm second data Register | 0x0000 0000 |

| ALMSEC       | Bit   | Description                            | Initial State |
|--------------|-------|----------------------------------------|---------------|
| Reserved     | [7]   |                                        | 0             |
| SECDATA [6:4 |       | BCD value for alarm second from 0 to 5 | 000           |
|              | [3:0] | from 0 to 9                            | 0000          |

#### ALARM MIN DATA REGISTER (ALMMIN)

| Register | Address     | R/W | Description                | Reset Value |
|----------|-------------|-----|----------------------------|-------------|
| ALMMIN   | 0x1016 000C | R/W | Alarm minute data Register | 0x0000 0000 |

| ALMMIN   | Bit   | Description                            | Initial State |
|----------|-------|----------------------------------------|---------------|
| Reserved | [7]   |                                        | 0             |
| MINDATA  | [6:4] | BCD value for alarm minute from 0 to 5 | 000           |
|          | [3:0] | from 0 to 9                            | 0000          |

# ALARM HOUR DATA REGISTER (ALMHOUR)

| ALMHOUR 0x1016 0010 R/W Alarm hour data Register 0x0000 0000 | Register | Address     | R/W | Description              | Reset Value |
|--------------------------------------------------------------|----------|-------------|-----|--------------------------|-------------|
|                                                              | ALMHOUR  | 0x1016 0010 | R/W | Alarm hour data Register | 0x0000 0000 |

| ALMHOUR  | ALMHOUR Bit Description |                                         |      |  |
|----------|-------------------------|-----------------------------------------|------|--|
| Reserved | [7:6]                   |                                         | 0    |  |
| HOURDATA | [5:4]                   | BCD value for alarm hour<br>from 0 to 2 | 00   |  |
|          | [3:0]                   | from 0 to 9                             | 0000 |  |



#### ALARM DAY DATA REGISTER (ALMDAY)

| Register | Address     | R/W                         | R/W Description                                               |               |  |
|----------|-------------|-----------------------------|---------------------------------------------------------------|---------------|--|
| ALMDAY   | 0x1016 0014 | R/W                         | R/W Alarm day data Register                                   |               |  |
|          |             |                             |                                                               |               |  |
| ALMDAY   | Bit         |                             | Description                                                   | Initial State |  |
| Reserved | [7:6]       |                             |                                                               | 0             |  |
| DAYDATA  | [5:4]       | BCD value fo<br>from 0 to 3 | CD value for alarm day, from 0 to 28, 29, 30, 31<br>om 0 to 3 |               |  |
|          | [3:0]       | from 0 to 9                 | 0001                                                          |               |  |

# ALARM MON DATA REGISTER (ALMMON)

| Register | Address     | R/W | Description               | Reset Value |
|----------|-------------|-----|---------------------------|-------------|
| ALMMON   | 0x1016 0018 | R/W | Alarm month data Register | 0x0000 0001 |

| ALMMON   | Bit   | Description                           | Initial State |
|----------|-------|---------------------------------------|---------------|
| Reserved | [7:5] |                                       | 0             |
| MONDATA  | [4]   | BCD value for alarm month from 0 to 1 | 0             |
|          | [3:0] | from 0 to 9                           | 0001          |

# ALARM YEAR DATA REGISTER (ALMYEAR)

| Register | Address                                  | R/W | R/W Description |  |
|----------|------------------------------------------|-----|-----------------|--|
| ALMYEAR  | 0x1016 001C R/W Alarm hour data Register |     | 0x0000 0000     |  |
|          |                                          |     |                 |  |

| ALMYEAR  | Bit   | Description                         | Initial State |
|----------|-------|-------------------------------------|---------------|
| YEARDATA | [7:0] | BCD value for year<br>from 00 to 99 | 0x00          |



# BCD SECOND REGISTER (BCDSEC)

| Register | Address     | R/W | Description         | Reset Value |
|----------|-------------|-----|---------------------|-------------|
| BCDSEC   | 0x1016 0020 | R/W | BCD second Register | Undef.      |

| BCDSEC   | Bit   | Description                      | Initial State |
|----------|-------|----------------------------------|---------------|
| Reserved | [7]   |                                  | -             |
| SECDATA  | [6:4] | BCD value for second from 0 to 5 | -             |
| [3:0]    |       | from 0 to 9                      | -             |

# BCD MINUTE REGISTER (BCDMIN)

| Register | Address     | R/W | Description         | Reset Value |
|----------|-------------|-----|---------------------|-------------|
| BCDMIN   | 0x1016 0024 | R/W | BCD minute Register | Undef.      |

| BCDMIN   | Bit   | Description                         | Initial State |
|----------|-------|-------------------------------------|---------------|
| Reserved | [7]   |                                     | -             |
| MINDATA  | [6:4] | BCD value for minute<br>from 0 to 5 | -             |
|          | [3:0] | from 0 to 9                         | -             |

# **BCD HOUR REGISTER (BCDHOUR)**

| Register | Address     | R/W | Description       | Reset Value |
|----------|-------------|-----|-------------------|-------------|
| BCDHOUR  | 0x1016 0028 | R/W | BCD hour Register | Undef.      |

| BCDHOUR  | Bit   | Description                       | Initial State |
|----------|-------|-----------------------------------|---------------|
| Reserved | [7:6] |                                   | -             |
| HOURDATA | [5:4] | BCD value for hour<br>from 0 to 2 | -             |
|          | [3:0] | from 0 to 9                       | -             |



# **BCD DAY REGISTER (BCDDAY)**

| Register | Address     | R/W Description           |                                  |  | Reset Value   |
|----------|-------------|---------------------------|----------------------------------|--|---------------|
| BCDDAY   | 0x1016 002C | R/W                       | BCD day Register                 |  | Undef         |
| BCDDAY   | Bit         |                           | Description                      |  | Initial State |
| Reserved | [7:6]       |                           | •                                |  | -             |
| DAYDATA  | [5:4]       | BCD value for from 0 to 3 | BCD value for day<br>from 0 to 3 |  | -             |
| [3:0]    |             | from 0 to 9               |                                  |  | -             |

# BCD DATE REGISTER (BCDDATE)

| Register | Address     | R/W | Description       | Reset Value |
|----------|-------------|-----|-------------------|-------------|
| BCDDATE  | 0x1016 0030 | R/W | BCD date Register | Undef.      |

| BCDDATE  | Bit   | Description                       | Initial State |
|----------|-------|-----------------------------------|---------------|
| Reserved | [7:3] |                                   | -             |
| DATEDATA | [2:0] | BCD value for date<br>from 1 to 7 | -             |

# **BCD MONTH REGISTER (BCDMON)**

| Register | Α   | ddress   | R/W         | Description               | Reset Value   |
|----------|-----|----------|-------------|---------------------------|---------------|
| BCDMON   | 0x1 | 016 0034 | R/W         | BCD month Register        | Undef.        |
|          |     |          |             |                           |               |
| BCDMON   |     | Bit      |             | Description               | Initial State |
| Reserved |     | [7:5]    |             |                           | -             |
| MONDATA  |     | [4]      | BCD<br>from | value for month<br>0 to 1 | _             |
|          | _   | [3:0]    | from        | 0 to 9                    | -             |



# **BCD YEAR REGISTER (BCDYEAR)**

| Register | Ac   | ldress   | R/W                                 | Description       | Reset Value   |
|----------|------|----------|-------------------------------------|-------------------|---------------|
| BCDYEAR  | 0x10 | 016 0038 | R/W                                 | BCD year Register | Undef.        |
| BCDYEAR  |      | Bit      |                                     | Description       | Initial State |
| YEARDATA |      | [7:0]    | BCD value for year<br>from 00 to 99 |                   | _             |

# TICK TIME COUNT REGISTER (TICNT)

| Register | Address     | R/W | Description              | Reset Value |
|----------|-------------|-----|--------------------------|-------------|
| TICNT    | 0x1016 0040 | R/W | Tick time count Register | 0x0000 0000 |

| TICNT           | Bit   | Description                                                                                                                            | Initial State |
|-----------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| TICK INT ENABLE | [7]   | Tick time interrupt enable<br>0 = disable 1 = enable                                                                                   | 0             |
| TICK TIME COUNT | [6:0] | Tick time count value. (1~127)<br>This counter value decrease internally, users can not read this<br>real counter value on processing. | 000000        |

#### **RTC ROUND RESET REGISTER (RTCRST)**

| Register | Address     | R/W | Description              | Reset Value |
|----------|-------------|-----|--------------------------|-------------|
| RTCRST   | 0x1016 0044 | R/W | RTC round reset Register | Undef.      |

| RTCRST | Bit   | Description                                                                                                                      | Initial State |
|--------|-------|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| SRSTEN | [2]   | Round second reset enable<br>0 = Disable, 1 = Enable<br>When this bit is set , it automatically will be cleared.                 | -             |
| SECCR  | [1:0] | Round boundary for second carry generation. (note)<br>00 =  over than 30 sec<br>01 =  over than 40 sec<br>1x =  over than 50 sec | -             |

**NOTE:** Otherwise, no second carry is generated.



# NOTES

# **RTC Register**

| Register | Address     | R/W | Description                | Reset Value |
|----------|-------------|-----|----------------------------|-------------|
| RTCCON   | 0x1016 0000 | R/W | RTC control Register       | 0x0000 0000 |
| RTCALM   | 0x1016 0004 | R/W | RTC alarm control Register | 0x0000 0000 |
| ALMSEC   | 0x1016 0008 | R/W | Alarm second data Register | 0x0000 0000 |
| ALMMIN   | 0x1016 000C | R/W | Alarm minute data Register | 0x0000 0000 |
| ALMHOUR  | 0x1016 0010 | R/W | Alarm hour data Register   | 0x0000 0000 |
| ALMDAY   | 0x1016 0014 | R/W | Alarm day data Register    | 0x0000 0001 |
| ALMMON   | 0x1016 0018 | R/W | Alarm month data Register  | 0x0000 0001 |
| ALMYEAR  | 0x1016 001C | R/W | Alarm hour data Register   | 0x0000 0000 |
| BCDSEC   | 0x1016 0020 | R/W | BCD second Register        | -           |
| BCDMIN   | 0x1016 0024 | R/W | BCD minute Register        | -           |
| BCDHOUR  | 0x1016 0028 | R/W | BCD hour Register          | -           |
| BCDDAY   | 0x1016 002C | R/W | BCD day Register           | -           |
| BCDDATE  | 0x1016 0030 | R/W | BCD date Register          | -           |
| BCDMON   | 0x1016 0034 | R/W | BCD month Register         | -           |
| BCDYEAR  | 0x1016 0038 | R/W | BCD year Register          | -           |
| TICNT    | 0x1016 0040 | R/W | Tick time count Register   | 0x0000 0000 |
| RTCRST   | 0x1016 0044 | R/W | RTC round reset Register   | -           |



# WATCH-DOG TIMER(Preliminary)

# **OVERVIEW**

The S3C2800X watchdog timer is used to resume the controller operation when it is disturbed by malfunctions such as noise and system errors. The watchdog timer generates the reset signal with the duration of 128 processor clock (APBCLK) cycles.

#### FEATURES

- Internal reset signal is activated during 128(3.41uS @37.5MHz) APBCLK cycles when the time-out occurs.

#### CONSIDERATION OF DEBUGGING ENVIRONMENT

When S3C2800X is in debug mode using Embedded ICE. the watch-dog timer must not operate for debugging. The watch-dog timer can determine whether or not the current mode is the debug mode by the CPU core signal (DBGACK signal). Once the DBGACK signal is asserted, the reset output of the watch-dog timer isn't activated when the watchdog timer is expired.



# WATCH-DOG TIMER OPERATION

The functional block diagram of the watchdog timer is shown in Figure 14-1. The watchdog timer uses APBCLK as its only source clock. To generate the corresponding watchdog timer clock, the APBCLK frequency is prescaled first, and the resulting frequency is input to 16-bit counter.

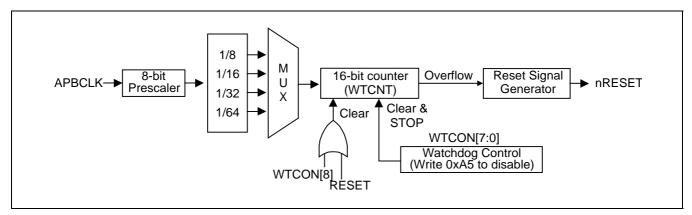



Figure 11-1. Watch-Dog Timer Block Diagram

The prescaler value and the frequency division factor are specified in the watchdog timer control register, WTCON. The valid prescaler values range from 1 to  $2^8$ -1. Use the following formulas to calculate the watchdog timer interval time :

 $t_watchdog = (1/(APBCLK / (Prescaler value + 1)/Divider value)) * 2^{16} (16-bit counter)$ 

| Table 11-1. Water-dog filler interval fille Example |                                       |                                         |                                     |  |  |  |  |
|-----------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|--|--|--|--|
| Divider settings                                    | Minimum resolution<br>(prescaler = 1) | Maximum resolution<br>(prescaler = 255) | maximum interval<br>(WTCNT = 65535) |  |  |  |  |
| 1/8 (APBCLK = 50 MHz)                               | 0.32 us (3.125 MHz )                  | 40.96 us (24.42 KHz )                   | 2.684 sec                           |  |  |  |  |
| 1/16 ( APBCLK = 50 MHz )                            | 0.64 us (1.563 MHz )                  | 81.92 us (12.21 KHz )                   | 5.368 sec                           |  |  |  |  |
| 1/32(APBCLK = 50 MHz)                               | 1.28 us (0.782 MHz )                  | 163.84 us (6.11 KHz )                   | 10.736 sec                          |  |  |  |  |
| 1/64(APBCLK = 50 MHz)                               | 2.56 us (0.391 MHz )                  | 327.68 us (3.06 KHz )                   | 21.472 sec                          |  |  |  |  |
| 1/8 (APBCLK = 37.5 MHz)                             | 0.42 us (2.344 MHz )                  | 54.61 us (18.31 KHz )                   | 3.579 sec                           |  |  |  |  |
| 1/16(APBCLK = 37.5 MHz)                             | 0.84 us (1.172 MHz )                  | 109.22 us (9.16 KHz )                   | 7.158 sec                           |  |  |  |  |
| 1/32(APBCLK = 37.5 MHz)                             | 1.71 us (0.586 MHz )                  | 218.44 us (4.58 KHz )                   | 14.316 sec                          |  |  |  |  |
| 1/64(APBCLK = 37.5 MHz)                             | 3.41 us (0.293 MHz )                  | 436.9 us (2.28 KHz )                    | 28.63 sec                           |  |  |  |  |



# WATCH-DOG TIMER SPECIAL REGISTERS

#### WATCH-DOG TIMER PRESCALER VALUE REGISTER (WTSCLR)

The valid prescaler values range from 1 to 28-1

| Register | Address     | R/W | Description                              | Reset Value |
|----------|-------------|-----|------------------------------------------|-------------|
| WTPSCLR  | 0x1012 0000 | R/W | Watch-dog timer prescaler value Register | 0x0000 0080 |

| WTPSCLR    | Bit   | Description                                            | Initial State |
|------------|-------|--------------------------------------------------------|---------------|
| Pre-Scaler | [7:0] | 8-bit pre-scaler value ( 1 ~ 255)<br>0 = Not supported | 0x80          |

#### WATCH-DOG TIMER CONTROL REGISTER (WTCON)

Using the Watch-Dog Timer Control register, WTCON, you can enable/disable the watch-dog timer, and clear to watch-dog timer counter.

Because Watch-dog timer is used to resume the S3C2800X restart on mal-function after power-on, if users don't like to resume the controller restart, users should disable the Watch-dog timer or clear to 16-bit watch-dog timer counter(WTCNT – read only).

| Register | Address     | R/W | Description                      | Reset Value |
|----------|-------------|-----|----------------------------------|-------------|
| WTCON    | 0x1012 0004 | R/W | Watch-dog timer control Register | 0x0000 0000 |

| WTCON                            | Bit     | Description                                                                                                                                                                                                                                                                                                                                                                                                   | Initial State |
|----------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Mux                              | [11:10] | Select Mux input           00 = 1/8         01 = 1/16           10 = 1/32         11 = 1/32                                                                                                                                                                                                                                                                                                                   | 00            |
| Reserved                         | [9]     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                      | 0             |
| Watch-dog timer<br>counter clear | [8]     | Clear to watch-dog timer count value<br>0 = No effect<br>1 = Clear to count value<br>When this bit is set, it automatically will be cleared<br>after the counter is lodaded with all zero value.                                                                                                                                                                                                              | 0             |
| Watch-dog timer<br>Enable        | [7:0]   | <ul> <li>This bits determine enable or disable of Watch-dog timer output for reset signal.</li> <li>1010 0101b = Disable the reset function of the watch-dog timer. The 16-bit counter is clear to 0x0, and then it is stop.</li> <li>Other Value = Assert reset signal of the S3C2800X at watch-dog time out. The 16-bit counter start counting from 0x0 again after re-load the prescaler value.</li> </ul> | 0x00          |



# WATCH-DOG TIMER COUNTER REGISTER (WTCNT)

The watchdog timer counter register, WTCNT, contains the current count values for the watchdog timer during normal operation.

| Register | Address     | R/W | Description                      | Reset Value |
|----------|-------------|-----|----------------------------------|-------------|
| WTCNT    | 0x1012 0008 | R   | Watch-dog timer counter Register | 0x0000 0000 |

| WTCNT       | Bit    | Description                                            | Initial State |
|-------------|--------|--------------------------------------------------------|---------------|
| Count value | [15:0] | The current count value of the watch-dog timer counter | 0x0000        |



# NOTES

# Watch-dog Timer Register

| Register | Address     | R/W | Description                              | Reset Value |
|----------|-------------|-----|------------------------------------------|-------------|
| WTPSCLR  | 0x1012 0000 | R/W | Watch-dog timer prescaler value Register | 0x0000 0080 |
| WTCON    | 0x1012 0004 | R/W | Watch-dog timer control Register         | 0x0000 0000 |
| WTCNT    | 0x1012 0008 | R   | Watch-dog timer count Register           | 0x0000 0000 |



# **12** IIC-BUS INTERFACE(Preliminary)

# OVERVIEW

The S3C2800X RISC microprocessor can support 2channel multi-master IIC-bus serial interface. A dedicated serial data line(SDAn) and a serial clock line (SCLn) carry information between bus masters and peripheral devices which are connected to the IIC-bus. The SDAn and SCLn lines are bi-directional.

In multi-master IIC-bus mode, multiple S3C2800X RISC microprocessor can receive or transmit serial data to or from slave devices. The master S3C2800X which can initiate a data transfer over the IIC-bus, is responsible for terminating the transfer. Standard bus arbitration procedure is used in this IIC-bus in S3C2800X.

To control multi-master IIC-bus operations, you write values to the following registers:

- Multi-master IIC-bus control register, IICCON0,1
- Multi-master IIC-bus control/status register, IICSTAT0,1
- Multi-master IIC-bus Tx/Rx data shift register, IICDS0,1
- Multi-master IIC-bus address register, IICADD0,1

When the IIC-bus is free, the SDA and SCL lines should be both at High level. A High-to-Low transition of SDA can initiate a Start condition. A Low-to-High transition of SDA can initiate a Stop condition while SCL remains steady at High Level.

The Start and Stop conditions can always be generated by the master devices. A 7-bit address value in the first data byte which is put onto the bus after the Start condition is initiated, can determine the slave device which the bus master device has selected. The 8<sup>th</sup> bit determines the direction of the transfer (read or write).

Every data byte that is put onto the SDA line should be total eight bits. The number of bytes which can be sent or received during the bus transfer operation is unlimited. Data is always sent from most-significant bit (MSB) first and every byte should be immediately followed by an acknowledge (ACK) bit.



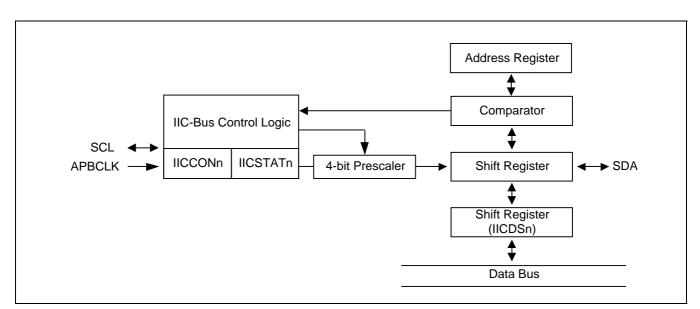



Figure 12-1. IIC-Bus Block Diagram



#### THE IIC-BUS INTERFACE

The S3C2800X IIC-bus interface has four operation modes:

- Master transmitter mode
- Master receive mode
- Slave transmitter mode
- Slave receive mode

Functional relationships among these operating modes are described below.

#### START AND STOP CONDITIONS

When the IIC-bus interface is in inactive state, it is usually in slave mode. In other word, the state of interface should be in slave mode before detecting a Start condition on the SDA line.(A Start condition can be initiated by having a High-to-Low transition of the SDA line while the clock signal of SCL is High) When the state of interface is changed into the master mode, it can initiate a data transfer on the SDA line as well as generating the SCL signal.

A Start condition can initiate a one-byte serial data transfer over the SDA line and stop condition can initiate the termination of data transfer. A stop condition is a Low-to-High transition of the SDA line while SCL is High. Start and Stop conditions are always generated by the master. The IIC-bus is busy when a Start condition is generated. A few clocks after a Stop condition, the IIC-bus will be free, again.

When a master initiates a Start condition, it should send slave address to give a notice to the slave device. The one byte of address field consist of a 7-bit address and a 1-bit transfer direction indicator (that is, write or read). If bit 8 is 0, it indicates a write operation(transmit operation). If bit 8 is 1, it indicates a request for data read(receive operation).

The master will finish the transfer operation by transmitting a Stop condition. If the master wants to continue the data transmission the bus, it should generate another Start condition as well as slave address. In this way, the read-write operation can be performed in various format.

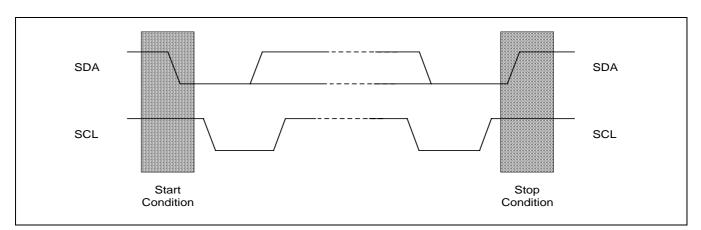



Figure 12-2. Start and Stop Condition



#### DATA TRANSFER FORMAT

Every byte put on the SDA line should have eight bits in length. The number of bytes which can be transmitted per transfer is unlimited. The first byte following a Start condition should have the address field. The address field can be transmitted by the master when the IIC-bus is operating in master mode. Each byte should be followed by an acknowledge (ACK) bit. The MSB bit of serial data and addresses are always sent first.

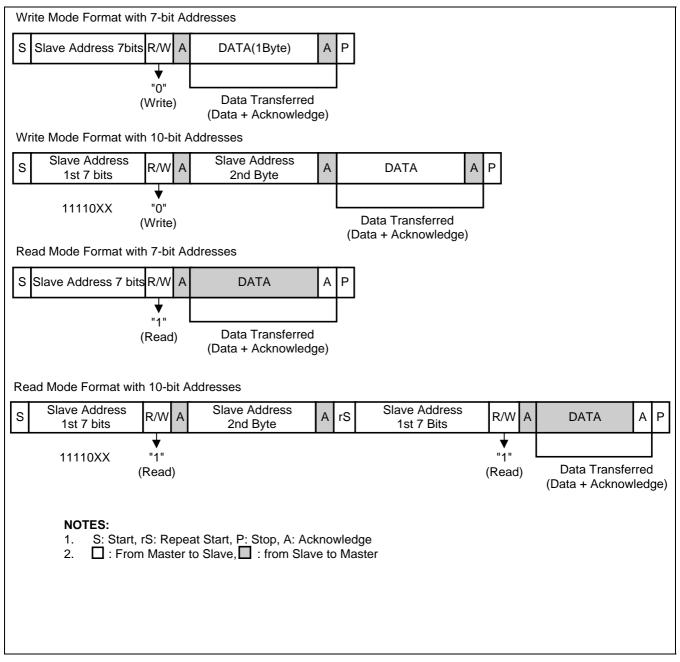



Figure 12-3. IIC-Bus Interface Data Format



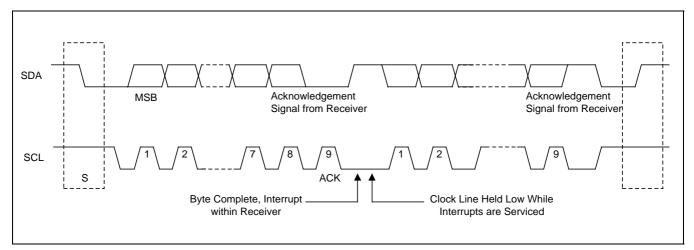



Figure 12-4. Data Transfer on the IIC-Bus

#### ACK SIGNAL TRANSMISSION

To finish a one-byte transfer operation completely, the receiver should send an ACK bit to the transmitter. The ACK pulse should occur at the ninth clock of the SCL line. Eight clocks are required for the one-byte data transfer. The clock pulse required for the transmission of the ACK bit, should be generated by the master.

The transmitter should release the SDA line by making the SDA line High when the ACK clock pulse is received. The receiver should also drive the SDA line Low during the ACK clock pulse so that the SDA is Low during the High period of the ninth SCL pulse.

The ACK bit transmit function can be enabled or disabled by software (IICSTATn). However, the ACK pulse on the ninth clock of SCL is required to complete a one-byte data transfer operation.

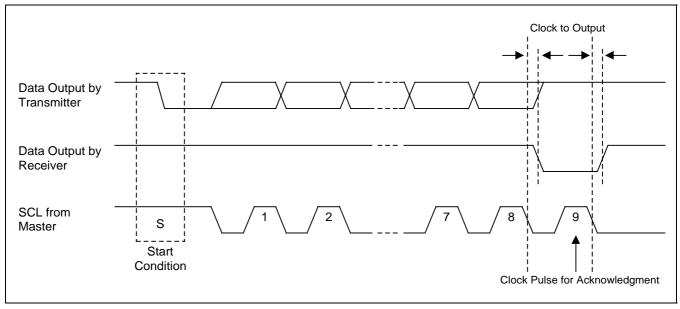



Figure 12-5. Acknowledge on the IIC-Bus



#### **READ-WRITE OPERATION**

In case of transmitter mode, after a data was transferred, the IIC-bus interface will wait until IICDSn(IIC-bus Data Shift Register) is written by a new data. Until the new data is written, the SCL line will be held low. After the new data is written to IICDSn register, the SCL line will be released. The S3C2800X should wait the interrupt to know the completion of transmission of current data. After getting the interrupt request, the CPU should write a new data into IICDSn, again.

In case of receive mode, after a data is received, the IIC-bus interface will wait until IICDSn register is read. Until the new data is read out, the SCL line will be held low. After the new data is read out from IICDSn register, the SCL line will be released. The S3C2800X should wait the interrupt to know the completion of reception of new data. After getting the interrupt request, the CPU should read data from IICDSn.

#### **BUS ARBITRATION PROCEDURES**

Arbitration takes place on the SDA line to prevent the contention on the bus between two masters. If a master with a SDA High level detects another master with a SDA active Low level, it will not initiate a data transfer because the current level on the bus dose not correspond to its own. The arbitration procedure will be extended until the SDA line will be High.

But, in case of simultaneous lowering of the SDA line from masters, each master should evaluate whether or not the mastership is allocated to itself. For the purpose of evaluation, each master should detect the address bits. While each master generate the slaver address, it should also detect the address bit on the SDA line because the lowering of SDA line is stronger than maintaining High on the line. For example, one master generate Low as first address bit, while the other master is maintaining High. In this case, both master will be detect Low on the bus because Low is stronger than High even if first master is trying to maintain High on the line. In this case, Low-generating master as first address bit will get the mastership and High-generating master as first address bit should withdraw the mastership. If both master generate Low as first address bit, there should be arbitration for second address bit, again. This arbitration will be continued up to the end of last address bit.

#### **ABORT CONDITIONS**

If a slave receiver can not acknowledge the confirmation of the slave address, it should hold the level of the SDA line High. In this case, the master should generate a Stop condition and to abort the transfer.

If a master receiver is involved in the aborted transfer, it should signal the end of the slave transmit operation. It does this by canceling the generation of an ACK after the last data byte received from the slave. The slave transmitter should then release the SDA to allow a master to generate a Stop condition.

#### **CONFIGURING THE IIC-BUS**

To control the frequency of the serial clock (SCL), you program the 4-bit prescaler value in the IICCONn register. The IIC-bus interface address is stored in the IIC-bus address register, IICADDn. (By default, the IIC-bus interface address is an unknown value.)



# **IIC-BUS INTERFACE SPECIAL REGISTERS**

#### MULTI-MASTER IIC-BUS CONTROL REGISTER (IICCON0,1)

| Register | Address     | R/W | Description               | Reset Value |
|----------|-------------|-----|---------------------------|-------------|
| IICCON0  | 0x1019 0000 | R/W | IIC-Bus control register0 | 0x0000 0020 |
| IICCON1  | 0x101A 0000 | R/W | IIC-Bus control register1 | 0x0000 0020 |

| llCCONn                             | Bit    | Description                                                                                                                                                                                      | Initial State |
|-------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved                            | [31:7] | Reserved                                                                                                                                                                                         |               |
| Acknowledge enable <sup>(1)</sup>   | [6]    | IIC-bus acknowledge enable bit<br>0=Disable ACK generation<br>1=Enable ACK generation                                                                                                            | 0             |
|                                     |        | In Tx mode, the IICSDA is free in the ack time<br>In Rx mode, the IICSDA is L in the ack time.                                                                                                   |               |
| Tx clock source selection           | [5]    | Source clock of IIC-bus transmit clock prescaler<br>selection bit<br>0= IICCLK = APBCLK/16<br>1= IICCLK = APBCLK/256                                                                             | 1             |
| Tx/Rx Interrupt enable              | [4]    | IIC-Bus Tx/Rx interrupt enable/disable bit<br>0=Disable interrupt, 1=Enable interrupt                                                                                                            | 0             |
| Transmit clock value <sup>(2)</sup> | [3:0]  | IIC-Bus transmit clock prescaler<br>IIC-Bus transmit clock frequency is determined<br>by this 4-bit prescaler value, according to the<br>following formula:<br>Tx clock = IICCLK/(IICCON[3:0]+1) | 0x0           |

#### NOTES:

1. Interfacing EEPROM, the ack generation may be disabled before reading the last data in order to generate the STOP condition in Rx mode.

2. IICCLK is determined by IICCON[5].

Tx clock can vary by SCL transition time.

|                    | APBCLK =     | = 37.5MHz    | APBCLK = 25MHz |              |
|--------------------|--------------|--------------|----------------|--------------|
| IIC_SCL (KHz)      | IICCON[5]    | IICCON[3:0]  | IICCON[5]      | IICCON[3:0]  |
| 100 (Real =73.2 )  | 1=APBCLK/256 | 0x1=IICCLK/2 | -              | -            |
| 100 (Real = 97.7)  | -            | -            | 1=APBCLK/256   | 0x0=IICCLK   |
| 400 (Real = 390.6) | 0=APBCLK/16  | 0x5=IICCLK/6 | 0=APBCLK/16    | 0x3=IICCLK/4 |

#### Table 12-1. Example for setting of the IIC-SCL



# MULTI-MASTER IIC-BUS CONTROL/STATUS REGISTER (IICSTAT0,1)

| Register | Address     | R/W | Description                      | Reset Value |
|----------|-------------|-----|----------------------------------|-------------|
| IICSTAT0 | 0x1019 0004 | R/W | IIC-Bus control/status register0 | 0x0000 0000 |
| IICSTAT1 | 0x101A 0004 | R/W | IIC-Bus control/status register1 | 0x0000 0000 |

| llCSTATn                                     | Bit    | Description                                                                                                                                                                                                                                                                                                                 | Initial State |
|----------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved                                     | [31:8] | Reserved                                                                                                                                                                                                                                                                                                                    |               |
| Mode selection                               | [7:6]  | <ul><li>IIC-bus master/slave Tx/Rx mode select bits:</li><li>00: Slave receive mode</li><li>01: Slave transmit mode</li><li>10: Master receive mode</li><li>11: Master transmit mode</li></ul>                                                                                                                              | 0             |
| Busy signal status /<br>START STOP condition | [5]    | <ul> <li>IIC-Bus busy signal status bit:</li> <li>0 = read) IIC-bus not busy(when read)<br/>write) IIC-bus STOP signal generation</li> <li>1 = read) IIC-bus busy(when read)<br/>write) IIC-bus START signal generation.<br/>The data in IICDS will be transfered<br/>automatically just after the start signal.</li> </ul> | 0             |
| Serial output enable                         | [4]    | IIC-bus data output enable/disable bit:<br>0=Disable Rx/Tx, 1=Enable Rx/Tx                                                                                                                                                                                                                                                  | 0             |
| Arbitration status flag                      | [3]    | <ul> <li>IIC-bus arbitration procedure status flag bit:</li> <li>0 = Bus arbitration status okay</li> <li>1 = Bus arbitration failed during serial I/O</li> </ul>                                                                                                                                                           | 0             |
| Address-as-slave status<br>flag              | [2]    | <ul> <li>IIC-bus address-as-slave status flag bit:</li> <li>0 = cleared when START/STOP condition was detected</li> <li>1 = Received slave address matches the address value in the IICADD.</li> </ul>                                                                                                                      | 0             |
| Address zero status flag                     | [1]    | <ul> <li>IIC-bus address zero status flag bit:</li> <li>0 = cleared when START/STOP condition was detected.</li> <li>1 = Received slave address is 0000000b</li> </ul>                                                                                                                                                      | 0             |
| Last-received bit status flag                | [0]    | <ul> <li>IIC-bus last-received bit status flag bit</li> <li>0 = Last-received bit is 0 (ACK was received)</li> <li>1 = Last-receive bit is 1 (ACK was not received)</li> </ul>                                                                                                                                              | 0             |



# MULTI-MASTER IIC-BUS ADDRESS REGISTER (IICADD0,1)

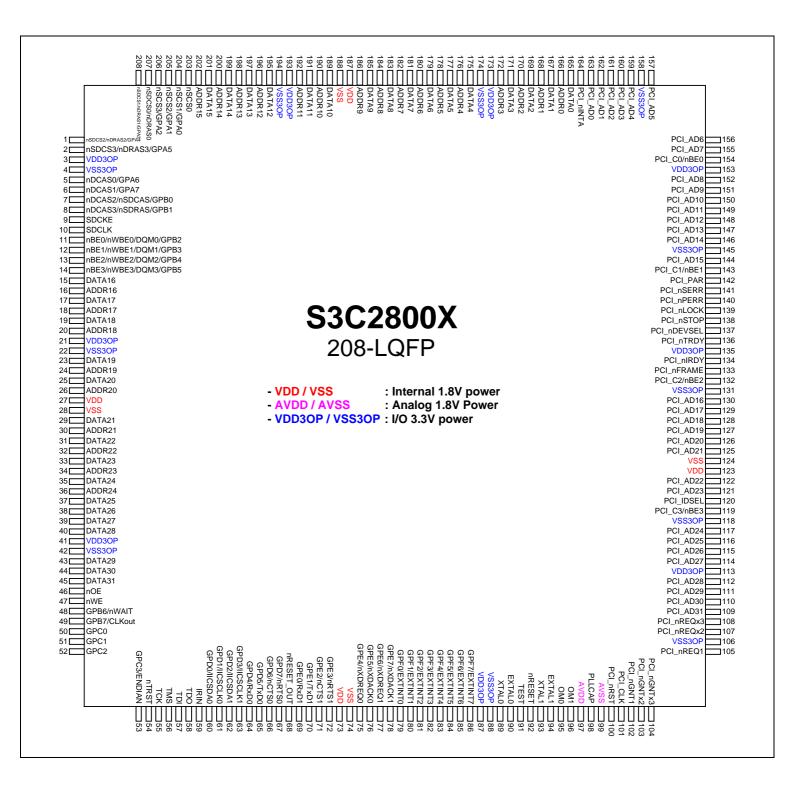
| Register | Address     | R/W | Description                | Reset Value |
|----------|-------------|-----|----------------------------|-------------|
| IICADD0  | 0x1019 0008 | R/W | IIC-Bus address register 0 | -           |
| IICADD1  | 0x101A 0008 | R/W | IIC-Bus address register 1 | -           |

|                                                                                                                                                                                                                                                                           | Initial State                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-bit slave address, latched from the IIC-bus:<br>When serial output enable=0 in the IICSTAT,<br>IICADD is write-enabled. You can read the IICADD value at<br>any time, regardless of the current serial output enable bit<br>(IICSTAT) setting.<br>Slave address = [7:1] | -                                                                                                                                                                                              |
| ]                                                                                                                                                                                                                                                                         | When serial output enable=0 in the IICSTAT,<br>IICADD is write-enabled. You can read the IICADD value at<br>any time, regardless of the current serial output enable bit<br>(IICSTAT) setting. |

#### MULTI-MASTER IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (IICDS0,1)

| Register | Address     | R/W | Description                                    | Reset Value |
|----------|-------------|-----|------------------------------------------------|-------------|
| IICDS0   | 0x1019 000C | R/W | IIC-Bus transmit/receive data shift register 0 | -           |
| IICDS1   | 0x101A 000C | R/W | IIC-Bus transmit/receive data shift register 1 | -           |

| llCDSn     | Bit   | Description                                                                                                                                                                                                                                             | Initial State |
|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Data shift | [7:0] | 8-bit data shift register for IIC-bus Tx/Rx operation:<br>When serial output enable = 1 in the IICSTAT,<br>IICDS is write-enabled. You can read the IICDS value at<br>any time, regardless of the current serial output enable bit<br>(IICSTAT) setting | -             |




# NOTES

# **IIC Control Register**

| Register | Address     | R/W | Description                                      | Reset Value |
|----------|-------------|-----|--------------------------------------------------|-------------|
| IICCON0  | 0x1019 0000 | R/W | R/W IIC-Bus 0 control register                   |             |
| IICSTAT0 | 0x1019 0004 | R/W | IIC-Bus 0 control/status register                | 0x0000 0000 |
| IICADD0  | 0x1019 0008 | R/W | IIC-Bus 0 address register                       | -           |
| IICDS0   | 0x1019 000C | R/W | IIC-Bus 0 transmit/receive data shift register   | -           |
| IICCON1  | 0x101A 0000 | R/W | IIC-Bus 1 control register                       | 0x0000 0000 |
| IICSTAT1 | 0x101A 0004 | R/W | IIC-Bus 1 control/status register                | 0x0000 0020 |
| IICADD1  | 0x101A 0008 | R/W | IIC-Bus 1 address register -                     |             |
| IICDS1   | 0x101A 000C | R/W | IIC-Bus 1 transmit/receive data shift register - |             |







# DNIe2nd Data Sheet (Simple Vesion)



# CONTENTS

- **1. General Description**
- 2. Feature
  - 2.1 Input
  - 2.2 Output
  - 2.3 Function
- 3. Functional Block Diagram
- 4. Pin Description
- 5. Package
- 6. Function Description
  - 6.1 IFC (InterFace Control)
  - 6.2 TIMING\_GEN
  - 6.3 NRP(Noise Reduction Processor)
  - 6.4 SOURCE DETECTION



# 1. General Description

This second DNIe project for Screen Quality Enhancement was proceeded conducted following the first CFT project. It proceeded was conducted from April to December of 2002 and resolved the problems that occurred during the first CFT project and added several algorithms to enhance screen quality.

For the 2nd DNIe 2nd, 10 major 10 algorithms were applied:

4 algorithms used in the first CFT project: NR (Noise Reduction), DE (Detail Enhancement), CE (Contrast Enhancement), and WtEP (White-tone Enhancement Processor). and 6 Nhewly added 6 algorithms: DCE (Detail Contrast Enhancement), CTI (Color Transition Improvement), BWS (Black & White Stretch), CTE (Color Tone Enhancement), Deblocking, Source Characteristics Analysis.

# **Noise Reduction**

# - Spatial N/R introduction

=> In During the 1<sup>st</sup> DNIe 1st, only a temporal N/R was performed, and the N/R effect was not maximized. EspeciallyMost notably, there was occurred thea side effect thatof screen dragging which occuroccurred s when the temporal N/R gain iswas set toat a large value for the signals that have muchhad a lot of noise.

InDuring the 2<sup>nd</sup> DNIe 2nd, a spatial N/R equippeding with a built-in edge detection circuit was added to overcome this shortcoming, and the N/R effect was successfully maximized without screen dragging even for the signals that havehad a lot of much noise.

# **Detail Enhancement**

## - Resolution to Noise Boost

= > InDuring the 1st DNIe 1st, there was also the problem that noise iswas boosted.

Though the noise boost was suppressed with a coring circuit, there was a limitation and it cannotcould not engage a large gain to the signal such as an RF that hashad a lot of much noise.

The  $2^{nd}$  DNIe 2nd added a back noise detection circuit beside the coring circuit and onlythe signal was enhanced without noise boost.

# Contrast Enhancement

# - Removal of Flickering that Occurred dDuring Rapid Screen Switching

=> InDuring the 1st DNIe 1st, there was a flickering problem because the mapping function changeds too rapidly according to the variation of the input histogram. InDuring the 2nd DNIe 2nd, an IIR filter was used forto input the screen histogram and the flickering that occurred during the rapid screen switching was



minimized.

## - Suppression of Noise Boost in Enhanced Contrast

=> The 1<sup>st</sup> DNIe 1st has also had the problem that of boosted noise is boosted when the contrast i was enhanced.

The 2<sup>nd</sup> DNIe 2nd applied an LPF for the amount of contrast enhancement and suppressed the noise boost.

## White-tone Enhancement Processor

- Color Temperature Enhancement for Achromatic Area

## **Detail Contrast Enhancement**

- Enhanced contrast in local area.
- Suppressed noise boost during local contrast enhancement.

#### **Colot Transition Improvement**

- Sharpened color boundaries

## **Black and White Stretch**

- The Ddark area was made darker and the bright area was made brighter.

#### **Color Tone Enhancement**

- The Ccolor density of the input signal was optimized so that it becomesbecame adaptive.

## **Source Characteristics Analysis**

- Detects frequency characteristics for the input signal and changes gain automatically in each algorithm.

## **De-blocking**

- Removes the block artifact that is generateds in an MPEG signal.

BesidesIn addition, the 2<sup>nd</sup> DNIe 2nd has added these functions: of Built-in Test Pattern Generation, Color Matrix Conversion, and Response to Various Display Sizes. Overall development proceeded with the following stages: of Algorithm vVerification , High ILevel dDesign (VHDL), Simulation & mModification, Synthesis & Layout. The fourth stage proceeded was conducted in cooperation with SMT, an external company. The developed 2nd DNIe IC developed 2ndIC is planned to be applied to the DLP first. It seems that it can also be applied to LCD and CRT TV.



# 2. Feature

# 2.1 Input

Digital RGB or Digital YCbCr (Each has 8-bit 4:4:4, 656, or 601 format.) I2C cControl bBus (SCL and SDA)

- Device aAddress: Supports 4 different settings.

- 16-bit aAddress / 16-bit dData

Provides thea built-in halftone function with OSD inputs (inputs of YS and YM).

Provides thea built-in MUX function with HD data inputs (For data input only).

Sync sSignal: Usesd H/V. Each edge is selectable.

Input cClock: Provides thean internal phase inversion function.

Operating fFrequency: 80 MHz or less

Provides RGB to YCbCr and YCbCr to YCbCr range conversions using a built-in 10-bit counter of 3X3 matrix.

Internal operations are processed in YCbCr format.

# 2.2 Output

Digital RGB (8/10/16-bit 4:4:4), Digital YCbCr (8/10/16-bit 4:4:4) Output modes: Output mode :

- Outputs 8 bits for RGB/YCbCr per clock

- Outputs 10 bits for RGB/YCbCr per clock

- Outputs 16 bits (even/odd) for RGB/YCbCr per 1/2 clock

Resolution rRange: Variation is possible within the range of the 2048 horizontal 2048 pixels by 1000 vertical 1000 lines.

(Ex.720\*480p,720\*576i,852\*480p,1024\*768p,1280\*720p,1280\*768p,1366\*768p, 1920\*1080i )

Output sSync sSignal: H/V and DE (Phase, width, and position can be specified for both of them.)

Provides YCbCr to RGB range conversion using a built-in 10-bit counter of 3X3 matrix.

# 2.3 Function

Internal tTest pPattern gGeneration (No sync signal is required for operation.) - Pattern : Full Window Pattern, 9 point box Pattern, Color Bar Pattern,

Cross Hatch Pattern, Dot Array Pattern, Horizontal & Vertical RampPattern



RGB to YCbCr or YCbCr to YCbCr rRange cConversion

- For CMC (Color Matrix Conversion), nine (9) 11-bit counters can be set from the externally.
- If YCbCr has the range of Y[16~235], CB, and CR[16~240], it can be converted to a full range signal using the CMC.

- Possible to adjust tint, color gain control, contrast, and brightness using the CMC. Provides the sScreen mMute and sStill fFunctions

3D Noise Reduction

De-blocking

Detail Enhancement

- LTI (Luminance Transition Improvement) function, uUnder-sShoot/oOver-sShoot sSuppression
- Noise bBoost sSuppression

Contrast Enhancement

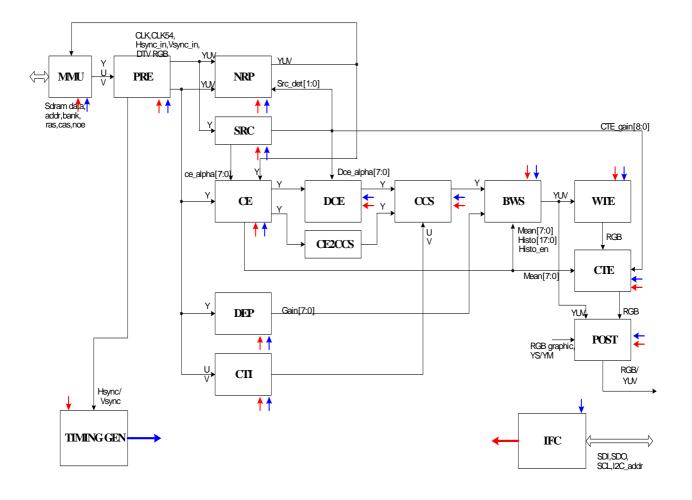
- Uses hHistogram.
- Maintains hues of the color area.
- Compensates for the pale orange color.
- Adapts to the flickering prevention circuit.

Detail Contrast Enhancement

Color Transition Improvement

Black & White Stretch

White-tone Enhancement Processor


Color Tone Enhancement

Source Detection

Contrast/Brightness Control



# 3. Functional Block Diagram





# 4. Pin Description

| PIN no. | PIN Name      | 1/0 | Funct i on                                                                                                                                                 |  |
|---------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1       | B_12C_SDA     | В   | I2C Serial data                                                                                                                                            |  |
|         | I_I2C_SCL     | I   | I2C Serial clock                                                                                                                                           |  |
| 3       | I_I2C_ADDR1   | I   | In the I2C device address, the usable                                                                                                                      |  |
| 4       | I_I2C_ADDRO   | I   | (setting-possible) bits are the 2 bits that remain<br>when the high 5 bits, fixed to "11001", are removed<br>from the 7 bits (except the LSB bit for R/W). |  |
| 5       | 0_OUT_DIVCLK  | 0   | 2-bBranch oOutput cClock (Used in the even/odd data output mode)                                                                                           |  |
| 6       | I_SCAN_MODE   | Ι   | normal operation, connect to ground. IC Test                                                                                                               |  |
| 7       | I_SCAN_ENABLE | I   | normal operation, connect to ground. IC Test                                                                                                               |  |
| 8       | O_OUT_DENAB   | 0   | Output data enable                                                                                                                                         |  |
| 9       | 0_OUT_VSYNC   | 0   | Output vertical sync                                                                                                                                       |  |
| 10      | 0_OUT_HSYNC   | 0   | Output horizontal sync                                                                                                                                     |  |
| 11      | VDD_3V3       | Р   | 3.3V power (Pad power)                                                                                                                                     |  |
| 12      | 0_OUT_CLK     | 0   | Output cClock. 4 different phases can be selected with the OUTPUT_CLK_PHASE register.                                                                      |  |
| 13      | VSS_3V3       | G   | Ground (Pad Ground)                                                                                                                                        |  |
| 14      | 0_0UTD_B15    | 0   | Blue_data(15) output                                                                                                                                       |  |
| 15      | 0_0UTD_B14    | 0   | Blue_data(14) output                                                                                                                                       |  |
| 16      | 0_0UTD_B13    | 0   | Blue_data(13) output                                                                                                                                       |  |
| 17      | 0_0UTD_B12    | 0   | Blue_data(12) output                                                                                                                                       |  |
| 18      | 0_0UTD_B11    | 0   | Blue_data(11) output                                                                                                                                       |  |
| 19      | 0_0UTD_B10    | 0   | Blue_data(10) output                                                                                                                                       |  |
| 20      | 0_OUTD_B9     | 0   | Blue_data(9) output                                                                                                                                        |  |
| 21      | VDD_1V8       | Р   | 1.8V power (Core power)                                                                                                                                    |  |
| 22      | 0_OUTD_B8     | 0   | Blue_data(8) output                                                                                                                                        |  |
| 23      | VSS_1V8       | G   | Ground (Core Ground)                                                                                                                                       |  |
| 24      | B_OUTD_B7     | В   | R_OUTCON=0 outputBlue_data(7) outputR_OUTCON=1 inputDTV_BIN(7) input (R_DTV_SWITCH=1)                                                                      |  |
| 25      | B_OUTD_B6     | В   | R_OUTCON=0 outputBlue_data(6) outputR_OUTCON=1 inputDTV_BIN(6) input (R_DTV_SWITCH=1)                                                                      |  |
| 26      | B_OUTD_B5     | В   | R_OUTCON=0 outputBlue_data(5) outputR_OUTCON=1 inputDTV_BIN(5) input (R_DTV_SWITCH=1)OSD_Blue(5) input (R_DTV_SWITCH=0)                                    |  |



|              | R_OUTCON=0 output Blue_data(4) output                       |
|--------------|-------------------------------------------------------------|
| 27 B_0UTD_B4 | <b>B</b> R_OUTCON=1 input DTV_BIN(4) input (R_DTV_SWITCH=1) |
|              | OSD_Blue(4)input(R_DTV_SWITCH=0)                            |

| Pin No. | Pin Name   | 1/0 |                                       | Funct i on                                                                                     |  |
|---------|------------|-----|---------------------------------------|------------------------------------------------------------------------------------------------|--|
| 28      | B_OUTD_B3  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Blue_data(3) output<br>DTV_BIN(3)input(R_DTV_SWITCH=1)<br>OSD_Blue(3)input(R_DTV_SWITCH=0)     |  |
| 29      | B_OUTD_B2  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Blue_data(2) output<br>DTV_BIN(2) input (R_DTV_SWITCH=1)<br>OSD_Blue(2) input (R_DTV_SWITCH=0) |  |
| 30      | B_OUTD_B1  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Blue_data(1) output<br>DTV_BIN(1)input(R_DTV_SWITCH=1)<br>OSD_Blue(1)input(R_DTV_SWITCH=0)     |  |
| 31      | B_OUTD_BO  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Blue_data(0) output<br>DTV_BIN(0)input(R_DTV_SWITCH=1)<br>OSD_Blue(0)input(R_DTV_SWITCH=0)     |  |
| 32      | VDD_3V3    | Р   | 3.3V power (Pad pov                   | wer)                                                                                           |  |
| 33      | 0_0UTD_G15 | 0   | Green_data(15) outp                   | put                                                                                            |  |
| 34      | VSS_3V3    | G   | Ground (Pad Ground)                   |                                                                                                |  |
| 35      | 0_0UTD_G14 | 0   | Green_data(14) output                 |                                                                                                |  |
| 36      | 0_0UTD_G13 | 0   | Green_data(13) output                 |                                                                                                |  |
| 37      | 0_0UTD_G12 | 0   | Green_data(12) output                 |                                                                                                |  |
| 38      | 0_0UTD_G11 | 0   | Green_data(11) output                 |                                                                                                |  |
| 39      | 0_0UTD_G10 | 0   | Green_data(10) output                 |                                                                                                |  |
| 40      | O_OUTD_G9  | 0   | Green_data(9) outpu                   | ut                                                                                             |  |
| 41      | VDD_1V8    | Р   | 1.8V power (Core power)               |                                                                                                |  |
| 42      | O_OUTD_G8  | 0   | Green_data(8) output                  |                                                                                                |  |
| 43      | VSS_1V8    | G   | Ground (Core Ground)                  |                                                                                                |  |
| 44      | B_OUTD_G7  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Green_data(7) output<br>DTV_GIN(7)input(R_DTV_SWITCH=1)                                        |  |
| 45      | B_OUTD_G6  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Green_data(6) output<br>DTV_GIN(6)input(R_DTV_SWITCH=1)<br>YMinput(R_DTV_SWITCH=0)             |  |
| 46      | B_OUTD_G5  | В   | R_OUTCON=0 output<br>R_OUTCON=1 input | Green_data(5) output<br>DTV_GIN(5)input(R_DTV_SWITCH=1)<br>OSD_G(5)input(R_DTV_SWITCH=0)       |  |

**VD GBM DTV Group Core Tech** 



|    |            |   | R_OUTCON=0 output                             | Green_data(4) output                                    |  |
|----|------------|---|-----------------------------------------------|---------------------------------------------------------|--|
| 47 | B_OUTD_G4  | В | R_OUTCON=1 input                              | DTV_GIN(4) input (R_DTV_SWITCH=1)                       |  |
|    |            |   |                                               | OSD_G(4) input (R_DTV_SWITCH=0)                         |  |
|    |            |   | R_OUTCON=0 output                             | Green_data(3) output                                    |  |
| 48 | B_OUTD_G3  | В | R_OUTCON=1 input                              | DTV_GIN(3) input (R_DTV_SWITCH=1)                       |  |
|    |            |   |                                               | OSD_G(3) input (R_DTV_SWITCH=0)                         |  |
| 49 | B_OUTD_G2  | В | R_OUTCON=0 output<br>R_OUTCON=1 input         | Green_data(2) output<br>DTV_GIN(2)input(R_DTV_SWITCH=1) |  |
| 43 | B_001D_02  | D |                                               | OSD_G(2) input (R_DTV_SWITCH=0)                         |  |
|    |            |   | R_OUTCON=0 output                             | Green_data(1) output                                    |  |
| 50 | B_OUTD_G1  | В | R_OUTCON=1 input                              | DTV_GIN(1) input (R_DTV_SWITCH=1)                       |  |
|    |            |   |                                               | OSD_G(1) input (R_DTV_SWITCH=0)                         |  |
| 51 | VDD_3V3    | Р | 3.3V power (Pad pow                           |                                                         |  |
|    |            |   | R_OUTCON=0 output                             | Green_data(0) output                                    |  |
| 52 | B_OUTD_GO  | В | R_OUTCON=1 input                              | DTV_GIN(0) (R_DTV_SWITCH=1)                             |  |
|    |            |   |                                               | OSD_G(0) (R_DTV_SWITCH=0)                               |  |
| 53 | VSS_3V3    | G | Ground (Pad Ground)                           |                                                         |  |
| 54 | 0_0UTD_R15 | 0 | Red_data(15) output                           | t                                                       |  |
| 55 | 0_0UTD_R14 | 0 | Red_data(14) output                           | t                                                       |  |
| 56 | 0_0UTD_R13 | 0 | Red_data(13) output                           |                                                         |  |
| 57 | 0_0UTD_R12 | 0 | Red_data(12) output                           |                                                         |  |
| 58 | 0_0UTD_R11 | 0 | Red_data(11) output                           |                                                         |  |
| 59 | 0_0UTD_R10 | 0 | Red_data(10) output                           |                                                         |  |
| 60 | 0_OUTD_R9  | 0 | Red_data(9) output                            |                                                         |  |
| 61 | 0_OUTD_R8  | 0 | Red_data(8) output                            |                                                         |  |
| 62 | B_OUTD_R7  | В | R_OUTCON=0 output                             | Red_data(7) output                                      |  |
| 02 |            | Ð | R_OUTCON=1 input                              | <pre>DTV_RIN(7) input(R_DTV_SWITCH=1)</pre>             |  |
| 63 | VDD_3V3    | Р | 3.3V power (Pad power)                        |                                                         |  |
|    |            |   | R_OUTCON=0 output                             | Red_data(6) output                                      |  |
| 64 | B_OUTD_R6  | В | R_OUTCON=1 input                              | <pre>DTV_RIN(6) input (R_DTV_SWITCH=1)</pre>            |  |
|    |            |   |                                               | YS input(R_DTV_SWITCH=0)                                |  |
| 65 | VSS_3V3    | G | Ground (Pad Ground)                           |                                                         |  |
|    |            |   | R_OUTCON=0 output                             | Red_data(5) output                                      |  |
| 66 | B_OUTD_R5  | В | R_OUTCON=1 input                              | DTV_RIN(5) input (R_DTV_SWITCH=1)                       |  |
|    | -          |   |                                               | OSD_R(5) input (R_DTV_SWITCH=0)                         |  |
| 67 |            | n | R_OUTCON=0 output                             | Red_data(4) output                                      |  |
| 67 | B_OUTD_R4  | В | R_OUTCON=1 input                              | DTV_RIN(4) input (R_DTV_SWITCH=1)                       |  |
|    |            |   | <u>                                      </u> | OSD_R(4) input (R_DTV_SWITCH=0)                         |  |



ELECTRONICS

| Pin No. | Pin Name     | 1/0 | Funct i on                                                                                                          |  |
|---------|--------------|-----|---------------------------------------------------------------------------------------------------------------------|--|
| 68      | B_OUTD_R3    | В   | R_OUTCON=0 outputRed_data(3) outputR_OUTCON=1 inputDTV_RIN(3) input (R_DTV_SWITCH=1)OSD_R(3) input (R_DTV_SWITCH=0) |  |
| 69      | B_OUTD_R2    | В   | R_OUTCON=0 outputRed_data(2) outputR_OUTCON=1 inputDTV_RIN(2) input(R_DTV_SWITCH=1)OSD_R(2) input(R_DTV_SWITCH=0)   |  |
| 70      | B_OUTD_R1    | В   | R_OUTCON=0 outputRed_data(1) outputR_OUTCON=1 inputDTV_RIN(1) input(R_DTV_SWITCH=1)OSD_R(1) input (R_DTV_SWITCH=0)  |  |
| 71      | B_OUTD_RO    | В   | R_OUTCON=0 outputRed_data(0) outputR_OUTCON=1 inputDTV_RIN(0) input(R_DTV_SWITCH=1)OSD_R(0) input(R_DTV_SWITCH=0)   |  |
| 72      | I_BIST_MODE  | I   | normal operation, connect to ground. IC Test                                                                        |  |
| 73      | VDD_1V8      | Р   | 1.8V power (Core power)                                                                                             |  |
| 74      | I_nRESET     | I   | Asynchronous Reset                                                                                                  |  |
| 75      | VSS_1V8      | G   | Ground (Core Ground)                                                                                                |  |
| 76      | B_SDRAM_DQ63 | В   | SDRAM_DATA(63) Input-output pot                                                                                     |  |
| 77      | B_SDRAM_DQ62 | В   | SDRAM_DATA(62) Input-output pot                                                                                     |  |
| 78      | B_SDRAM_DQ61 | В   | SDRAM_DATA(61) Input-output pot                                                                                     |  |
| 79      | B_SDRAM_DQ60 | В   | SDRAM_DATA(60) Input-output pot                                                                                     |  |
| 80      | B_SDRAM_DQ59 | В   | SDRAM_DATA(59) Input-output pot                                                                                     |  |
| 81      | B_SDRAM_DQ58 | В   | SDRAM_DATA(58) Input-output pot                                                                                     |  |
| 82      | VDD_3V3      | Р   | 3.3V power (Pad power)                                                                                              |  |
| 83      | B_SDRAM_DQ57 | В   | SDRAM_DATA(57) Input-output pot                                                                                     |  |
| 84      | VSS_3V3      | G   | Ground (Pad Ground)                                                                                                 |  |
| 85      | B_SDRAM_DQ56 | В   | SDRAM_DATA(56) Input-output pot                                                                                     |  |
| 86      | B_SDRAM_DQ55 | В   | SDRAM_DATA(55) Input-output pot                                                                                     |  |
| 87      | B_SDRAM_DQ54 | В   | SDRAM_DATA(54) Input-output pot                                                                                     |  |
| 88      | B_SDRAM_DQ53 | В   | SDRAM_DATA(53) Input-output pot                                                                                     |  |
| 89      | B_SDRAM_DQ52 | В   | SDRAM_DATA(52) Input-output pot                                                                                     |  |
| 90      | B_SDRAM_DQ51 | В   | SDRAM_DATA(51) Input-output pot                                                                                     |  |
| 91      | B_SDRAM_DQ50 | В   | SDRAM_DATA(50) Input-output pot                                                                                     |  |
| 92      | B_SDRAM_DQ49 | В   | SDRAM_DATA(49) Input-output pot                                                                                     |  |
| 93      | VDD_1V8      | Р   | 1.8V power (Core power)                                                                                             |  |
| 94      | B_SDRAM_DQ48 | В   | SDRAM_DATA(48) Input-output pot                                                                                     |  |

|         | ELECTRONICS    |     |                                     |  |
|---------|----------------|-----|-------------------------------------|--|
| Pin No. | Pin Name       | 1/0 | Function                            |  |
| 95      | VSS_1V8        | G   | Ground (Core Ground)                |  |
| 96      | B_SDRAM_DQ47   | В   | SDRAM_DATA(47) Input-output pot     |  |
| 97      | B_SDRAM_DQ46   | В   | SDRAM_DATA(46) Input-output pot     |  |
| 98      | B_SDRAM_DQ45   | В   | SDRAM_DATA(45) Input-output pot     |  |
| 99      | B_SDRAM_DQ44   | В   | SDRAM_DATA(44) Input-output pot     |  |
| 100     | B_SDRAM_DQ43   | В   | SDRAM_DATA(43) Input-output pot     |  |
| 101     | B_SDRAM_DQ42   | В   | SDRAM_DATA(42) Input-output pot     |  |
| 102     | B_SDRAM_DQ41   | В   | SDRAM_DATA(41) Input-output pot     |  |
| 103     | VDD_3V3        | Ρ   | 3.3V power (Pad power)              |  |
| 104     | B_SDRAM_DQ40   | В   | SDRAM_DATA(40) Input-output pot     |  |
| 105     | VSS_3V3        | G   | Ground (Pad Ground)                 |  |
| 106     | B_SDRAM_DQ39   | В   | SDRAM_DATA(39) Input-output pot     |  |
| 107     | B_SDRAM_DQ38   | В   | SDRAM_DATA(38) Input-output pot     |  |
| 108     | B_SDRAM_DQ37   | В   | SDRAM_DATA(37) Input-output pot     |  |
| 109     | B_SDRAM_DQ36   | В   | SDRAM_DATA(36) Input-output pot     |  |
| 110     | B_SDRAM_DQ35   | В   | SDRAM_DATA(35) Input-output pot     |  |
| 111     | B_SDRAM_DQ34   | В   | SDRAM_DATA(34) Input-output pot     |  |
| 112     | B_SDRAM_DQ33   | В   | SDRAM_DATA(33) Input-output pot     |  |
| 113     | B_SDRAM_DQ32   | В   | SDRAM_DATA(32) Input-output pot     |  |
| 114     | O_SDRAM_BANKO  | 0   | SDRAM BANKO (4 BANK used for sdram) |  |
| 115     | VDD_3V3        | Р   | 3.3V power (Pad power)              |  |
| 116     | 0_SDRAM_BANK1  | 0   | SDRAM BANK1                         |  |
| 117     | VSS_3V3        | G   | Ground (Pad Ground)                 |  |
| 118     | 0_SDRAM_ADDR10 | 0   | SDRAM ADDRESS(10) output            |  |
| 119     | O_SDRAM_ADDR9  | 0   | SDRAM ADDRESS(9) output             |  |
| 120     | 0_SDRAM_ADDR8  | 0   | SDRAM ADDRESS(8) output             |  |
| 121     | 0_SDRAM_ADDR7  | 0   | SDRAM ADDRESS(7) output             |  |
| 122     | O_SDRAM_ADDR6  | 0   | SDRAM ADDRESS(6) output             |  |
| 123     | VDD_1V8        | Р   | 1.8V power (Core power)             |  |
| 124     | O_SDRAM_ADDR5  | 0   | SDRAM ADDRESS(5) output             |  |
| 125     | VSS_1V8        | G   | Ground (Core Ground)                |  |
| 126     | 0_SDRAM_ADDR4  | 0   | SDRAM ADDRESS(4) output             |  |
| 127     | 0_SDRAM_ADDR3  | 0   | SDRAM ADDRESS(3) output             |  |
| 128     | 0_SDRAM_ADDR2  | 0   | SDRAM ADDRESS(2) output             |  |

SAMSUNG

|         | ELECTRONICS   |     |                                 |
|---------|---------------|-----|---------------------------------|
| Pin No. | Pin Name      | 1/0 | Function                        |
| 129     | O_SDRAM_ADDR1 | 0   | SDRAM ADDRESS(1) output         |
| 130     | O_SDRAM_ADDRO | 0   | SDRAM ADDRESS(0) output         |
| 131     | O_SDRAM_nRAS  | 0   | SDRAM /RAS output               |
| 132     | 0_SDRAM_nCAS  | 0   | SDRAM /CAS output               |
| 133     | O_SDRAM_nWE   | 0   | SDRAM /WE output                |
| 134     | O_SDRAM_DQM   | 0   | SDRAM DQM output                |
| 135     | VDD_3V3       | Р   | 3.3V power (Pad power)          |
| 136     | O_SDRAM_CLK   | 0   | SDRAM CLK output                |
| 137     | VSS_3V3       | G   | Ground (Pad Ground)             |
| 138     | B_SDRAM_DQ31  | В   | SDRAM_DATA(31) Input-output pot |
| 139     | B_SDRAM_DQ30  | В   | SDRAM_DATA(30) Input-output pot |
| 140     | B_SDRAM_DQ29  | В   | SDRAM_DATA(29) Input-output pot |
| 141     | B_SDRAM_DQ28  | В   | SDRAM_DATA(28) Input-output pot |
| 142     | B_SDRAM_DQ27  | В   | SDRAM_DATA(27) Input-output pot |
| 143     | B_SDRAM_DQ26  | В   | SDRAM_DATA(26) Input-output pot |
| 144     | VDD_1V8       | Р   | 1.8V power (Core power)         |
| 145     | B_SDRAM_DQ25  | В   | SDRAM_DATA(25) Input-output pot |
| 146     | VSS_1V8       | G   | Ground (Core Ground)            |
| 147     | B_SDRAM_DQ24  | В   | SDRAM_DATA(24) Input-output pot |
| 148     | B_SDRAM_DQ23  | В   | SDRAM_DATA(23) Input-output pot |
| 149     | B_SDRAM_DQ22  | В   | SDRAM_DATA(22) Input-output pot |
| 150     | B_SDRAM_DQ21  | В   | SDRAM_DATA(21) Input-output pot |
| 151     | B_SDRAM_DQ20  | В   | SDRAM_DATA(20) Input-output pot |
| 152     | B_SDRAM_DQ19  | В   | SDRAM_DATA(19) Input-output pot |
| 153     | B_SDRAM_DQ18  | В   | SDRAM_DATA(18) Input-output pot |
| 154     | B_SDRAM_DQ17  | В   | SDRAM_DATA(17) Input-output pot |
| 155     | VDD_3V3       | Р   | 3.3V power (Pad power)          |
| 156     | B_SDRAM_DQ16  | В   | SDRAM_DATA(16) Input-output pot |
| 157     | VSS_3V3       | G   | Ground (Pad Ground)             |
| 158     | B_SDRAM_DQ15  | В   | SDRAM_DATA(15) Input-output pot |
| 159     | B_SDRAM_DQ14  | В   | SDRAM_DATA(14) Input-output pot |
| 160     | B_SDRAM_DQ13  | В   | SDRAM_DATA(13) Input-output pot |
| 161     | B_SDRAM_DQ12  | В   | SDRAM_DATA(12) Input-output pot |
| 162     | B_SDRAM_DQ11  | В   | SDRAM_DATA(11)Input-output pot  |
| 163     | B_SDRAM_DQ10  | В   | SDRAM_DATA(10) Input-output pot |

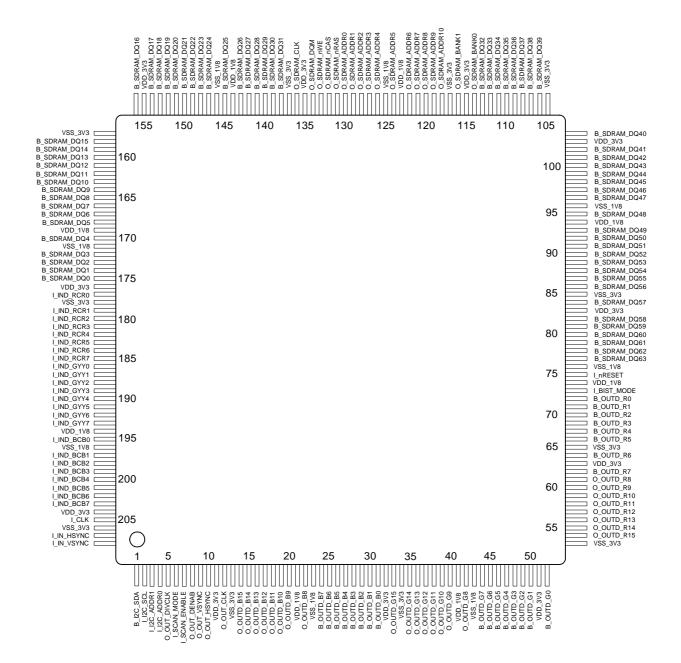
SAMSUNG

page 13

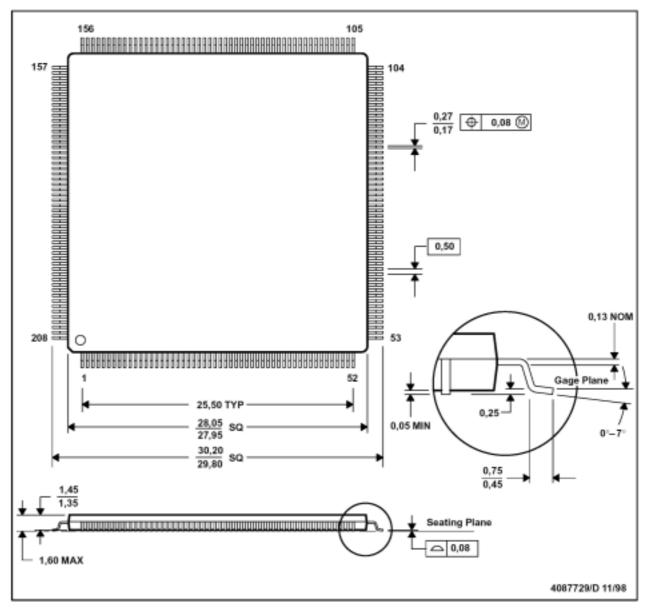
**VD GBM DTV Group Core Tech** 

|         | ELECTRONICS |     |                                          |
|---------|-------------|-----|------------------------------------------|
| Pin No. | Pin Name    | 1/0 | Function                                 |
| 164     | B_SDRAM_DQ9 | В   | SDRAM_DATA(9) Input-output pot           |
| 165     | B_SDRAM_DQ8 | В   | SDRAM_DATA(8) Input-output pot           |
| 166     | B_SDRAM_DQ7 | В   | SDRAM_DATA(7) Input-output pot           |
| 167     | B_SDRAM_DQ6 | В   | SDRAM_DATA(6) Input-output pot           |
| 168     | B_SDRAM_DQ5 | В   | SDRAM_DATA(5) Input-output pot           |
| 169     | VDD_1V8     | Р   | 1.8V power (Core power)                  |
| 170     | B_SDRAM_DQ4 | В   | SDRAM_DATA(4) Input-output pot           |
| 171     | VSS_1V8     | G   | Ground (Core Ground)                     |
| 172     | B_SDRAM_DQ3 | В   | SDRAM_DATA(3) Input-output pot           |
| 173     | B_SDRAM_DQ2 | В   | SDRAM_DATA(2) Input-output pot           |
| 174     | B_SDRAM_DQ1 | В   | SDRAM_DATA(1) Input-output pot           |
| 175     | B_SDRAM_DQ0 | В   | SDRAM_DATA(0) Input-output pot           |
| 176     | VDD_3V3     | Р   | 3.3V power (Pad power)                   |
| 177     | I_IND_RCRO  | I   | RGB mode: RO, YCbCr mode: CrO Data input |
| 178     | VSS_3V3     | G   | Ground (Pad Ground)                      |
| 179     | I_IND_RCR1  | I   | RGB mode: R1, YCbCr mode: Cr1 Data input |
| 180     | I_IND_RCR2  | I   | RGB mode: R2, YCbCr mode: Cr2 Data input |
| 181     | I_IND_RCR3  | I   | RGB mode: R3, YCbCr mode: Cr3 Data input |
| 182     | I_IND_RCR4  | 1   | RGB mode: R4, YCbCr mode: Cr4 Data input |
| 183     | I_IND_RCR5  | I   | RGB mode: R5, YCbCr mode: Cr5 Data input |
| 184     | I_IND_RCR6  | I   | RGB mode: R6, YCbCr mode: Cr6 Data input |
| 185     | I_IND_RCR7  | I   | RGB mode: R7, YCbCr mode: Cr7 Data input |
| 186     | I_IND_GYY0  | I   | RGB mode: GO, YCbCr mode: YO Data input  |
| 187     | I_IND_GYY1  | I   | RGB mode: G1, YCbCr mode: Y1 Data input  |
| 188     | I_IND_GYY2  | I   | RGB mode: G2, YCbCr mode: Y2 Data input  |
| 189     | I_IND_GYY3  | I   | RGB mode: G3, YCbCr mode: Y3 Data input  |
| 190     | I_IND_GYY4  | I   | RGB mode: G4, YCbCr mode: Y4 Data input  |
| 191     | I_IND_GYY5  | I   | RGB mode: G5, YCbCr mode: Y5 Data input  |
| 192     | I_IND_GYY6  | I   | RGB mode: G6, YCbCr mode: Y6 Data input  |
| 193     | I_IND_GYY7  | I   | RGB mode: G7, YCbCr mode: Y7 Data input  |
| 194     | VDD_1V8     | Р   | 1.8V power (Core power)                  |
| 195     | I_IND_BCB0  | I   | RGB mode: B0, YCbCr mode: Cb0 Data input |
| 196     | VSS_1V8     | G   | Ground (Core Ground)                     |
| 197     | I_IND_BCB1  | I   | RGB mode: B1, YCbCr mode: Cb1 Data input |
| 198     | I_IND_BCB2  |     | RGB mode: B2, YCbCr mode: Cb2 Data input |

SAMSUNG


VD GBM DTV Group Core Tech

|         | ELECTRONICS |     |                                          |
|---------|-------------|-----|------------------------------------------|
| Pin No. | Pin Name    | 1/0 | Function                                 |
| 199     | I_IND_BCB3  | I   | RGB mode: B3, YCbCr mode: Cb3 Data input |
| 200     | I_IND_BCB4  | I   | RGB mode: B4, YCbCr mode: Cb4 Data input |
| 201     | I_IND_BCB5  | I   | RGB mode: B5, YCbCr mode: Cb5 Data input |
| 202     | I_IND_BCB6  | Ι   | RGB mode: B6, YCbCr mode: Cb6 Data input |
| 203     | I_IND_BCB7  | I   | RGB mode: B7, YCbCr mode: Cb7 Data input |
| 204     | VDD_3V3     | Р   | 3.3V power (Pad power)                   |
| 205     | I_CLK       | I   | CLK input                                |
| 206     | VSS_3V3     | G   | Ground (Pad Ground)                      |
| 207     | I_IN_HSYNC  | I   | Horizontal sSync sSignal iInput          |
| 208     | I_IN_VSYNC  |     | Vertical sSync sSignal iInput            |


SAMSUNG



### 5. Package







NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026



### 6. Function Description

### 6.1 IFC(InterFace Control)

The Interface Control Block (henceforth, IFC) controls the internal register value changes via I2C communications and downloads the LUT RAM to be used for internal processing (contrast enhancement).

The use of I2C protocol supports 16-bit addressing and 16-bit data width.

The basic I2C protocol requires 8-bit device addressing (incl. read/write flag) and 8-bit local base addressing. Hence, the designed I2C Control Block has a different sequence from the basic I2C control block for 16-bit operation.

Micom requires one device addressing device (write) and two 8-bit local addressing functions for data transfer to the slave. It requires one device addressing device (write), two 8-bit local addressing, and one additional device addressing device (read) for data reception from the slave.

The designedI2C Control Block is designed to can send/receive data to/from an asynchronous block. If the arriving timing of the arriving request data to the I2C block is delayed, the falling time of the SCL is pushed forward at acknowledge to decode the data properly.

Besides transferring register settings and LUT values, the IFC generates control signals for initialization, complete notification and mute control, etc.

### 6.1.1 Feature

7-bit Slave Addressing16-bit Base Addressing Mode16-bit Data ProcessingAsynchronous Data transmission

### 6.1.2 Operation

When the salve is determined by a 7-bit slave address after setting the start condition, data send/receiving is determined by the LSB bit. Then, forWhen sending data sending, the 2-byte internal base address is written in the order of high andto low byte and then the data is transferred in the order of high andto low byte.

When the data transfer finishes, the write sequence is reset with the stop condition. More than 1-word data areis transferred in burst mode as shown in **Figure 6.1-1**. Each byte of the transferred data is saved to the corresponding address in incrementsed byof one, sequentially starting from the base address transferred.

In **Figure 6.1-1**, the black color indicates the space occupied by the master bus, and the blue color indicates the space occupied by the slave bus.



| START | Slave Address V                | V ACK |                                  |         |
|-------|--------------------------------|-------|----------------------------------|---------|
|       | Base Address (Upper Byte)      | ACK   | Base Address (Lower Byte)        | ACK     |
|       | Receive Data (Upper Byte)      | ACK   | Receive Data (Lower Byte)        | ACK     |
|       | Receive Data (Upper Byte) [2N] | ACK   | Receive Data (Lower Byte) [2N+1] | ACK STO |

Figure 6.1-1 I2C 16-Bit Write Sequence

For receiving data receiving, the base address to read is written in write mode and the write sequence is initialized by loading the stop condition on the bus.

Then, the start condition is loaded onto the bus again and 7-bit slave addressing is performed in read mode. After thenthat, data areis received from the specified slave address, and the master sends an acknowledgmente signal every 8 bits and makes a word by combining the first byte as high byte and the second byte as low byte.

For received data received in burst mode, each byte of the transferred data is saved to the corresponding address in incrementsed byof one from the base address thatwhich is determined by the base addressing based on the transferred base address.

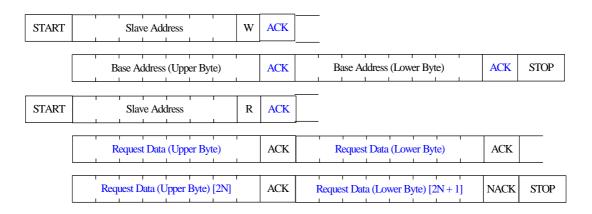



Figure 6.1-2 I2C 16-Bit Read Sequence

In case of During a read sequence, if the receiving party (Master) wants to stop data reception from the slave addressed, it should first load no acknowledgmente first and then it can load stop the condition onto the bus.

If acknowledgmente is continuously loaded continuously, the bus is continuously occupied continuously by the slave tofor sending data and the master cannot load any data onto the bus except at the time of acknowledgment.



### 6.2 Timing Generator

SNI2ND data input operates according to the register settings related to the

vertical/horizontal sync signals. The vertical/horizontal raster and valid input data positions are determined accordingly.

Basically, the input raster size areis the same withas the output raster size and the frame rate does not change also.

The Pphase of the input vertical/horizontal sync signal can be selected through the VSYNC\_POLARITY and HSYNC\_POLARITY registers.

[Fig 6.2-1] shows an example of when the value of two phase-related registers is "0", i.e., active low.

The width of the sync signal has no effect on the operation.

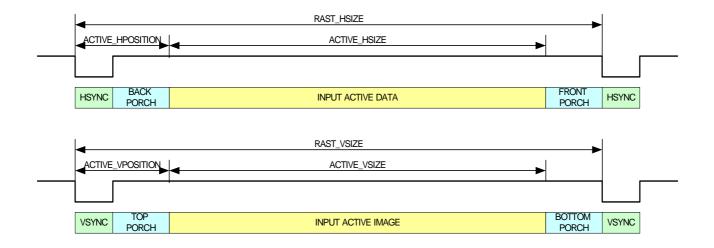



Figure 6.2-1 Registers Related to Vertical/Horizontal Input Sync Signals



### 6.3 NRP(Noise Reduction Process)

### 6.3.1 Feature

Advantages of the 2<sup>nd</sup> DNIe 2nd NRP

When there is little noise, its he noise removal function does not occurcause any damage to the image and acquirescreates a correct lear image by measuring the noise and motion of the motion adaptive temporal filter. When there is a lot of much noise, its he noise removal function occurscreates a minimum of damage to the edge by using the noise value measured by Temporal NR adapting (the noise adaptive spatial noise reduction function).

Differences of between the 2nd DNIe 2nd and the 1st DNIe

The 2D Spatial NR function is has been added.

2D NR's threshold value is obtained by using the noise value measured by the Temporal NR.

Improved rounding for of the recursive filter resolves the problem of a colored after image.

The NR algorithm applied into the 2nd DNIe 2nd is a 3D Adaptive Noise Reduction algorithm that combines Temporal Noise Reduction to remove noise in the temporal space between frames and Spatial Noise Reduction to remove noise in 2-dimensinal space.



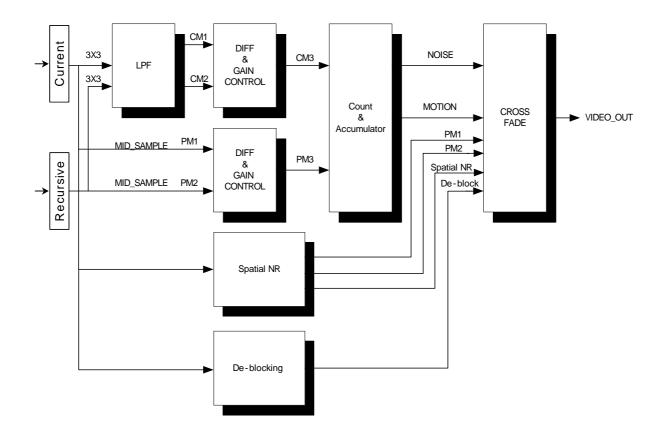



Figure 6.3-1 NRP Block Diagram



### 6.3.2 Operation

The effect of **Temporal NR** can be increased or decreased by adjusting the following registers.

**R\_SCALE\_MAX\_Y**: Max value of the adaptive range that determines the NR effect for the brightness signal

**R\_SCALE\_MIN\_Y**: Min value of the adaptive range that determines the NR effect for the brightness signal

**R\_SCALE\_MAX\_C**: Max value of the adaptive range that determines the NR effect for the color signal

**R\_SCALE\_MIN\_C**: Min value of the adaptive range that determines the NR effect for the color signal

The effect of the **Spatial NR** can be increased or decreased by adjusting the following registers.

**R\_Y\_TH\_HPF:** Threshold value for the high pass filter of the Spatial NR. [Range: 1/2, 1/4, 1/8 ~ 1/256] The larger this value is, the less the effect of the Spatial NR has.

**R\_Y\_TH\_EDGE:** Threshold value for the edge filter of the Spatial NR. [Range: 1/2, 1/4, 1/8 ~ 1/256] The larger this value is, the less the effect of the Spatial NR has.

| SCALEMAX | SCALEMIN | Afterimage | NR eEffect               |
|----------|----------|------------|--------------------------|
| Large    | Large    | Decreased  | Decreased                |
| Large    | Small    | Increased  | Adaptivity is increased. |
| Small    | Large    | Decreased  | Adaptivity is decreased. |
| Small    | Small    | Increased  | Increased                |



De-bBlocking mMode can be selected by adjusting the following registers.

**R\_DEB\_MODE** : Determines whether to enable or disable the dDe-bBlocking block operation.

| R_DEB_MODE  | 00             | 01           | 10           | 11      |
|-------------|----------------|--------------|--------------|---------|
| Process     | H,V Deblocking | H Deblocking | V Deblocking | LPF     |
| Coefficient | 0.25 0.75      | 0.25 0.75    | 0.25 0.75    | [1 2 1] |

De-bBlocking mMode can be selected by adjusting the following registers.

- **R\_MIX\_MODE\_EN**: Determines whether to mix the Spatial NR value with the De-bBlocking value.
- **R\_DEB\_EN**: Determines whether to enable or disable the dDe-bBlocking block operation.
- **R\_NR\_SEL**: Determines whether to select Spatial NR or Temporal NR for deblocking.

| R_NR_SEL | 0                           | R_MIX_M    | I<br>IODE_EN               | 2                           | 3<br>R_MIX_MODE_EN          |                                             |  |
|----------|-----------------------------|------------|----------------------------|-----------------------------|-----------------------------|---------------------------------------------|--|
| R_DEB_EN |                             | 0          | 1                          |                             | 0                           | 1                                           |  |
| 0        | Deblocking +<br>Temporal NR | Spatial NR | Spatial NR                 | Temporal NR                 | Spatial NR +<br>Temporal NR | Spatial NR +<br>Temporal NR                 |  |
| 1        | Deblocking                  | Deblocking | Deblocking +<br>Spatial NR | Deblocking +<br>Temporal NR | Deblocking +<br>Temporal NR | Deblocking +<br>Spatial NR +<br>Temporal NR |  |



### 6.4 SRC(Source Detection)

The SRC block controls the gain of the other blocks by detecting the RF characteristics of the input video.

1) Determines the RF characteristics by detecting the max frequency of the input video.

2) Controls gain by combining the RF characteristics detected and the noise information received from the noise reduction block.

- 3) Possible to extract the desired frequency by changing the register settings.
- 4) All processes in the SRC block are treated in the unit of a frame.

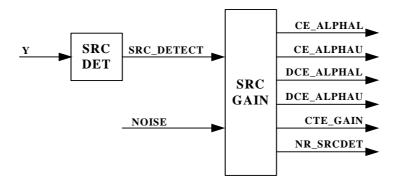



Figure 6.4-1 SRC Block Diagram

\*\* Major Registers

FREQ 1  $\sim$  3 determines the boundaries for separation. Especially, FREQ1 and CTE give an eaffect to the gain of NR.

The CTE reduces gain for the images whose frequency is less than the FREQ1 value. SoTherefore, if the FREQ1 value is decreased, the gain decrease can be reduced but sensitivity to noise may be increased.

IIR\_NOISE is the counter for the IIR Filter. If its value is small, the image can be followed fast because the gain matches it more nearlyclosely, but screen flickering can be generated.

HIGHNOISE and LOWNOISE reduce gain according to noise.

If their values are large, the gain increases but a noise boost may occur because the gain decrease is blocked.

In addition, if the difference between the HIGHNOISE and LOWNOISE values, i.e. if the slope is too steep, and gain may vary too rapidly.

NOISE\_SLOPE value is determined by a formula that hasuses the HIGHNOISE and LOWNOISE values as parameters.



# Multiformat SD, Progressive Scan/HDTV Video Encoder with Six NSV<sup>™</sup> 12-Bit DACs

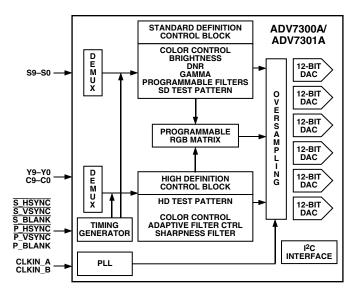
# ADV7300A/ADV7301A

#### FEATURES

**High Definition Input Formats** YCrCb Compliant to SMPTE293M (525 p), ITU-R.BT1358 (625 p), SMPTE274M (1080 i), SMPTE296M (720 p), and Any Other High Definition Standard Using Async Timing Mode RGB in  $3 \times 10$ -Bit 4:4:4 Format BTA T-1004 EDTV2 525 p Parallel High Definition Output Formats (525 p/625 p/720 p/1080 i) YPrPb Progressive Scan (EIA-770.1, EIA-770.2) YPrPb HDTV (EIA 770.3) RGB + H/V (HDTV 5-Wire Format) CGMS-A (720 p/1080 i) Macrovision Rev 1.0 (525 p/625 p)\* CGMS-A (525 p) **Standard Definition Input Formats** CCIR-656 4:2:2 8-/10-Bit Parallel Input CCIR-601 4:2:2 16-/20-Bit Parallel Input **Standard Definition Output Formats** Composite NTSC M, N; PAL M, N, B, D, G, H, I, PAL-60 SMPTE170M NTSC Compatible Composite Video ITU-R.BT470 PAL Compatible Composite Video S-Video (Y/C) EuroScart RGB Component YUV (Betacam, MII, SMPTE/EBU N10) Macrovision Rev 7.1\* CGMS/WSS **Closed Captioning** 

#### **GENERAL FEATURES**

Simultaneous SD and HD Inputs and Outputs Oversampling (108 MHz/148.5 MHz) On-Board Voltage Reference 6 NSV Precision Video 12-Bit DACs 2-Wire Serial MPU Interface Dual I/O Supply 2.5 V/3.3 V Operation Analog and Digital Supply 2.5 V On-Board PLL 64-LQFP Package Lead-Free Product


APPLICATIONS High End DVD Players SD/Program Scan/HDTV Display Devices SD/Program Scan/HDTV Set-Top Boxes SD/HDTV Studio Equipment

NSV (Noise Shaped Video) is a trademark of Analog Devices, Inc.  $^{*}\mathrm{ADV7300A}$  Only

#### REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

#### SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM



#### **GENERAL DESCRIPTION**

The ADV7300A/ADV7301A is a high speed, digital-to-analog encoder on a single monolithic chip. It includes six high speed video D/A converters with TTL compatible inputs.

The ADV7300A/ADV7301A has three separate 10-bit wide input ports that accept data in high definition and/or standard definition video format. For all standards, external horizontal, vertical, and blanking signals, or EAV/SAV timing codes, control the insertion of appropriate synchronization signals into the digital data stream and therefore the output signals.

**DETAILED FEATURES** High Definition Programmable Features (720 p/1080 i) 2× Oversampling (148.5 MHz) Internal Test Pattern Generator (Color Hatch, Black Bar, Flat Field/Frame) Fully Programmable YCrCb to RGB Matrix **Gamma Correction Programmable Adaptive Filter Control Programmable Sharpness Filter Control** CGMS-A (720 p/1080 i) High Definition Programmable Features (525 p/625 p) 4× Oversampling (108 MHz Output) Internal Test Pattern Generator (Color Hatch, Black Bar, Flat Frame) Individual Y and PrPb Output Delay **Gamma Correction Programmable Adaptive Filter Control** Fully Programmable YCrCb to RGB Matrix **Undershoot Limiter** 

Macrovision Rev 1.0 (525 p/625 p)\* CGMS-A (525 p) **Standard Definition Programmable Features** 8× Oversampling (108 MHz) Internal Test Pattern Generator (Color Bars, Black Bar) **Controlled Edge Rates for Sync, Active Video** Individual Y and UV Output Delay **Gamma Correction Digital Noise Reduction Multiple Chroma and Luma Filters** Luma-SSAF<sup>™</sup> Filter with Programmable Gain/ Attenuation **UV SSAF** Separate Pedestal Control on Component and **Composite/S-Video Outputs** VCR FF/RW Sync Mode **Macrovision Rev 7.1\*** CGMS/WSS **Closed Captioning** 

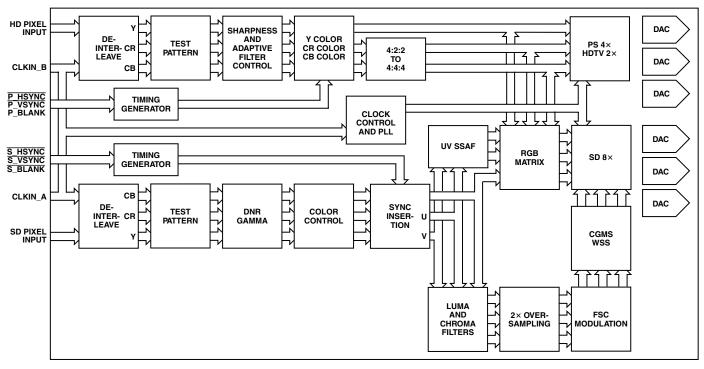



Figure 1. Functional Block Diagram

#### TERMS USED IN THIS DATA SHEET

- SD Standard Definition Video, conforming to ITU-R.BT601/ITU-R.BT656.
- HD High Definition Video, i.e., Progressive Scan or HDTV.
- PS Progressive Scan Video, conforming to SMPTE293M or ITU-R.BT1358.
- HDTV High Definition Television Video, conforming to SMPTE274M or SMPTE296M.
- YCrCb SD or HD Component Digital Video.
- YPrPb HD Component Analog Video.
- YUV SD Component Analog Video.

# ADV7300A/ADV7301A—SPECIFICATIONS

 $(V_{AA} = V_{DD} = 2.375 \text{ V} - 2.625 \text{ V}, V_{DD_{-10}} = 2.375 \text{ V} - 3.600 \text{ V}, V_{REF} = 1.235 \text{ V}, R_{SET} = 760 \Omega, R_{LOAD} = 150 \Omega, T_{MIN}$  to  $T_{MAX}$  (0°C to 70°C), unless otherwise noted.)

| Parameter                                                                                                                                                                                                                           | Min                           | Тур                                           | Max                             | Unit                           | Test Conditions                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|---------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| STATIC PERFORMANCE <sup>1</sup><br>Resolution<br>Integral Nonlinearity<br>Differential Nonlinearity, +ve <sup>2</sup><br>Differential Nonlinearity, -ve <sup>2</sup>                                                                |                               | $12 \\ \pm 2.0 \\ 0.25 \\ 2.0$                |                                 | Bits<br>LSB<br>LSB<br>LSB      | $V_{AA} = 2.5 V$ $V_{AA} = 2.5 V$                                                                                                      |
| DIGITAL OUTPUTS<br>Output Low Voltage, V <sub>OL</sub><br>Output High Voltage, V <sub>OH</sub><br>Three-State Leakage Current<br>Three-State Output Capacitance                                                                     | 2.4 [2.0] <sup>3</sup>        | $\frac{\pm 1.0}{2}$                           | 0.4 [0.4] <sup>3</sup>          | V<br>V<br>μA<br>pF             | $I_{SINK} = 3.2 \text{ mA}$ $I_{SOURCE} = 400 \mu\text{A}$ $V_{IN} = 0.4 V, 2.4 V$                                                     |
| DIGITAL AND CONTROL INPUTS<br>Input High Voltage, $V_{IH}$<br>Input Low Voltage, $V_{IL}$<br>Input Leakage Current<br>Input Capacitance, $C_{IN}$                                                                                   | 2                             | 1<br>2                                        | 0.8                             | V<br>V<br>μA<br>pF             | V <sub>IN</sub> = 2.4 V                                                                                                                |
| ANALOG OUTPUTS<br>Full-Scale Output Current<br>Output Current Range<br>Full-Scale Output Current<br>Output Current Range<br>DAC to DAC Matching<br>Output Compliance Range, V <sub>OC</sub><br>Output Capacitance, C <sub>OUT</sub> | 8.2<br>8.2<br>4.1<br>4.1<br>0 | 8.7<br>8.7<br>4.35<br>4.35<br>2.0<br>1.0<br>7 | 9.2<br>9.2<br>4.6<br>4.6<br>1.4 | mA<br>mA<br>mA<br>%<br>V<br>pF | $R_{SET1, 2} = 1520 \Omega$<br>$R_{SET1, 2} = 1520 \Omega$                                                                             |
| VOLTAGE REFERENCE<br>Reference Range, V <sub>REF</sub>                                                                                                                                                                              | 1.15                          | 1.235                                         | 1.3                             | V                              |                                                                                                                                        |
| POWER REQUIREMENTS<br>Normal Power Mode<br>I <sub>DD</sub> <sup>4</sup>                                                                                                                                                             |                               | 93<br>52<br>84<br>90<br>99<br>108             | 110                             | mA<br>mA<br>mA<br>mA<br>mA     | SD Only $[8\times]$<br>PS Only $[4\times]$<br>HDTV Only $[2\times]$<br>SD and PS<br>SD $[8\times]$ and HDTV<br>SD and HDTV $[2\times]$ |
| $I_{DD_{-IO}}$ $I_{AA}^{5,6}$ Sleep Mode $I_{DD}$ $I_{AA}$                                                                                                                                                                          |                               | 0.2<br>70<br>130<br>10                        | 75                              | mA<br>mA<br>μA<br>μA           |                                                                                                                                        |
| I <sub>DD_IO</sub><br>Power Supply Rejection Ratio                                                                                                                                                                                  |                               | 110<br>0.01                                   |                                 | μΑ<br>%/%                      |                                                                                                                                        |

NOTES

<sup>1</sup>Oversampling disabled. Static DAC performance will be improved with increased oversampling ratios.

<sup>2</sup>DNL measures the deviation of the actual DAC o/p voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for -ve DNL, the actual step values lie below the ideal step value.

<sup>3</sup>Value in brackets for  $V_{DD_{IO}} = 2.375$  V to 2.750 V. <sup>4</sup> $I_{DD}$  or the circuit current is the continuous current required to drive the digital core without the  $I_{PLL}$ .

 $^5I_{AA}$  is the total current required to supply all DACs including the  $V_{REF}$  and PLL circuitry.

<sup>6</sup>All DACs on.

Specifications subject to change without notice.

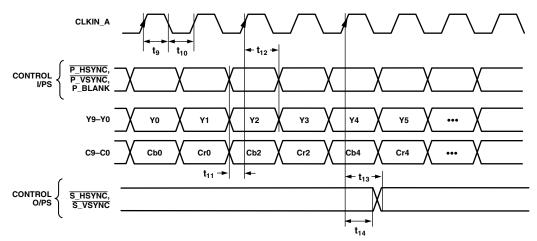
# $\begin{array}{l} \textbf{DYNAMIC SPECIFICATIONS} & (V_{AA} = V_{DD} = 2.375 \ V - 2.625 \ V, \ V_{DD\_10} = 2.375 \ V - 3.600 \ V, \ V_{REF} = 1.235 \ V, \ R_{SET} = 760 \ \Omega, \\ R_{LOAD} = 150 \ \Omega, \ T_{MIN} \ to \ T_{MAX} \ (0^{\circ}\text{C} \ to \ 70^{\circ}\text{C}), \ unless \ otherwise \ noted.) \end{array}$

| Parameter                    | Min | Тур        | Max | Unit    | Test Conditions           |
|------------------------------|-----|------------|-----|---------|---------------------------|
| PROGRESSIVE SCAN MODE        |     |            |     |         |                           |
| Luma Bandwidth               |     | 12.5       |     | MHz     |                           |
| Chroma Bandwidth             |     | 5.8        |     | MHz     |                           |
| SNR                          |     | 62         |     | dB      | Luma Ramp Unweighted      |
| SNR                          |     | 78         |     | dB      | Flat Field up to 5 MHz    |
| SNR                          |     | 72         |     | dB      | Flat Field Full Bandwidth |
| HDTV MODE                    |     |            |     |         |                           |
| Luma Bandwidth               |     | 30         |     | MHz     |                           |
| Chroma Bandwidth             |     | 13.75      |     | MHz     |                           |
| SNR                          |     | 62         |     | dB      | Luma Ramp Unweighted      |
| SNR                          |     | 78         |     | dB      | Flat Field up to 5 MHz    |
| SNR                          |     | 72         |     | dB      | Flat Field Full Bandwidth |
| STANDARD DEFINITION MODE     |     |            |     |         |                           |
| Hue Accuracy                 |     | 0.2        |     | Degrees |                           |
| Color Saturation Accuracy    |     | 0.5        |     | %       |                           |
| Chroma Nonlinear Gain        |     | $\pm 0.4$  |     | %       | Referenced to 40 IRE      |
| Chroma Nonlinear Phase       |     | ±0.3       |     | Degrees |                           |
| Chroma/Luma Intermodulation  |     | $\pm 0.05$ |     | %       |                           |
| Chroma/Luma Gain Inequality  |     | $\pm 98$   |     | %       |                           |
| Chroma/Luma Delay Inequality |     | 0.9        |     | ns      |                           |
| Luminance Nonlinearity       |     | $\pm 0.4$  |     | %       |                           |
| Chroma AM Noise              |     | 84         |     | dB      |                           |
| Chroma PM Noise              |     | 74         |     | dB      |                           |
| Differential Gain            |     | 0.6        |     | %       | NTSC                      |
| Differential Phase           |     | 1.4        |     | Degrees | NTSC                      |
| SNR                          |     | 62         |     | dB      | Luma Ramp                 |
| SNR                          |     | 78         |     | dB      | Flat Field up to 5 MHz    |
| SNR                          |     | 72         |     | dB      | Flat Field Full Bandwidth |

Specifications subject to change without notice.

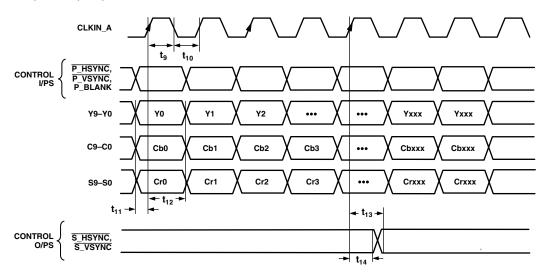
# **TIMING SPECIFICATIONS** $(V_{AA} = V_{DD} = 2.375 \text{ V} - 2.625 \text{ V}, V_{DD_10} = 2.375 \text{ V} - 3.600 \text{ V}, V_{REF} = 1.235 \text{ V}, R_{SET} = 760 \Omega, R_{LOAD} = 150 \Omega, T_{MIN}$ to $T_{MAX}$ (0°C to 70°C), unless otherwise noted.)

| Parameter                                    | Min | Тур  | Max | Unit         | Test Conditions                            |
|----------------------------------------------|-----|------|-----|--------------|--------------------------------------------|
| MPU PORT <sup>1</sup>                        |     |      |     |              |                                            |
| SCLOCK Frequency                             | 0   |      | 400 | kHz          |                                            |
| SCLOCK High Pulsewidth, t <sub>1</sub>       | 0.6 |      |     | μs           |                                            |
| SCLOCK Low Pulsewidth, t <sub>2</sub>        | 1.3 |      |     | μs           |                                            |
| Hold Time (Start Condition), t <sub>3</sub>  | 0.6 |      |     | μs           | First Clock Generated after<br>This Period |
| Setup Time (Start Condition), t <sub>4</sub> | 0.6 |      |     | μs           | Relevant for Repeated Start<br>Condition   |
| Data Setup Time, t <sub>5</sub>              | 100 |      |     | ns           |                                            |
| SDATA, SCLOCK Rise Time, t <sub>6</sub>      |     |      | 300 | ns           |                                            |
| SDATA, SCLOCK Fall Time, t7                  |     |      | 300 | ns           |                                            |
| Setup Time (Stop Condition), t <sub>8</sub>  | 0.6 |      |     | μs           |                                            |
| RESET Low Time                               | 100 |      |     | ns           |                                            |
| ANALOG OUTPUTS                               |     |      |     |              |                                            |
| Analog Output Delay <sup>2</sup>             |     | 8    |     | ns           |                                            |
| Output Skew                                  |     | 1    |     | ns           |                                            |
| CLOCK CONTROL AND PIXEL PORT <sup>3</sup>    |     |      |     |              |                                            |
| $f_{CLK}$                                    |     |      | 27  | MHz          | Progressive Scan Mode                      |
| f <sub>CLK</sub>                             |     | 81   |     | MHz          | HDTV Mode/Async Mode                       |
| Clock High Time, t <sub>9</sub>              | 40  |      |     | % 1 clkcycle |                                            |
| Clock Low Time, $t_{10}$                     | 40  |      |     | % 1 clkcycle |                                            |
| Data Setup Time, t <sub>11</sub>             | 2.0 |      |     | ns           |                                            |
| Data Hold Time, t <sub>12</sub>              | 2.0 |      |     | ns           |                                            |
| Output Access Time, t <sub>13</sub>          |     |      | 14  | ns           |                                            |
| Output Hold Time, t <sub>14</sub>            | 4.0 |      |     | ns           |                                            |
| Pipeline Delay                               |     | 61   |     | clkcycles    | SD [2×]                                    |
|                                              |     | 62.5 |     | clkcycles    | SD [8×]                                    |
|                                              |     | 66.5 |     | clkcycles    | SD Component Filter [8×]                   |
|                                              |     | 33   |     | clkcycles    | PS $[1\times]$ , HD $[1\times]$ , Async    |
|                                              |     |      |     |              | Timing Mode                                |
|                                              |     | 43.5 |     | clkcycles    | PS [4×]                                    |
|                                              |     | 36   |     | clkcycles    | HD [2×]                                    |


NOTES

<sup>1</sup>Guaranteed by characterization.

<sup>2</sup>Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of DAC output full-scale transition.


<sup>3</sup>Data: C[9:0]; S[9:0]; Y[9:0] Control: P\_HSYNC; P\_VSYNC; P\_BLANK; S\_HSYNC; S\_VSYNC; S\_BLANK

Specifications subject to change without notice.



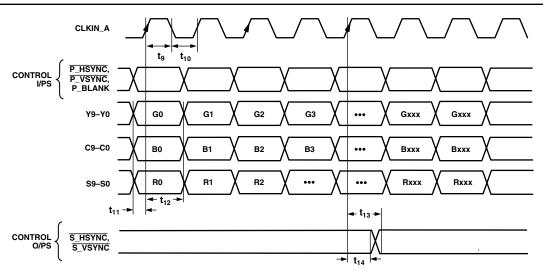

 $t_9$  = CLOCK HIGH TIME,  $t_{10}$  = CLOCK LOW TIME,  $t_{11}$  = DATA SETUP TIME,  $t_{12}$  = DATA HOLD TIME

Figure 2. HD 4:2:2 Input Data Format Timing Diagram, Input Mode: PS Input Only, HDTV Input Only (Input Mode at Subaddress 01h = 001 or 010)



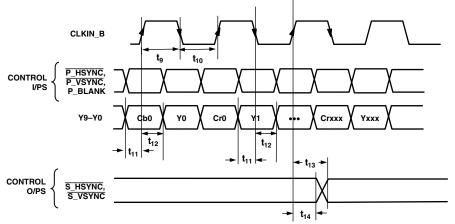

 $t_9$  = CLOCK HIGH TIME,  $t_{10}$  = CLOCK LOW TIME,  $t_{11}$  = DATA SETUP TIME,  $t_{12}$  = DATA HOLD TIME

Figure 3. HD 4:4:4 YCrCb Input Data Format Timing Diagram, Input Mode: PS Input Only, HDTV Input Only (Input Mode at Subaddress 01h = 001 or 010)



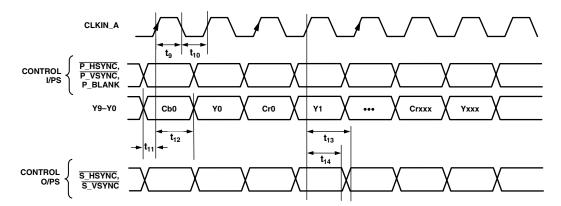

 $t_9$  = CLOCK HIGH TIME,  $t_{10}$  = CLOCK LOW TIME,  $t_{11}$  = DATA SETUP TIME,  $t_{12}$  = DATA HOLD TIME

Figure 4. HD 4:4:4 RGB Input Data Format Timing Diagram, HD RGB Input Enabled (Input Mode at Subaddress 01h = 001 or 010)



 $t_9$  = CLOCK HIGH TIME,  $t_{10}$  = CLOCK LOW TIME,  $t_{11}$  = DATA SETUP TIME,  $t_{12}$  = DATA HOLD TIME

Figure 5. PS 4:2:2 1  $\times$  10-Bit Interleaved @ 27 MHz, Input Mode: PS Input Only (Input Mode at Subaddress 01h = 100)



 $t_9$  = CLOCK HIGH TIME,  $t_{10}$  = CLOCK LOW TIME,  $t_{11}$  = DATA SETUP TIME,  $t_{12}$  = DATA HOLD TIME

Figure 6. PS 4:2:2 1  $\times$  10-Bit Interleaved @ 54 MHz, Input Mode: PS 54 MHz Input (Input Mode at Subaddress 01h = 111)

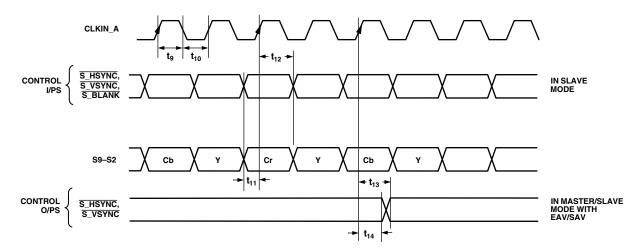



Figure 7. 8-Bit SD Pixel Input Timing Diagram, Input Mode: SD Input Only (Input Mode at Subaddress 01h = 000)

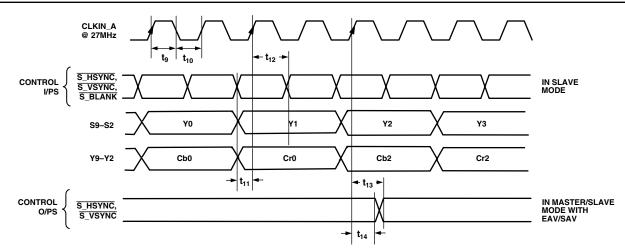



Figure 8. 16-Bit SD Pixel Input Timing Diagram, Input Mode: SD Input Only (Input Mode at Subaddress 01h = 000)

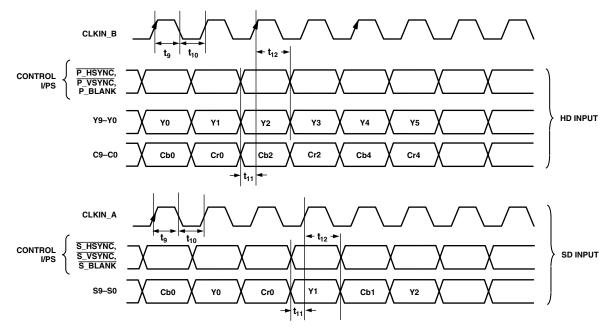



Figure 9. SD and HD Simultaneous Input, Input Mode: SD and PS 20-Bit or SD and HDTV (Input Mode at Subaddress 01h = 011, 101, or 110)

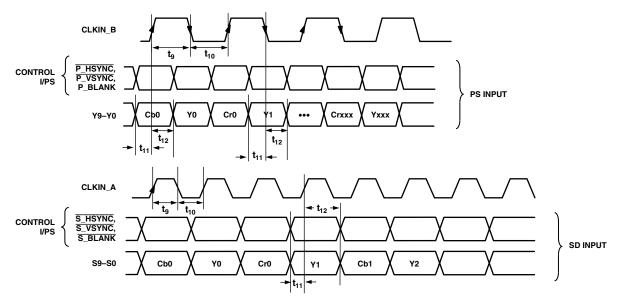



Figure 10. SD and HD Simultaneous Input, Input Mode: SD and PS 10-Bit (Input Mode at Subaddress 01h = 100)

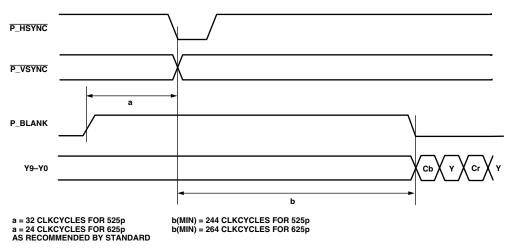



Figure 11. PS 4:2:2 1 imes 10-Bit Interleaved @ 54 MHz Input Timing Diagram

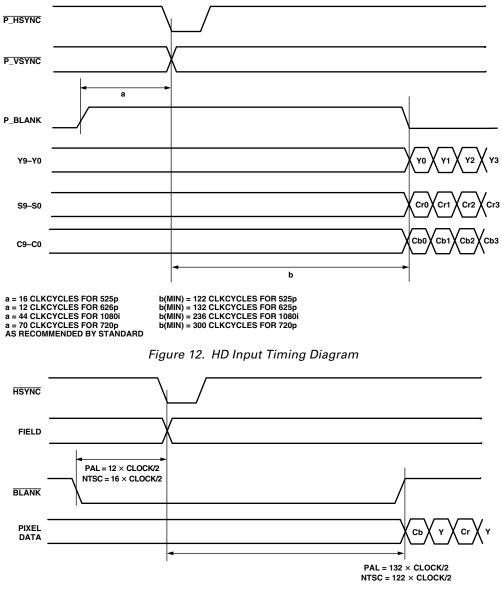



Figure 13. SD Timing Input for Timing Mode 1

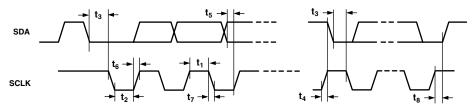


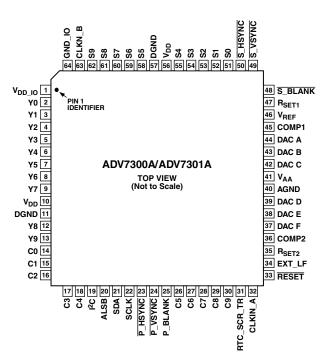

Figure 14. MPU Port Timing Diagram

#### **ABSOLUTE MAXIMUM RATINGS\***

| $V_{AA}$ to AGND                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DD}$ to GND +3.0 V to -0.3 V                                                                                                                         |
| $V_{DD IO}$ to IO_GND0.3 to $V_{DD IO}$ to +0.3 V                                                                                                        |
| Ambient Operating Temperature $(T_A)$ $0^{\circ}C$ to $+70^{\circ}C$                                                                                     |
| Storage Temperature (T <sub>S</sub> ) $\dots -65^{\circ}$ C to $+150^{\circ}$ C                                                                          |
| Infrared Reflow Soldering (20 sec) 260°C                                                                                                                 |
| *Stresses above those listed under Absolute Maximum Ratings may cause<br>permanent damage to the device. This is a stress rating only; functional opera- |
| tion of the device at these or any other conditions above those listed in the                                                                            |
| operational sections of this specification is not implied. Exposure to absolute                                                                          |
| maximum rating conditions for extended periods may affect device reliability.                                                                            |
| THEDMAL CHADACTEDISTICS                                                                                                                                  |

The ADV7300A/ADV7301A is a lead-free environmentally friendly product. It is manufactured using the most up to date materials and processes. The coating on the leads of each device is 100% pure tin electroplate. The device is suitable for lead-free applications and is able to withstand surface-mount soldering up to  $255^{\circ}$ C ( $\pm 5^{\circ}$ C). In addition, it is backward compatible with conventional tin-lead soldering processes. This means that the electroplated tin coating can be soldered with tin-lead solder pastes at conventional reflow temperatures of 220°C to 235°C.

#### **ORDERING GUIDE**


| THERMAL CHARACTERISTICS  | 17 1 1      |                       |                |
|--------------------------|-------------|-----------------------|----------------|
| $T_{IC} = 11^{\circ}C/W$ | Model       | Package Description   | Package Option |
| 5 -                      | ADV7300AKST | Plastic Quad Flatpack | ST-64          |
| $T_{JA} = 47^{\circ}C/W$ | ADV7301AKST | Plastic Quad Flatpack | ST-64          |

#### CAUTION \_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADV7300A/ADV7301A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



#### PIN CONFIGURATION



#### **PIN FUNCTION DESCRIPTIONS**

| Pin No.     | Mnemonic           | Input/Output | Function                                                                                                                                               |
|-------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | V <sub>DD_IO</sub> | Р            | Power Supply for Digital Inputs and Outputs                                                                                                            |
| 2–9, 12, 13 | Y0–Y9              | Ι            | 10-Bit Progressive Scan/HDTV Input Port for Y Data. The LSBs are set up on Pins Y0 and Y1. In Default Mode, the input on this port is output on DAC D. |
| 10, 56      | V <sub>DD</sub>    | Р            | Digital Power Supply                                                                                                                                   |
| 11, 57      | DGND               | G            | Digital Ground                                                                                                                                         |

| Pin No.      | Mnemonic             | Input/Output | Function                                                                                                                                                                                                                                                            |
|--------------|----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14–18, 26–30 | C0–C9                | I            | 10-Bit Progressive Scan/HDTV Input Port for CrCb color data in 4:2:2 Input<br>Mode. In 4:4:4 Input Mode, this input port is used for the Cb (Blue/U) data.<br>The LSBs are set up on Pins C0 and C1. In Default Mode, the input on this<br>port is output on DAC E. |
| 19           | I <sup>2</sup> C     | Ι            | This input pin must be tied high $(V_{DD_IO})$ for the ADV7300A/ADV7301A to interface over the I <sup>2</sup> C port.                                                                                                                                               |
| 20           | ALSB                 | I/O          | TTL Address Input. This signal sets up the LSB of the MPU address. When this pin is tied low, the $I^2C$ filter is activated, which reduces noise on the $I^2C$ interface.                                                                                          |
| 21           | SDA                  | I/O          | MPU Port Serial Data Input/Output                                                                                                                                                                                                                                   |
| 22           | SCLK                 | Ι            | MPU Port Serial Interface Clock Input                                                                                                                                                                                                                               |
| 23           | P_HSYNC              | Ι            | Video Horizontal Sync Control Signal for HD Sync in Simultaneous SD/HD<br>Mode and HD Only Mode                                                                                                                                                                     |
| 24           | P_VSYNC              | Ι            | Video Vertical Sync Control Signal for HD Sync in Simultaneous SD/HD<br>Mode and HD Only Mode                                                                                                                                                                       |
| 25           | P_BLANK              | Ι            | Video Blanking Control Signal for HD Sync in Simultaneous SD/HD Mode and HD Only Mode                                                                                                                                                                               |
| 31           | RTC_SCR_TR           | Ι            | Multifunctional Input: Realtime Control (RTC) Input, Timing Reset Input, and Subcarrier Reset Input                                                                                                                                                                 |
| 32           | CLKIN_A              | Ι            | Pixel Clock Input for HD Only or SD Only Modes                                                                                                                                                                                                                      |
| 33           | RESET                | Ι            | This input resets the on-chip timing generator and sets the ADV7300A/<br>ADV7301A into default register setting. Reset is an active low signal.                                                                                                                     |
| 34           | EXT_LF               | Ι            | External Loop Filter for the internal PLL                                                                                                                                                                                                                           |
| 35, 47       | R <sub>SET2, 1</sub> | Ι            | A 760 $\Omega$ resistor must be connected from this pin to AGND and is used to control the amplitudes of the DAC outputs.                                                                                                                                           |
| 36, 45       | COMP2, 1             | 0            | Compensation Pin for DACs. Connect 0.1 $\mu$ F capacitor from COMP pin to V <sub>AA</sub> .                                                                                                                                                                         |
| 37           | DAC F                | 0            | In SD Only Mode: Chroma/Red/V Analog Output, in HD Only Mode and Simultaneous HD/SD: Pb/Blue (HD) Analog Output                                                                                                                                                     |
| 38           | DAC E                | 0            | In SD Only Mode: Luma/Blue/U Analog Output, in HD Only Mode and<br>Simultaneous HD/SD: Pr/Red (HD) Analog Output                                                                                                                                                    |
| 39           | DAC D                | 0            | In SD Only Mode: CVBS/Green/Y Analog Output, in HD Only Mode and<br>Simultaneous HD/SD: Y/Green (HD) Analog Output                                                                                                                                                  |
| 40           | AGND                 | G            | Analog Ground                                                                                                                                                                                                                                                       |
| 41           | V <sub>AA</sub>      | Р            | Analog Power Supply                                                                                                                                                                                                                                                 |
| 42           | DAC C                | 0            | Chroma/Red/V SD Analog Output                                                                                                                                                                                                                                       |
| 43           | DAC B                | 0            | Luma/Blue/U SD Analog Output                                                                                                                                                                                                                                        |
| 44           | DAC A                | 0            | CVBS/Green/Y SD Analog Output                                                                                                                                                                                                                                       |
| 46           | V <sub>REF</sub>     | I/O          | Optional External Voltage Reference Input for DACs or Voltage Reference<br>Output (1.235 V)                                                                                                                                                                         |
| 48           | S_BLANK              | I/O          | Video Blanking Control Signal for SD                                                                                                                                                                                                                                |
| 49           | S_VSYNC              | I/O          | Video Vertical Control Signal for SD. Option to output SD VSYNC or SD HSYNC in SD Slave Mode 0 and/or any HD Mode.                                                                                                                                                  |
| 50           | S_HSYNC              | I/O          | Video Horizontal Control Signal for SD. Option to output SD HSYNC or<br>HD HSYNC in SD Slave Mode 0 and/or any HD Mode.                                                                                                                                             |
| 51–55, 58–62 | S0–S9                | Ι            | 10-Bit Standard Definition Input Port or Progressive Scan/HDTV Input Port<br>for Cr (Red/V) color data in 4:4:4 Input Mode. The LSBs are set up on Pins<br>S0 and S1. In Default Mode, the input on this port is output on DAC F.                                   |
| 63           | CLKIN_B              | I            | Pixel Clock Input. Requires a 27 MHz reference clock for Progressive Scan<br>Mode or a 74.25 MHz (74.1758 MHz) reference clock in HDTV Mode. This<br>clock input pin is only used in Simultaneous SD/HD Mode.                                                       |
| 64           | GND_IO               |              | Digital Ground                                                                                                                                                                                                                                                      |

#### MPU PORT DESCRIPTION

The ADV7300A/ADV7301A supports a 2-wire serial (I<sup>2</sup>C compatible) microprocessor bus driving multiple peripherals. Two inputs, serial data (SDA) and serial clock (SCLK), carry information between any device connected to the bus. Each slave device is recognized by a unique address. The ADV7300A/ADV7301A has four possible slave addresses for both read and write operations. These are unique addresses for each device and are illustrated in Figures 15 and 16. The LSB sets either a read or write operation. Logic Level "1" corresponds to a read operation, while Logic Level "0" corresponds to a write operation. A1 is set by setting the ALSB pin of the ADV7300A/ADV7301A to Logic Level "0" or Logic Level "1." When ALSB is set to "1," there is greater input bandwidth on the I<sup>2</sup>C lines, which allows high speed data transfers on this bus. When ALSB is set to "0," there is reduced input bandwidth on the I<sup>2</sup>C lines, which means that pulses of less than 50 ns will not pass into the I<sup>2</sup>C internal controller. This mode is recommended for noisy systems.

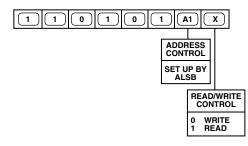



Figure 15. ADV7300A Slave Address = D4h

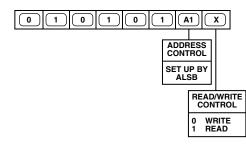



Figure 16. ADV7301A Slave Address = 54h

To control the various devices on the bus, the following protocol must be followed. First, the master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA, while SCLK remains high. This indicates that an address/ data stream will follow. All peripherals respond to the start condition and shift the next 8 bits (7-bit address +  $R/\overline{W}$  Bit). The bits are transferred from MSB down to LSB. The peripheral that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. This is known as an Acknowledge Bit. All other devices withdraw from the bus at this point and maintain an idle condition. The idle condition is where the device monitors the SDA and SCLK lines waiting for the start condition and the correct transmitted address. The  $R/\overline{W}$  Bit determines the direction of the data.

A Logic "0" on the LSB of the first byte means that the master will write information to the peripheral. A Logic "1" on the LSB of the first byte means that the master will read information from the peripheral.

The ADV7300A/ADV7301A acts as a standard slave device on the bus. The data on the SDA pin is eight bits long, supporting the 7-bit addresses plus the  $R/\overline{W}$  Bit. It interprets the first byte as the device address and the second byte as the starting subaddress. The subaddresses autoincrement allows data to be written to or read from the starting subaddress. A data transfer is always terminated by a stop condition. The user can also access any unique subaddress register on a one-by-one basis without having to update all the registers.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, it will cause an immediate jump to the idle condition. During a given SCLK high period, the user should issue only one start condition, one stop condition. If an invalid subaddress is issued by the user, the ADV7300A/ADV7301A will not issue an acknowledge and will return to the idle condition. If in Autoincrement Mode the user exceeds the highest subaddress, the following action will be taken:

- 1. In Read Mode, the highest subaddress register contents will continue to be output until the master device issues a no-acknowledge. This indicates the end of a read. A no-acknowledge condition is where the SDA line is not pulled low on the ninth pulse.
- 2. In Write Mode, the data for the invalid byte will not be loaded into any subaddress register, a no-acknowledge will be issued by the ADV7300A/ADV7301A, and the part will return to the idle condition.

Before writing to the subcarrier frequency registers, it is a requirement that the ADV7300A/ADV7301A has been reset at least once since power-up.

The four subcarrier frequency registers must be updated starting with subcarrier frequency register 0. The subcarrier frequency will not update until the last subcarrier frequency register byte has been received by the ADV7300A/ADV7301A.

Figure 17 illustrates an example of data transfer for a read sequence and the start and stop conditions.

Figure 18 shows bus write and read sequences.

| SDATA | Ţ <u></u>    | _/\                |           |            | $\square$ |
|-------|--------------|--------------------|-----------|------------|-----------|
|       | ART ADRR R/W | 9 1-7<br>ACK SUBAD | 8<br>DATA | √_9<br>АСК | P<br>STOP |

Figure 17. Bus Data Transfer

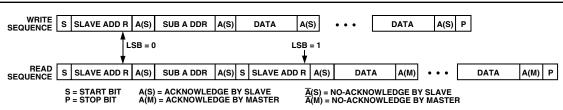



Figure 18. Read and Write Sequence

#### **REGISTER ACCESSES**

The MPU can write to or read from all of the registers of the ADV7300A/ADV7301A except the subaddress registers that are write-only registers. The subaddress register determines which register the next read or write operation accesses. All communications with the part through the bus start with an access to the subaddress register. Then a read/write operation is performed from/to the target address which then increments to the next address until a stop command on the bus is performed.

#### **REGISTER PROGRAMMING**

The following section describes the functionality of each register. All registers can be read from as well as written to unless otherwise stated.

#### Subaddress Register (SR7-SR0)

The Communications Register is an 8-bit write-only register. After the part has been accessed over the bus and a read/write operation is selected, the subaddress is set up. The Subaddress Register determines to/from which register the operation takes place.

#### Register Select (SR7-SR0)

These bits are set up to point to the required starting address.

| Subaddress | Register            | Bit Description                              | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0     | Register Setting | Reset        |
|------------|---------------------|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------|------------------|--------------|
| 00h        | Power Mode Register | Sleep Mode <sup>1</sup>                      |       |       |       |       |       |       |       | 0         | Sleep Mode Off   | $F_{\rm c}h$ |
|            |                     |                                              |       |       |       |       |       |       |       | 1         | Sleep Mode On    | -            |
|            |                     | PLL and Oversampling<br>Control <sup>2</sup> | 1     |       |       |       |       |       | 0     |           | PLL On           |              |
|            |                     |                                              |       |       |       |       |       |       | 1     |           | PLL Off          |              |
|            |                     | DAC F: Power On/Off                          |       |       |       |       |       | 0     |       |           | DAC F Off        | -            |
|            |                     |                                              |       |       |       |       | 1     |       |       | DAC F On  |                  |              |
|            | DAC E: Power On/Off |                                              |       |       |       | 0     |       |       |       | DAC E Off |                  |              |
|            |                     |                                              |       |       |       | 1     |       |       |       | DAC E On  | -                |              |
|            |                     | DAC D: Power On/Off                          |       |       |       | 0     |       |       |       |           | DAC D Off        | -            |
|            |                     |                                              |       |       |       | 1     |       |       |       |           | DAC D On         | -            |
|            |                     | DAC C: Power On/Off                          |       |       | 0     |       |       |       |       |           | DAC C Off        |              |
|            |                     |                                              |       |       | 1     |       |       |       |       |           | DAC C On         | -            |
|            |                     | DAC B: Power On/Off                          |       | 0     |       |       |       |       |       |           | DAC B Off        | -            |
|            |                     |                                              | 1     |       |       |       |       |       |       | DAC B On  | -                |              |
|            |                     | DAC A: Power On/Off                          | 0     |       |       |       |       |       |       |           | DAC A Off        | +            |
|            |                     |                                              | 1     |       |       |       |       |       |       |           | DAC A On         | -            |

#### Table I. Power Mode Register

NOTES <sup>1</sup>When enabled, the current consumption is reduced to µA level. All DACs and the internal PLL circuit are disabled. I<sup>2</sup>C registers can be read from and written to. <sup>2</sup>This control allows the internal PLL circuit to be powered down and the oversampling to be switched off.

#### Table II. Input Mode Register

| Subaddress | Register            | Bit Description          | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0                                                                                                                                   | Register Setting                  | Rese     |
|------------|---------------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|
| 01h        | Input Mode Register | BTA T-1004 Compatibility |       |       |       |       |       |       |       | 0                                                                                                                                       | Disabled                          | 38h      |
|            |                     |                          |       |       |       |       |       |       |       | 1                                                                                                                                       | Enabled                           | 1        |
|            |                     | Reserved                 |       |       |       |       |       |       | 0     |                                                                                                                                         | Zero must be written to this bit. |          |
|            | Pixel Align         |                          |       |       |       |       | 0     |       |       | Video input data starts<br>with a Y0 bit. Only for<br>PS Interleaved Mode.                                                              |                                   |          |
|            |                     |                          |       |       |       |       | 1     |       |       | Video input data starts with a Cb0 bit.                                                                                                 | 1                                 |          |
|            |                     | Clock Align              |       |       |       |       | 0     |       |       |                                                                                                                                         |                                   |          |
|            |                     |                          |       |       |       | 1     |       |       |       | Must be set if the<br>phase delay between<br>the two input clocks is<br><9.25 ns or >27.75 ns.<br>Only if two input<br>clocks are used. |                                   |          |
|            |                     | Input Mode               |       | 0     | 0     | 0     |       |       |       |                                                                                                                                         | SD Input Only                     |          |
|            |                     |                          |       | 0     | 0     | 1     |       |       |       |                                                                                                                                         | PS Input Only                     | 1        |
|            |                     |                          |       | 0     | 1     | 0     |       |       |       |                                                                                                                                         | HDTV Input Only                   | 1        |
|            |                     |                          |       | 0     | 1     | 1     |       |       |       |                                                                                                                                         | SD and PS (20-Bit)                | 1        |
|            |                     |                          |       | 1     | 0     | 0     |       |       |       |                                                                                                                                         | SD and PS (10-Bit)                | 1        |
|            |                     |                          |       | 1     | 0     | 1     |       |       |       |                                                                                                                                         | SD and HDTV (SD<br>Oversampled)   | 1        |
|            |                     |                          |       | 1     | 1     | 0     |       |       |       |                                                                                                                                         | SD and HDTV<br>(HDTV Oversampled) | 1        |
|            |                     |                          |       | 1     | 1     | 1     |       |       |       |                                                                                                                                         | PS 54 MHz Input                   | 1        |
|            |                     | Reserved                 | 0     |       |       |       |       |       |       |                                                                                                                                         | Zero must be written to this bit. | $\vdash$ |

| Subaddress | Register        | Bit Description        | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register Setting                                           | Rese |
|------------|-----------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------------------------------------|------|
| 02h        | Mode Register 0 | Reserved               |       |       |       |       |       |       | 0     | 0     | Zero must be written to these bits.                        | 20h  |
|            |                 | Test Pattern Black Bar |       |       |       |       |       | 0     |       |       | Disabled                                                   |      |
|            |                 |                        |       |       |       |       |       | 1     |       |       | Enabled. 0x11h, Bit 2<br>must also be enabled.             |      |
|            |                 | RGB Matrix             |       |       |       |       | 0     |       |       |       | Disable Programmable<br>RGB Matrix                         |      |
|            |                 |                        |       |       |       |       | 1     |       |       |       | Enable Programmable<br>RGB Matrix                          |      |
|            |                 | SYNC on RGB            |       |       |       | 0     |       |       |       |       | No SYNC                                                    |      |
|            |                 |                        |       |       |       | 1     |       |       |       |       | SYNC on all RGB<br>Outputs                                 |      |
|            |                 | RGB/YUV Output         |       |       | 0     |       |       |       |       |       | RGB Component<br>Outputs                                   |      |
|            |                 |                        |       |       | 1     |       |       |       |       |       | YUV Component<br>Outputs                                   |      |
|            |                 | SD SYNC                |       | 0     |       |       |       |       |       |       | No SYNC Output                                             |      |
|            |                 |                        |       | 1     |       |       |       |       |       |       | Output SD SYNCs on<br><u>S_HSYNC</u> and<br><u>S_VSYNC</u> |      |
|            |                 | HD SYNC                | 0     |       |       |       |       |       |       |       | No SYNC Output                                             |      |
|            |                 |                        | 1     |       |       |       |       |       |       |       | Output HD SYNCs<br>on <u>S_HSYNC</u> and<br><u>S_VSYNC</u> |      |
| 03h        | RGB Matrix 0    |                        |       |       |       |       |       |       | х     | х     | LSB for GY                                                 | 03h  |
| 04h        | RGB Matrix 1    |                        |       |       |       |       |       |       | х     | Х     | LSB for RV                                                 | F0h  |
|            |                 |                        |       |       |       |       | х     | Х     |       |       | LSB for BU                                                 |      |
|            |                 |                        |       |       | х     | Х     |       |       |       |       | LSB for GV                                                 |      |
|            |                 |                        | х     | х     |       |       |       |       |       |       | LSB for GU                                                 |      |
| 05h        | RGB Matrix 2    |                        | х     | х     | х     | х     | х     | х     | Х     | х     | Bits 9–2 for GY                                            | 4Eh  |
| 06h        | RGB Matrix 3    |                        | х     | х     | х     | х     | х     | х     | х     | х     | Bits 9–2 for GU                                            | 0Eh  |
| 07h        | RGB Matrix 4    |                        | х     | х     | х     | Х     | х     | х     | х     | х     | Bits 9–2 for GV                                            | 24h  |
| 08h        | RGB Matrix 5    |                        | х     | х     | х     | Х     | х     | х     | Х     | х     | Bits 9–2 for BU                                            | 92h  |
| 09h        | RGB Matrix 6    |                        | х     | х     | х     | х     | х     | Х     | Х     | Х     | Bits 9–2 for RV                                            | 7Ch  |
| 0Ah        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |
| )Bh        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |
| 0Ch        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |
| 0Dh        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |
| 0Eh        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |
| )Fh        |                 | Reserved               |       |       |       |       |       |       |       |       |                                                            | 00h  |

#### Table III. Mode Register

| Subaddress | Register           | Bit Description                             | Bit 7    | Bit 6 | Bit 5 | Bit 4    | Bit 3    | Bit 2    | Bit 1 | Bit 0 | Register Setting        | Reset    |
|------------|--------------------|---------------------------------------------|----------|-------|-------|----------|----------|----------|-------|-------|-------------------------|----------|
| 10h        | HD Mode Register 1 | HD Output Standard                          |          |       |       |          |          |          | 0     | 0     | EIA770.2 Output         | 00h      |
|            |                    |                                             |          |       |       |          |          |          | 0     | 1     | EIA770.1 Output         | 1        |
|            |                    |                                             |          |       |       |          |          |          | 1     | 0     | Ouptut Levels for Full  | 1        |
|            |                    |                                             |          |       |       |          |          |          | 1     | 1     | Input Range<br>Reserved | 1        |
|            |                    | HD Input Control Signals                    | +        |       |       |          | 0        | 0        |       |       | <u>HSYNC, VSYNC,</u>    |          |
|            |                    |                                             | -        |       |       |          | 0        | 1        |       |       | BLANK<br>EAV/SAV Codes  | -        |
|            |                    |                                             | -        |       |       |          | 1        | 0        |       |       | AsyncTiming Mode        | -        |
|            |                    |                                             |          |       |       |          | 1        | 1        |       |       | Reserved                | -        |
|            |                    | HD 625 p                                    |          |       |       | 0        | -        | -        |       |       | 525 p                   |          |
|            |                    | F                                           |          |       |       | 1        |          |          |       |       | 625 p                   | -        |
|            |                    | HD 720 p                                    |          |       | 0     | <u> </u> |          |          |       |       | 1080 i                  | <u> </u> |
|            |                    | 1110 720 p                                  |          |       | 1     |          |          |          |       |       |                         | -        |
|            |                    |                                             | <u> </u> | _     | 1     |          |          |          |       |       | 720 р                   |          |
|            |                    | HD BLANK Polarity                           |          | 0     |       |          |          |          |       |       | BLANK Active High       | 4        |
|            |                    |                                             |          | 1     |       |          |          |          |       |       | BLANK Active Low        |          |
|            |                    | HD Macrovision for<br>525 p/625 p           | 0        |       |       |          |          |          |       |       | Macrovision Off         |          |
|            |                    |                                             | 1        |       |       |          |          |          |       |       | Macrovision On          |          |
| 11h        | HD Mode Register 2 | HD Pixel Data Valid                         |          |       |       |          |          |          |       | 0     | Pixel Data Valid Off    | 00h      |
|            |                    |                                             |          |       |       |          |          |          |       | 1     | Pixel Data Valid On     |          |
|            |                    |                                             |          |       |       |          |          |          | 0     |       | Reserved                | 1        |
|            |                    | HD Test Pattern Enable                      |          |       |       |          |          | 0        |       |       | HDTest Pattern Off      |          |
|            |                    |                                             |          |       |       |          |          | 1        |       |       | HD Test Pattern On      | 1        |
|            |                    | HDTest Pattern                              |          |       |       |          | 0        |          |       |       | Hatch                   |          |
|            |                    | Hatch/Field                                 |          |       |       |          | 1        |          |       |       | Field/Frame             | 1        |
|            |                    | HDVBI Open                                  | +        |       |       | 0        |          |          |       |       | Disabled                |          |
|            |                    |                                             |          |       |       | 1        |          |          |       |       | Enabled                 | 1        |
|            |                    | HD Undershoot Limiter                       | -        | 0     | 0     |          |          |          |       |       | Disabled                |          |
|            |                    |                                             |          | 0     | 1     |          |          |          |       |       | -11 IRE                 | -        |
|            |                    |                                             | -        | 1     | 0     |          |          |          |       |       | -6 IRE                  | -        |
|            |                    |                                             |          | 1     | 1     |          | <u> </u> | <u> </u> |       |       | –1.5 IRE                | -        |
|            |                    | HD Sharpness Filter                         | 0        |       |       |          |          |          |       |       | Disabled                |          |
|            |                    |                                             | 1        |       |       |          |          |          |       |       | Enabled                 | 4        |
| 1.24       | UD Mada Dagistan 2 | UDV Deley part Felling                      | -        |       |       |          |          | 0        | 0     | 0     |                         |          |
| 12h        | HD Mode Register 3 | HDY Delay wrt Falling<br>Edge of HSYNC      |          |       |       | <u> </u> |          | 0        | 0     | 0     | 0 Clock Cycle           | 4        |
|            |                    |                                             |          |       |       |          |          | 0        | 0     | 1     | 1 Clock Cycle           | 4        |
|            |                    |                                             |          |       |       |          |          | 0        | 1     | 0     | 2 Clock Cycle           | 4        |
|            |                    |                                             |          |       |       |          |          | 0        | 1     | 1     | 3 Clock Cycle           | 1        |
|            |                    |                                             |          |       |       |          |          | 1        | 0     | 0     | 4 Clock Cycle           |          |
|            |                    | HD Color Delay wrt<br>Falling Edge of HSYNC |          |       | 0     | 0        | 0        |          |       |       | 0 Clock Cycle           |          |
|            |                    |                                             |          |       | 0     | 0        | 1        |          |       |       | 1 Clock Cycle           |          |
|            |                    |                                             |          |       | 0     | 1        | 0        |          |       |       | 2 Clock Cycle           |          |
|            |                    |                                             |          |       | 0     | 1        | 1        |          |       |       | 3 Clock Cycle           |          |
|            |                    |                                             |          |       | 1     | 0        | 0        |          |       |       | 4 Clock Cycle           | 1        |
|            |                    | HD CGMS                                     | 1        | 0     |       |          | 1        |          | 1     | 1     | Disabled                |          |
|            |                    |                                             |          | 1     |       |          | 1        |          | 1     | 1     | Enabled                 | 1        |
|            |                    | HD CGMS CRC                                 | 0        | 1     |       |          |          |          |       | 1     | Disabled                |          |
|            |                    |                                             | 1        | 1     |       |          |          |          | 1     | 1     | Enabled                 | 1        |

#### Table IV. HD Mode Register

| Subaddress | Register           | Bit Description                | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register Setting                                              | Reset |
|------------|--------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------------------------------------|-------|
| 13h        | HD Mode Register 4 | HD Cr/Cb Sequence <sup>2</sup> |       |       |       |       |       |       |       | 0     | Cb after <u>Falling</u><br>Edge of <u>HSYNC</u>               | 4Ch   |
|            |                    |                                |       |       |       |       |       |       |       | 1     | Cr after Falling Edge<br>of HSYNC                             |       |
|            |                    |                                |       |       |       |       |       |       | 0     |       | Reserved                                                      |       |
|            |                    | HD Input Format                |       |       |       |       |       | 0     |       |       | 8-Bit Input                                                   |       |
|            |                    |                                |       |       |       |       |       | 1     |       |       | 10-Bit Input                                                  | 1     |
|            |                    | Sync Filter on DAC D, E, F     |       |       |       |       | 0     |       |       |       | Disabled                                                      |       |
|            |                    |                                |       |       |       |       | 1     |       |       |       | Enabled                                                       | 1     |
|            |                    |                                |       |       |       | 0     |       |       |       |       | Reserved                                                      |       |
|            |                    | HD Chroma SSAF <sup>2</sup>    |       |       | 0     |       |       |       |       |       | Disabled                                                      |       |
|            |                    |                                |       |       | 1     |       |       |       |       |       | Enabled                                                       | 1     |
|            |                    | HD Chroma Input                |       | 0     |       |       |       |       |       |       | 4:4:4                                                         |       |
|            |                    |                                |       | 1     |       |       |       |       |       |       | 4:2:2                                                         | 1     |
|            |                    | HD Double Buffering            | 0     |       |       |       |       |       |       |       | Disabled                                                      |       |
|            |                    |                                | 1     |       |       |       |       |       |       |       | Enabled                                                       | 1     |
| 14h        | HD Mode Register 5 |                                | 0     | 0     | 0     | 0     | 0     | 0     | 0     | х     | A low-high-low<br>transition resets the<br>internal HD timing | 00h   |
| 15h        | HD Mode Register 6 | Reserved                       | +     |       |       |       |       |       |       | 0     | counters.<br>Zero must be written                             | 00h   |
|            |                    | HD RGB Input                   | +     |       |       |       |       |       | 0     |       | to this bit.<br>Disabled                                      |       |
|            |                    |                                |       |       |       |       |       |       | 1     |       | Enabled                                                       | ł     |
|            |                    | HD Sync on PrPb                | -     |       |       |       |       | 0     |       |       | Disabled                                                      |       |
|            |                    |                                | -     |       |       |       | -     | 1     |       |       | Enabled                                                       | 1     |
|            |                    | HD Color DAC Swap <sup>3</sup> |       |       |       |       | 0     |       |       |       | DAC E = Pr,<br>DAC F = Pb                                     |       |
|            |                    |                                |       |       |       |       | 1     |       |       |       | DAC $F = Pr$ ,<br>DAC $E = Pb$                                | 1     |
|            |                    | HD Gamma Curve A/B             |       |       |       | 0     |       |       |       |       | Gamma Curve A                                                 |       |
|            |                    |                                |       |       |       | 1     |       |       |       |       | Gamma Curve B                                                 | 1     |
|            |                    | HD Gamma Curve Enable          |       |       | 0     |       |       |       |       |       | Disabled                                                      |       |
|            |                    |                                |       |       | 1     |       |       |       |       |       | Enabled                                                       | 1     |
|            |                    | HD Adaptive Filter Mode        |       | 0     |       |       |       |       |       |       | Mode A                                                        |       |
|            |                    |                                |       | 1     |       |       |       | 1     |       |       | Mode B                                                        | 1     |
|            |                    | HD Adaptive Filter Enable      | 0     |       |       |       |       |       |       |       | Disabled                                                      |       |
|            |                    |                                | 1     |       |       |       |       |       |       |       | Enabled                                                       | 1     |

| Table IV. HD Mode Register (continued) | Table IV. | HD Mode | e Register | (continued) |
|----------------------------------------|-----------|---------|------------|-------------|
|----------------------------------------|-----------|---------|------------|-------------|

NOTES  $^1\text{EAV}/\text{SAV}$  codes are not supported for PS 1  $\times$  10-Bit Interleaved Mode at 54 MHz.  $^24{:}2{:}2$  Input Format Only  $^34{:}4{:}4$  Input Format Only

#### Table V. Register Settings

| Subaddress | Register            | Bit Description                     | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2    | Bit 1  | Bit 0  | Register Setting | Reset |
|------------|---------------------|-------------------------------------|-------|--------|--------|--------|--------|----------|--------|--------|------------------|-------|
| 16h        | HD Y Color          |                                     | х     | х      | х      | х      | х      | х        | х      | х      | Y Color Value    | A0h   |
| 17h        | HD Cr Color         |                                     | х     | х      | х      | Х      | х      | х        | Х      | х      | Cr Color Value   | 80h   |
| 18h        | HD Cb Color         |                                     | x     | х      | х      | х      | х      | х        | х      | х      | Cb Color Value   | 80h   |
| 19h        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 1Ah        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 1Bh        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 1Ch        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 1Dh        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 1Eh        |                     | Reserved                            |       |        |        |        |        | <u> </u> |        |        |                  | 00h   |
| 1Fh        |                     | Reserved                            |       |        |        |        |        |          |        |        |                  | 00h   |
| 20h        | HD Sharpness Filter | HD Sharpness Filter Gain            |       |        |        |        | 0      | 0        | 0      | 0      | Gain A = 0       | 00h   |
| 2011       | Gain                | Value A                             |       |        |        |        | 0      | 0        | 0      | 1      | Gain $A = +1$    | _     |
|            |                     |                                     |       |        |        |        |        |          |        |        |                  | _     |
|            |                     |                                     |       |        |        |        |        |          |        |        |                  | _     |
|            |                     |                                     |       |        |        |        | 0      | 1        | 1      | 1      | Gain A = +7      | _     |
|            |                     |                                     |       |        |        |        | 1      | 0        | 0      | 0      | Gain A = -8      |       |
|            |                     |                                     |       |        |        |        |        |          |        |        |                  |       |
|            |                     |                                     |       |        |        |        | 1      | 1        | 1      | 1      | Gain A = -1      |       |
|            |                     | HD Sharpness Filter Gain<br>Value B | 0     | 0      | 0      | 0      |        |          |        |        | Gain $B = 0$     |       |
|            |                     |                                     | 0     | 0      | 0      | 1      |        |          |        |        | Gain B = +1      | 7     |
|            |                     |                                     |       |        |        |        |        |          |        |        |                  | 1     |
|            |                     |                                     | 0     | 1      | 1      | 1      |        |          |        |        | Gain B = +7      |       |
|            |                     |                                     | 1     | 0      | 0      | 0      |        |          |        |        | Gain B = -8      | 1     |
|            |                     |                                     |       |        |        |        |        |          |        |        |                  | -     |
|            |                     |                                     | 1     | 1      | 1      | 1      |        |          |        |        | Gain B = -1      | -     |
| 21h        | HD CGMS Data 0      | HD CGMS Data Bits                   | 0     | 0      | 0      | 0      | C19    | C18      | C17    | C16    | CGMS 19–16       | 00h   |
| 22h        | HD CGMS Data 1      | HD CGMS Data Bits                   | C15   | C14    | C13    | C12    | C11    | C10      | C9     | C8     | CGMS 15-8        | 00h   |
| 23h        | HD CGMS Data 2      | HD CGMS Data Bits                   | C7    | C6     | C5     | C4     | C3     | C2       | C1     | C0     | CGMS 7–0         | 00h   |
| 24h        | HD Gamma A          | HD Gamma Curve A Data               | x     | х      | х      | х      | х      | х        | х      | х      | A0               | 00h   |
| 25h        | HD Gamma A          | Points<br>HD Gamma Curve A Data     | x     | х      | х      | x      | х      | х        | x      | х      | A1               | 00h   |
| 26h        | HD Gamma A          | Points<br>HD Gamma Curve A Data     | x     | x      | х      | X      | x      | х        | x      | x      | A2               | 00h   |
|            | HD Gamma A          | Points                              |       |        |        |        |        |          |        |        |                  |       |
| 27h        |                     | HD Gamma Curve A Data<br>Points     |       | х      | х      | х      | х      | х        | х      | х      | A3               | 00h   |
| 28h        | HD Gamma A          | HD Gamma Curve A Data<br>Points     |       | х      | х      | Х      | х      | х        | Х      | х      | A4               | 00h   |
| 29h        | HD Gamma A          | HD Gamma Curve A Data<br>Points     | х     | х      | х      | Х      | х      | х        | Х      | х      | A5               | 00h   |
| 2Ah        | HD Gamma A          | HD Gamma Curve A Data<br>Points     | х     | х      | х      | х      | х      | х        | х      | х      | A6               | 00h   |
| 2Bh        | HD Gamma A          | HD Gamma Curve A Data               | х     | х      | х      | х      | х      | х        | х      | х      | A7               | 00h   |
| 2Ch        | HD Gamma A          | Points<br>HD Gamma Curve A Data     | x     | х      | х      | x      | х      | х        | x      | х      | A8               | 00h   |
| 2Dh        | HD Gamma A          | Points<br>HD Gamma Curve A Data     | x     | x      | Х      | X      | x      | х        | X      | x      | A9               | 00h   |
| 2Eh        | HD Gamma B          | Points<br>HD Gamma Curve B Data     |       | x      | x      | x      | x      | x        | x      | x      | B0               | 00h   |
|            |                     | Points                              |       |        |        |        |        |          |        |        |                  |       |
| 2Fh        | HD Gamma B          | HD Gamma Curve B Data<br>Points     |       | х      | х      | х      | х      | х        | х      | х      | B1               | 00h   |
| 30h        | HD Gamma B          | HD Gamma Curve B Data<br>Points     | x     | х      | х      | Х      | х      | х        | Х      | х      | B2               | 00h   |
| 31h        | HD Gamma B          | HD Gamma Curve B Data<br>Points     | Х     | х      | х      | х      | х      | Х        | х      | х      | B3               | 00h   |
| 32h        | HD Gamma B          | HD Gamma Curve B Data               | х     | х      | х      | х      | х      | х        | х      | х      | B4               | 00h   |
| 33h        | HD Gamma B          | Points<br>HD Gamma Curve B Data     | x     | х      | х      | х      | х      | х        | х      | х      | В5               | 00h   |
| 34h        | HD Gamma B          | Points<br>HD Gamma Curve B Data     | x     | x      | x      | x      | x      | x        | x      | x      | B6               | 00h   |
| 33h<br>34h | HD Gamma B          |                                     |       | X<br>X | X<br>X | X<br>X | X<br>X | X<br>X   | X<br>X | X<br>X | B6               |       |

| Subaddress | Register                             | Bit Description                         | Bit 7    | Bit 6 | Bit 5    | Bit 4    |   |   | Bit 1    |             | Register Setting | Reset |
|------------|--------------------------------------|-----------------------------------------|----------|-------|----------|----------|---|---|----------|-------------|------------------|-------|
| 38h        | HD Adaptive Filter<br>Gain 1         | HD Adaptive Filter Gain 1<br>Value A    |          |       |          |          | 0 | 0 | 0        | 0           | Gain $A = 0$     | 00hex |
|            |                                      | , and T                                 |          |       |          |          | 0 | 0 | 0        | 1           | Gain A = +1      |       |
|            |                                      |                                         |          |       |          |          | 0 | 1 | 1        | 1           | Gain A = +7      |       |
|            |                                      |                                         |          |       |          |          | 1 | 0 | 0        | 0           | Gain A = -8      |       |
|            |                                      |                                         |          |       |          |          | 1 | 1 | 1        | 1           | Gain A = -1      | -     |
|            |                                      | HD Adaptive Filter Gain 1<br>Value B    | 0        | 0     | 0        | 0        |   |   |          |             | Gain B = 0       |       |
|            |                                      | Value B                                 | 0        | 0     | 0        | 1        |   |   |          |             | Gain B = +1      |       |
|            |                                      |                                         | 0        | 1     | 1        | 1        |   |   |          |             | Gain B = +7      |       |
|            |                                      |                                         | 1        | 0     | 0        | 0        |   |   |          |             | Gain B = –8      |       |
|            |                                      |                                         | 1        | 1     | 1        | 1        |   |   |          |             | Gain B = –1      | 1     |
| 39h        | HD Adaptive Filter<br>Gain 2         | HD Adaptive Filter Gain 2<br>Value A    |          |       |          |          | 0 | 0 | 0        | 0           | Gain A = 0       | 00he  |
|            | Gaili 2                              | Value A                                 |          |       |          |          | 0 | 0 | 0        | 1           | Gain A = +1      |       |
|            |                                      |                                         |          |       |          |          | 0 | 1 | 1        | 1           | Gain A = +7      |       |
|            |                                      |                                         |          |       |          |          | 1 | 0 | 0        | 0           | Gain A = -8      | -     |
|            |                                      |                                         |          |       |          |          | 1 | 1 | 1        | 1           | Gain A = -1      |       |
|            | HD Adaptive Filter Gain 2<br>Value B | 0                                       | 0        | 0     | 0        |          |   |   |          | Gain B = 0  |                  |       |
|            |                                      | value D                                 | 0        | 0     | 0        | 1        |   |   |          |             | Gain B = +1      |       |
|            |                                      |                                         | 0        | 1     | 1        | 1        |   |   |          |             | Gain B = +7      |       |
|            |                                      |                                         | 1        | 0     | 0        | 0        |   |   |          |             | Gain B = –8      | 1     |
|            |                                      |                                         | 1        | 1     | 1        | 1        |   |   |          |             | Gain B = –1      |       |
| 3Ah        | HD Adaptive Filter<br>Gain 3         | HD Adaptive Filter Gain 3<br>Value A    |          |       |          |          | 0 | 0 | 0        | 0           | Gain A = 0       | 00he  |
|            | Gain 5                               | value A                                 |          |       |          |          | 0 | 0 | 0        | 1           | Gain A = +1      |       |
|            |                                      |                                         |          |       |          |          | 0 | 1 | 1        | 1           | Gain A = +7      |       |
|            |                                      |                                         |          |       |          |          | 1 | 0 | 0        | 0           | Gain A = -8      |       |
|            |                                      |                                         |          |       |          |          | 1 | 1 | 1        | 1           | Gain A = -1      |       |
|            |                                      | HD Adaptive Filter Gain 3<br>Value B    | 0        | 0     | 0        | 0        |   |   |          |             | Gain B = 0       |       |
|            |                                      | Value B                                 | 0        | 0     | 0        | 1        |   |   |          |             | Gain B = +1      |       |
|            |                                      |                                         | 0        | 1     | 1        | 1        |   |   |          |             | Gain B = +7      | 1     |
|            |                                      | 1                                       | 0        | 0     | 0        |          |   |   |          | Gain B = –8 | 1                |       |
|            |                                      | 1                                       | 1        | 1     | 1        |          |   |   |          | Gain B = –1 | 1                |       |
| 3Bh        | HD Adaptive Filter<br>Threshold A    | HD Adaptive Filter<br>Threshold A Value | х        | х     | х        | х        | х | х | х        | х           | Threshold A      | 00he  |
| 3Ch        | HD Adaptive Filter                   | HD Adaptive Filter                      | х        | х     | х        | х        | х | Х | х        | Х           | Threshold B      | 00he  |
| 3Dh        | Threshold B<br>HD Adaptive Filter    | Threshold B Value<br>HD Adaptive Filter | х        | х     | х        | х        | х | Х | х        | Х           | Threshold C      | 00he  |
|            | Threshold C                          | Threshold C Value                       | <u> </u> | Ľ     | <u> </u> | <u> </u> | Ľ |   | <u> </u> | <u> </u>    |                  |       |

| Register           | Bit Description                                          | Bit 7                                                                                                                                                                                                                                                                                                                                                                                         | Bit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Register Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SD Mode Register 0 | SD Standard                                              |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PAL B, D, G, H, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PAL M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PAL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Luma Filter                                           |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LPF NTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LPF PAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notch NTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notch PAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSAF Luma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Luma CIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Luma QCIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Chroma Filter                                         | 0                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Record                                                   | -                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0 10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SD Mode Parietar 1 |                                                          | _                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SD Mode Register I | SD UV SSAF                                               |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | SD DAC Output 1*                                         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L, C; DAC D, E, F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YUV; DAC D, E, F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | SD DAC Output 2                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Swap DAC A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Die D Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Pedestal                                              |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Square Pixel                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD VCR FF/RW Sync                                        |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Pixel Data Valid                                      |                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Active Video Edge                                     | 0                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | -                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | SD Mode Register 0 SD Mode Register 1 SD Mode Register 1 | Reserved         SD Mode Register 0       SD Standard         SD Luma Filter       SD Luma Filter         SD Chroma Filter       SD Chroma Filter         SD Mode Register 1       SD Chroma Filter         SD Mode Register 1       SD UV SSAF         SD DAC Output 1*       SD DAC Output 1*         SD Pedestal       SD Square Pixel         SD VCR FF/RW Sync       SD Pixel Data Valid | Reserved         Image: Control of | Reserved         Image: Construct of the second | Reserved         Image: mail of the second of the seco | ReservedIIIISD Mode Register 0SD StandardIIIIIIIIIIIIIIIIIIIIIISD Luma FilterIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <td< td=""><td>Reserved         I         I         I         I           SD Mode Register 0         SD Standard         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I</td><td>Reserved         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I&lt;</td><td>Reserved     I     I     I     I     I     I     I       SD Mode Register 0     SD Standard     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I</td><td>Reserved         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I&lt;</td><td>Reserved         Image: served         Image: served</td></td<> | Reserved         I         I         I         I           SD Mode Register 0         SD Standard         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I | Reserved         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I< | Reserved     I     I     I     I     I     I     I       SD Mode Register 0     SD Standard     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I | Reserved         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I< | Reserved         Image: served         Image: served |

#### Table VII. SD Mode Registers

| Subaddress             |                    | Bit Description        | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    |          | Register Setting                      | Reset    |
|------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------|----------|
| 43h SD Mode Register 2 | SD Mode Register 2 | SD Pedestal YUV Output |          |          |          |          |          |          |          | 0        | No Pedestal on YUV                    | 00h      |
|                        |                    |                        |          |          |          |          |          |          |          | 1        | 7.5 IRE Pedestal on<br>YUV            | 1        |
|                        |                    | SD Output Levels Y     |          |          |          |          |          |          | 0        |          | Y = 700  mV/300  mV                   |          |
|                        |                    |                        |          | 1        |          |          |          |          | 1        |          | Y = 714 mV/286 mV                     | 1        |
|                        |                    | SD Output Levels UV    |          |          |          |          | 0        | 0        |          |          | 700 mV p-p [PAL];                     |          |
|                        |                    |                        |          |          |          |          | 0        | 1        |          |          | 1000 mV p-p [NTSC]                    |          |
|                        |                    |                        |          |          |          |          | 0        | 1        |          |          | 700 mV p-p<br>1000 mV p-p             |          |
|                        |                    |                        |          | <u> </u> |          |          | 1        | 1        |          |          |                                       |          |
|                        |                    | SD VBI Open            |          |          |          | 0        | 1        | 1        |          |          | 648 mV p-p<br>Disabled                |          |
|                        |                    | SD VBI Open            |          |          |          |          |          |          |          |          |                                       |          |
|                        |                    |                        |          |          |          | 1        |          |          |          |          | Enabled                               |          |
|                        |                    | SD CC Field Control    |          | 0        | 0        |          |          |          |          |          | CC Disabled                           |          |
|                        |                    |                        |          | 0        | 1        |          |          |          |          |          | CC on Odd Field Only                  |          |
|                        |                    |                        |          | 1        | 0        |          |          |          |          |          | CC on Even Field<br>Only              |          |
|                        |                    |                        |          | 1        | 1        |          |          |          |          |          | CC on Both Fields                     |          |
|                        |                    |                        | 1        |          |          |          |          |          |          |          | Reserved                              |          |
| 44h SD                 | SD Mode Register 3 | SD VSYNC-3H            |          |          |          |          |          |          |          | 0        | Disabled                              | 00h      |
|                        |                    |                        |          |          |          |          |          |          |          | 1        | VSYNC = 2.5 lines<br>[PAL]; VSYNC = 3 |          |
|                        |                    | SD RTC/TR/SCR          |          | <b> </b> |          |          |          | 0        | 0        |          | lines [NTSC]<br>Genlock Disabled      |          |
|                        |                    | SD RIC/INSCR           |          | <u> </u> |          |          |          |          | 1        |          | Subcarrier Reset                      |          |
|                        |                    |                        |          |          |          |          |          | 0        |          |          |                                       |          |
|                        |                    |                        |          |          |          |          |          | 1        | 0        |          | Timing Reset                          |          |
|                        |                    |                        |          |          |          |          |          | 1        | 1        |          | RTC Enabled                           |          |
|                        |                    | SD Active Video Length |          |          |          |          | 0        |          |          |          | 720 Pixels                            |          |
|                        |                    |                        |          |          |          |          | 1        |          |          |          | 710 (NTSC);<br>702(PAL)               |          |
|                        |                    | SD Chroma              |          |          |          | 0        |          |          |          |          | Chroma Enabled                        |          |
|                        |                    |                        |          |          |          | 1        |          |          |          |          | Chroma Disabled                       | 1        |
|                        |                    | SD Burst               |          |          | 0        |          |          |          |          |          | Enabled                               |          |
|                        |                    |                        |          |          | 1        |          |          |          |          |          | Disabled                              |          |
|                        |                    | SD Color Bars          |          | 0        |          |          |          |          |          |          | Disabled                              |          |
|                        |                    |                        |          | 1        |          |          |          |          |          |          | Enabled                               |          |
|                        |                    | Reserved               | 0        |          |          |          |          |          |          |          | Zero must be written                  |          |
| 15h                    | Reserved           |                        |          |          |          |          |          |          |          |          | to this bit.                          | 00h      |
| 46h                    | Reserved           |                        | -        | -        |          |          |          |          |          |          |                                       | 00h      |
| 17h                    | SD Mode Register 4 | SD UV Scale            |          |          |          |          |          |          |          | 0        | Disabled                              | 00h      |
|                        | _                  |                        |          |          |          |          |          |          |          | 1        | Enabled                               | 4        |
|                        |                    | SD Y Scale             |          |          |          |          |          |          | 0        |          | Disabled                              |          |
|                        |                    |                        |          |          |          |          |          |          | 1        |          | Enabled                               |          |
|                        |                    | SD Hue Adjust          |          | <u> </u> |          |          |          | 0        | -        |          | Disabled                              | <u> </u> |
|                        |                    | 1100 110,000           | <u> </u> | <u> </u> | <u> </u> | <u> </u> |          | 1        | <u> </u> |          | Enabled                               |          |
|                        |                    | SD Brightness          | ┨        | _        | <u> </u> | L        | 0        | -        | L        |          | Disabled                              | <u> </u> |
|                        |                    | Digituess              |          | <u> </u> |          | <u> </u> | 1        |          | <u> </u> | <u> </u> |                                       | 4        |
|                        |                    |                        | <u> </u> | <u> </u> |          | 0        | 1        |          |          |          | Enabled                               |          |
|                        |                    | SD Luma SSAF Gain      |          | L        |          | 0        |          |          |          |          | Disabled                              |          |
|                        |                    |                        |          |          |          | 1        |          |          |          |          | Enabled                               |          |
|                        |                    | Reserved               |          |          | 0        |          |          |          |          |          | Zero must be written to this bit.     |          |
|                        |                    | Reserved               |          | 0        |          |          |          |          |          |          | Zero must be written to this bit.     |          |
|                        |                    | Reserved               | 0        | 1        |          | <u> </u> | <u> </u> | <u> </u> |          | 1        | Zero must be written                  | 1        |

| Table VII. SD Moue Registers (continueu) | Table VII. | <b>SD</b> Mode Registers | (continued) |
|------------------------------------------|------------|--------------------------|-------------|
|------------------------------------------|------------|--------------------------|-------------|

| Subaddress | -                  | Bit Description                      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    |               | Register Setting                     | Reset |              |   |
|------------|--------------------|--------------------------------------|-------|-------|-------|-------|-------|-------|----------|---------------|--------------------------------------|-------|--------------|---|
| 48h        | SD Mode Register 5 | Reserved                             |       |       |       |       |       |       |          | 0             | Zero must be written<br>to this bit. |       |              |   |
|            |                    | Reserved                             |       |       |       |       |       |       | 0        |               | Zero must be written                 | 00h   |              |   |
|            |                    | SD Double Buffering                  |       |       |       |       |       | 0     | <u> </u> | <u> </u>      | to this bit.<br>Disabled             |       |              |   |
|            |                    | SD Double Building                   |       |       |       |       |       |       |          |               |                                      |       |              |   |
|            |                    |                                      |       |       |       |       |       | 1     |          |               | Enabled                              |       |              |   |
|            |                    | SD Input Format                      |       |       |       | 0     | 0     |       |          |               | 8-Bit Input                          |       |              |   |
|            |                    |                                      |       |       |       | 0     | 1     |       |          |               | 16-Bit Input                         | 1     |              |   |
|            |                    |                                      |       |       |       |       |       | 1     | 0        |               |                                      |       | 10-Bit Input | 1 |
|            |                    |                                      |       |       |       | 1     | 1     |       |          |               | 20-Bit Input                         | 1     |              |   |
|            |                    | SD Digital Noise<br>Reduction        |       |       | 0     |       |       |       |          |               | Disabled                             |       |              |   |
|            |                    | SD Gamma Control                     |       |       | 1     |       |       |       |          |               | Enabled                              | 1     |              |   |
|            |                    |                                      |       | 0     |       |       |       |       |          |               | Disabled                             |       |              |   |
|            |                    |                                      |       | 1     |       |       |       |       |          |               | Enabled                              |       |              |   |
|            | SD Gamma Curve 0   |                                      |       |       |       |       |       |       |          | Gamma Curve A |                                      |       |              |   |
|            |                    | 1                                    |       |       |       |       |       |       |          | Gamma Curve B |                                      |       |              |   |
| 49h        | SD Mode Register 6 | SD Undershoot Limiter                |       |       |       |       |       |       | 0        | 0             | Disabled                             | 00h   |              |   |
|            |                    |                                      |       |       |       |       |       |       | 0        | 1             | -11 IRE                              |       |              |   |
|            |                    |                                      |       |       |       |       |       |       | 1        | 0             | -6 IRE                               |       |              |   |
|            |                    |                                      |       |       |       |       |       |       | 1        | 1             | –1.5 IRE                             | 1     |              |   |
|            |                    | SD Black Burst Output on<br>DAC Y    |       |       |       |       |       | 0     |          |               | Disabled                             |       |              |   |
|            |                    | Dife 1                               |       |       |       |       |       | 1     |          |               | Enabled                              | 1     |              |   |
|            |                    | SD Black Burst Output on<br>DAC Luma |       |       |       |       | 0     |       |          |               | Disabled                             |       |              |   |
|            |                    | Diffe Luina                          |       |       |       |       | 1     |       |          |               | Enabled                              |       |              |   |
|            |                    | SD Chroma Delay                      |       |       | 0     | 0     |       |       |          |               | Disabled                             |       |              |   |
|            |                    |                                      |       |       | 0     | 1     |       |       |          | 1             | 4 Clock Cycles                       | 1     |              |   |
|            |                    |                                      |       |       | 1     | 0     |       |       |          |               | 8 Clock Cycles                       | 1     |              |   |
|            |                    |                                      |       |       | 1     | 1     |       |       |          |               | Reserved                             | 1     |              |   |
|            |                    | Reserved                             |       | 0     |       |       |       |       |          |               | Zero must be written to this bit.    |       |              |   |
|            | Reserved           | Reserved                             | 0     |       |       |       |       |       |          |               | Zero must be written<br>to this bit. |       |              |   |

## Table VII. SD Mode Registers (continued)

\*For more detail, see Input and Output Configuration section.

| Subaddress | Register                      | Bit Description                                | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0    | Register Setting                                                                | Reset |
|------------|-------------------------------|------------------------------------------------|-------|-------|-------|-------|-------|-------|----------|----------|---------------------------------------------------------------------------------|-------|
| 4Ah        | SD Timing Register 0          | SD Slave/Master Mode                           |       |       |       |       |       |       |          | 0        | Slave Mode                                                                      | 08h   |
|            |                               |                                                |       |       |       |       |       |       |          | 1        | Master Mode                                                                     | 1     |
|            |                               | SD Timing Mode                                 |       |       |       |       |       | 0     | 0        |          | Mode 0                                                                          |       |
|            |                               |                                                |       |       |       |       |       | 0     | 1        |          | Mode 1                                                                          |       |
|            |                               |                                                |       |       |       |       |       | 1     | 0        |          | Mode 2                                                                          |       |
|            |                               |                                                |       |       |       |       |       | 1     | 1        |          | Mode 3                                                                          |       |
|            |                               | SD BLANK Input                                 |       |       |       |       | 0     |       |          |          | Enabled                                                                         |       |
|            |                               | -                                              |       |       |       |       | 1     |       |          |          | Disabled                                                                        |       |
|            |                               | SD Luma Delay                                  |       |       | 0     | 0     |       |       | <u> </u> |          | No Delay                                                                        |       |
|            |                               | ob Buina Bonay                                 |       |       | 0     | 1     |       |       |          |          | 2 Clock Cycles                                                                  | 4     |
|            |                               |                                                |       |       |       | 0     |       |       |          |          |                                                                                 |       |
|            |                               |                                                |       |       | 1     | ·     |       |       |          |          | 4 Clock Cycles                                                                  |       |
|            |                               |                                                |       |       | 1     | 1     |       |       |          |          | 6 Clock Cycles                                                                  |       |
|            |                               | SD Min. Luma Value                             |       | 0     |       |       |       |       |          |          | -40 IRE                                                                         |       |
|            |                               |                                                |       | 1     |       |       |       |       |          |          | –7.5 IRE                                                                        |       |
|            |                               | SD Timing Reset                                | х     | 0     | 0     | 0     | 0     | 0     | 0        | 0        | A low-high-low<br>transistion will reset the<br>internal SD timing<br>counters. |       |
| Bh         | SD Timing Register 1          | SD HSYNC Width                                 |       |       |       |       |       |       | 0        | 0        | Ta = 1 Clock Cycle                                                              | 00h   |
|            |                               |                                                |       |       |       |       |       |       | 0        | 1        | Ta = 4 Clock Cycles                                                             | 1     |
|            |                               |                                                |       |       |       |       |       |       | 1        | 0        | Ta = 16 Clock Cycles                                                            |       |
|            |                               |                                                |       |       |       |       |       |       | 1        | 1        | Ta = 128 Clock Cycles                                                           |       |
|            |                               | SD HSYNC to VSYNC                              |       |       |       |       | 0     | 0     |          | <u> </u> | Tb = 0 Clock Cycle                                                              |       |
|            |                               | Delay                                          |       |       |       |       | 0     | 1     |          |          | Tb = 4 Clock Cycles                                                             |       |
|            |                               |                                                |       |       |       |       | ·     |       |          |          |                                                                                 |       |
|            |                               |                                                |       |       |       |       | 1     | 0     |          |          | Tb = 8 Clock Cycles                                                             |       |
|            |                               |                                                |       |       |       |       | 1     | 1     |          |          | Tb = 18 Clock Cycles                                                            |       |
|            |                               | SD HSYNC to VSYNC<br>Rising Edge Delay (Mode 1 |       |       | х     | 0     |       |       |          |          | Tc = Tb                                                                         |       |
|            |                               | Only); VSYNC Width<br>(Mode 2 Only)            |       |       | х     | 1     |       |       |          |          | Tc = Tb + 32 μs                                                                 |       |
|            |                               |                                                |       |       | 0     | 0     |       |       |          |          | 1 Clock Cycle                                                                   |       |
|            |                               |                                                |       |       | 0     | 1     |       |       |          |          | 4 Clock Cycles                                                                  |       |
|            |                               |                                                |       |       | 1     | 0     |       |       |          |          | 16 Clock Cycles                                                                 | 1     |
|            |                               |                                                |       |       | 1     | 1     |       |       |          |          | 128 Clock Cycles                                                                | 1     |
|            |                               | HSYNC to Pixel Data                            | 0     | 0     |       |       |       |       |          |          | 0 Clock Cycle                                                                   |       |
|            |                               | Adjust                                         | 0     | 1     |       |       |       |       |          |          | 1 Clock Cycle                                                                   |       |
|            |                               |                                                | 1     | 0     |       |       |       |       |          |          | 2 Clock Cycles                                                                  |       |
|            |                               |                                                | 1     | 1     |       |       |       |       |          |          | 3 Clock Cycles                                                                  |       |
| łCh        | SD F <sub>SC</sub> Register 0 |                                                | х     | х     | X     | X     | X     | X     | X        | Х        | Subcarrier Frequency                                                            | 16h   |
| 4Dh        | SD F <sub>SC</sub> Register 1 |                                                | х     | х     | x     | x     | X     | X     | x        | x        | Bits 7–0<br>Subcarrier Frequency                                                | 7Ch   |
|            |                               |                                                |       |       |       |       |       |       |          |          | Bits 15–8                                                                       |       |
| 1Eh        | SD F <sub>SC</sub> Register 2 |                                                | х     | х     | x     | х     | х     | х     | х        | х        | Subcarrier Frequency<br>Bits 23–16                                              | F0h   |
| 4Fh        | SD F <sub>SC</sub> Register 3 |                                                | х     | х     | х     | х     | Х     | Х     | Х        | Х        | Subcarrier Frequency<br>Bits 31–24                                              | 21h   |
| 50h        | SD F <sub>SC</sub> Phase      |                                                | Х     | х     | х     | х     | х     | Х     | х        | х        | Subcarrier Phase Bits<br>9–2                                                    | 00h   |
| 51h        | SD Closed Captioning          | Extended Data on Even<br>Fields                | х     | х     | Х     | х     | х     | х     | х        | х        | Extended Data Bits 7–0                                                          | 00h   |
| 52h        | SD Closed Captioning          | Extended Data on Even                          | х     | х     | х     | х     | х     | x     | х        | х        | Extended Data Bits                                                              | 00h   |
| 53h        | SD Closed Captioning          | Fields<br>Data on Odd Fields                   | х     | х     | х     | х     | х     | х     | х        | х        | 15–8<br>Data Bits 7–0                                                           | 00h   |
| 54h        | SD Closed Captioning          | Data on Odd Fields                             | Х     | x     | x     | x     | х     | Х     | X        | х        | Data Bits 15–8                                                                  | 00h   |
|            |                               |                                                |       |       |       |       |       |       |          |          |                                                                                 |       |
| 55h        | SD Pedestal Register 0        | Pedestal on Odd Fields                         | 17    | 16    | 15    | 14    | 13    | 12    | 11       | 10       | Setting any of these bits<br>to 1 will disable                                  |       |
| 56h        | SD Pedestal Register 1        | Pedestal on Odd Fields                         | 25    | 24    | 23    | 22    | 21    | 20    | 19       | 18       | pedestal on the line<br>number indicated by                                     | 00h   |
| 57h        | SD Pedestal Register 2        | Pedestal on Even Fields                        | 17    | 16    | 15    | 14    | 13    | 12    | 11       | 10       | the bit settings.                                                               | 00h   |
| 58h        | SD Pedestal Register 3        | Pedestal on Even Fields                        | 25    | 24    | 23    | 22    | 21    | 20    | 19       | 18       | 1                                                                               | 00h   |

# Table VIII. SD Registers

| Subaddress | Register            | Bit Description                  | Bit 7    | Bit 6    | Bit 5 | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Register Setting                  | Reset |
|------------|---------------------|----------------------------------|----------|----------|-------|----------|----------|----------|----------|----------|-----------------------------------|-------|
| 59h        | SD CGMS/WSS 0       | SD CGMS Data                     |          | 1        |       |          | 19       | 18       | 17       | 16       | CGMS Data Bits<br>C19–C16         | 00h   |
|            |                     | SD CGMS CRC                      |          |          |       | 0        |          |          |          |          | Disabled                          |       |
|            |                     |                                  |          |          |       | 1        |          |          |          |          | Enabled                           | 1     |
|            |                     | SD CGMS on Odd Fields            |          |          | 0     |          |          |          |          |          | Disabled                          |       |
|            |                     |                                  |          |          | 1     |          |          |          |          |          | Enabled                           | -     |
|            |                     | SD CGMS on Even Fields           |          | 0        |       |          |          |          |          |          | Disabled                          |       |
|            |                     |                                  |          | 1        |       |          |          |          |          |          | Enabled                           | -     |
|            |                     | SD WSS                           | 0        |          |       |          |          |          |          |          | Disabled                          |       |
|            |                     |                                  | 1        |          |       |          |          |          |          |          | Enabled                           | -     |
| 5Ah        | SD CGMS/WSS 1       | SD CGMS/WSS Data                 |          |          | 13    | 12       | 11       | 10       | 9        | 8        | CGMS Data Bits                    | 00h   |
|            |                     |                                  |          |          |       |          |          |          |          |          | C13–C8 or WSS Data<br>Bits C13–C8 |       |
|            |                     |                                  | 15       | 14       |       |          |          |          |          |          | CGMS Data Bits<br>C15–C14         | 1     |
| 5Bh        | SD CGMS/WSS 2       | SD CGMS/WSS Data                 | 7        | 6        | 5     | 4        | 3        | 2        | 1        | 0        | CGMS/WSS Data Bits                | 00h   |
| 5Ch        | SD LSB Register     | SD LSB for Y Scale Value         |          |          |       |          |          |          | х        | х        | C7–C0<br>SD Y Scale Bits 1–0      |       |
|            |                     | SD LSB for U Scale Value         |          |          |       |          | х        | х        |          |          | SD U Scale Bits 1–0               | 1     |
|            |                     | SD LSB for V Scale Value         |          |          | Х     | х        |          |          | -        |          | SD V Scale Bits 1–0               | 1     |
|            |                     | SD LSB for F <sub>SC</sub> Phase | x        | x        |       | -        |          |          | <u> </u> |          | Subcarrier Phase Bits             | -     |
| 5Dh        | SD Y Scale Register | SD Y Scale Value                 | x        | x        | х     | X        | х        | х        | x        | x        | 1–0<br>SD Y Scale Bits 7–2        | 00h   |
| 5Eh        | SD V Scale Register | SD V Scale Value                 | x        | x        | х     | x        | х        | х        | x        | x        | SD V Scale Bits 7–2               | 00h   |
| 5Fh        | SD U Scale Register | SD U Scale Value                 | x        | x        | х     | X        | х        | х        | X        | х        | SD U Scale Bits 7–2               | 00h   |
| 60h        | SD Hue Register     | SD Hue Adjust Value              | X        | x        | X     | x        | x        | x        | x        | x        | SD Hue Adjust Bits                | 00h   |
| 61h        | SD Brightness/WSS   |                                  | <u>^</u> | X        | X     | x        | x        | X        | x        | x        | 7–0<br>SD Brightness Bits 6–0     | 00h   |
| 0111       | SD Brightness/ w SS | SD Brightness Value              |          | ^        | ^     | ^        | ^        | ^        | ^        | Â        | -                                 | 0011  |
|            |                     | SD Blank WSS Data*               | 0        |          |       |          |          |          |          |          | Disabled                          |       |
|            |                     |                                  | 1        |          |       |          |          |          |          |          | Enabled                           |       |
| 62h        | SD Luma SSAF        | SD Luma SSAF<br>Gain/Attenuation | 0        | 0        | 0     | 0        | 0        | 0        | 0        | 0        | -4 dB                             | 00h   |
|            |                     |                                  | 0        | 0        | 0     | 0        | 0        | 1        | 1        | 0        | 0 dB                              | 1     |
|            |                     |                                  | 0        | 0        | 0     | 0        | 1        | 1        | 0        | 0        | +4 dB                             | 1     |
| 63h        | SD DNR 0            | Coring Gain Border               |          |          |       |          | 0        | 0        | 0        | 0        | No Gain                           | 00h   |
|            |                     |                                  |          |          |       |          | 0        | 0        | 0        | 1        | +1/16 (–1/8 in DNR<br>Mode)       | 1     |
|            |                     |                                  |          |          |       |          | 0        | 0        | 1        | 0        | +2/16 (-2/8 in DNR<br>Mode)       | 1     |
|            |                     |                                  |          |          |       |          | 0        | 0        | 1        | 1        | +3/16 (-3/8 in DNR                | 1     |
|            |                     |                                  |          |          |       |          | 0        | 1        | 0        | 0        | Mode)<br>+4/16 (–4/8 in DNR       | 1     |
|            |                     |                                  |          |          |       |          | 0        | 1        | 0        | 1        | Mode)<br>+5/16 (–5/8 in DNR       | -     |
|            |                     |                                  |          |          |       |          | 0        | 1        | 1        | 0        | Mode)<br>+6/16 (-6/8 in DNR       | -     |
|            |                     |                                  |          | <u> </u> |       | <b> </b> | 0        | 1        | 1        | 1        | Mode)<br>+7/16 (-7/8 in DNR       | 4     |
|            |                     |                                  |          |          |       |          |          |          |          |          | Mode)                             | 4     |
|            |                     |                                  |          |          |       |          | 1        | 0        | 0        | 0        | +8/16 (–1 in DNR<br>Mode)         |       |
|            |                     | Coring Gain Data                 | 0        | 0        | 0     | 0        |          |          |          |          | No Gain                           |       |
|            |                     |                                  | 0        | 0        | 0     | 1        |          |          |          |          | +1/16 (–1/8 in DNR<br>Mode)       |       |
|            |                     |                                  | 0        | 0        | 1     | 0        |          |          |          |          | +2/16 (–2/8 in DNR<br>Mode)       | 1     |
|            |                     |                                  | 0        | 0        | 1     | 1        |          |          |          | 1        | +3/16 (-3/8 in DNR<br>Mode)       | 1     |
|            |                     |                                  | 0        | 1        | 0     | 0        |          |          |          | 1        | +4/16 (-4/8 in DNR                | 1     |
|            |                     |                                  | 0        | 1        | 0     | 1        |          |          |          |          | Mode)<br>+5/16 (-5/8 in DNR       | 1     |
|            |                     |                                  | 0        | 1        | 1     | 0        | <u> </u> | <u> </u> |          |          | Mode)<br>+6/16 (-6/8 in DNR       | -     |
|            |                     |                                  | 0        | 1        | 1     | 1        |          | <u> </u> |          | <u> </u> | Mode)<br>+7/16 (-7/8 in DNR       | 4     |
|            |                     |                                  |          | 0        |       |          | <b> </b> |          |          | <u> </u> | Mode)                             | 1     |
|            |                     |                                  | 1        | ľ        | 0     | 0        |          |          |          |          | +8/16 (–1 in DNR<br>Mode)         |       |

# Table VIII. SD Registers (continued)

| Subaddress | Register             | Bit Description                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register Setting                  | Reset |
|------------|----------------------|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------|-------|
| 64h        | SD DNR 1             | DNR Threshold                   |       |       | 0     | 0     | 0     | 0     | 0     | 0     | 0                                 | 00h   |
|            |                      |                                 |       |       | 0     | 0     | 0     | 0     | 0     | 1     | 1                                 | 1     |
|            |                      |                                 |       |       | 1     | 1     | 1     | 1     | 1     | 0     | 62                                | 1     |
|            |                      |                                 |       |       | 1     | 1     | 1     | 1     | 1     | 1     | 63                                | 1     |
|            |                      | Border Area                     |       | 0     |       |       |       |       |       |       | 2 Pixels                          |       |
|            |                      |                                 |       | 1     |       |       |       |       |       |       | 4 Pixels                          |       |
|            |                      | Block Size Control              | 0     |       |       |       |       |       |       |       | 8 Pixels                          |       |
|            |                      |                                 | 1     |       |       |       |       |       |       |       | 16 Pixels                         |       |
| 65h        | SD DNR 2             | DNR Input Select                |       |       |       |       |       | 0     | 0     | 1     | Filter A                          | 00h   |
|            |                      |                                 |       |       |       |       |       | 0     | 1     | 0     | Filter B                          |       |
|            |                      |                                 |       |       |       |       |       | 0     | 1     | 1     | Filter C                          |       |
|            |                      |                                 |       |       |       |       |       | 1     | 0     | 0     | Filter D                          |       |
|            |                      | DNR Mode                        |       |       |       | 0     |       |       |       |       | DNR Mode                          |       |
|            |                      |                                 |       |       |       | 1     |       |       |       |       | DNR Sharpness Mode                | 1     |
|            |                      | DNR Block Offset                | 0     | 0     | 0     | 0     |       |       |       |       | 0 Pixel Offset                    |       |
|            |                      |                                 | 0     | 0     | 0     | 1     |       |       |       |       | 1 Pixel Offset                    | 1     |
|            |                      |                                 | 1     | 1     | 1     | 0     |       |       |       |       | 14 Pixel Offset                   | 1     |
|            |                      |                                 | 1     | 1     | 1     | 1     |       |       |       |       | 15 Pixel Offset                   | 1     |
| 66h        | SD Gamma A           | SD Gamma Curve A Data           | х     | х     | х     | х     | х     | х     | х     | х     | A0                                | 00h   |
| 67h        | SD Gamma A           | Points<br>SD Gamma Curve A Data | x     | х     | х     | х     | х     | х     | х     | х     | A1                                | 00h   |
| 68h        | SD Gamma A           | Points<br>SD Gamma Curve A Data | x     | x     | х     | x     | х     | х     | х     | х     | A2                                | 00h   |
| 69h        | SD Gamma A           | Points<br>SD Gamma Curve A Data | x     | x     | х     | x     | х     | х     | х     | х     | A3                                | 00h   |
| 6Ah        | SD Gamma A           | Points<br>SD Gamma Curve A Data | x     | x     | х     | x     | х     | х     | X     | x     | A4                                | 00h   |
| 6Bh        | SD Gamma A           | Points<br>SD Gamma Curve A Data | X     | x     | X     | X     | X     | X     |       | X     | A5                                | 00h   |
| 6Ch        | SD Gamma A           | Points<br>SD Gamma Curve A Data | X     | X     | x     | X     | X     | X     | X     | x     |                                   | 00h   |
|            |                      | Points                          |       |       |       |       |       |       |       |       | A6                                |       |
| 6Dh        | SD Gamma A           | SD Gamma Curve A Data<br>Points | Х     | х     | х     | х     | Х     | х     | Х     | х     | A7                                | 00h   |
| 6Eh        | SD Gamma A           | SD Gamma Curve A Data<br>Points | х     | х     | х     | х     | х     | х     | х     | х     | A8                                | 00h   |
| 6Fh        | SD Gamma A           | SD Gamma Curve A Data<br>Points | x     | x     | х     | x     | х     | х     | х     | х     | A9                                | 00h   |
| 70h        | SD Gamma B           | SD Gamma Curve B Data<br>Points | x     | x     | х     | x     | х     | х     | х     | х     | B0                                | 00h   |
| 71h        | SD Gamma B           | SD Gamma Curve B Data<br>Points | х     | х     | х     | х     | х     | х     | х     | х     | B1                                | 00h   |
| 72h        | SD Gamma B           | SD Gamma Curve B Data           | х     | х     | х     | х     | х     | х     | х     | х     | B2                                | 00h   |
| 73h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | x     | х     | х     | х     | х     | х     | х     | х     | B3                                | 00h   |
| 74h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | x     | x     | х     | x     | х     | x     | х     | х     | B4                                | 00h   |
| 75h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | x     | x     | х     | x     | х     | х     | х     | x     | B5                                | 00h   |
| 76h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | x     | x     | х     | x     | х     | х     | x     | x     | B6                                | 00h   |
| 77h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | X     | x     | X     | X     | X     | Х     |       |       | B7                                | 00h   |
| 78h        | SD Gamma B           | Points<br>SD Gamma Curve B Data | X     | X     | X     | X     | X     | X     |       | x     | B8                                | 00h   |
|            |                      | Points                          |       |       |       |       |       |       |       |       |                                   |       |
| 79h        | SD Gamma B           | SD Gamma Curve B Data<br>Points | Х     | Х     | х     | Х     | х     | х     | Х     |       | B9                                | 00h   |
| 7Ah        | SD Brightness Detect | SD Brightness Value             | Х     | х     | х     | х     | Х     | Х     | Х     | Х     | Read-Only                         |       |
| 7Bh        | Field Count Register | Field Count                     |       |       |       |       |       | Х     | Х     | х     | Read-Only                         |       |
|            |                      | Reserved                        |       |       |       |       | 0     |       |       |       | Zero must be written to this bit. |       |
|            |                      | Reserved                        |       |       |       | 0     |       |       |       |       | Zero must be written to this bit. |       |
|            |                      | Reserved                        |       |       | 0     |       |       |       |       |       | Zero must be written to this bit. |       |
|            |                      | Reserved Code                   | х     | х     |       |       |       |       |       | 1     | Read-Only                         | 1     |

# Table VIII. SD Registers (continued)

| Subaddress | Register       | Bit Description | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register Setting                                                                                                        | Reset |
|------------|----------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------------------------------------------------------------------------------------------|-------|
| 7Ch        | Reset Register | Timing Reset    |       |       |       |       |       |       |       |       | No reset of Timing<br>Generator in Subcarrier<br>Reset Mode. 0x44h,<br>Bits 1 and 2 must be set<br>to Subcarrier Reset. |       |
|            |                |                 |       |       |       |       |       |       |       |       | Reset Timing<br>Generator in Subcarrier<br>Reset Mode                                                                   | 1     |
|            |                | Reserved        |       |       |       |       |       |       | 0     |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        |       |       |       |       |       | 0     |       |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        |       |       |       |       | 0     |       |       |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        |       |       |       | 0     |       |       |       |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        |       |       | 0     |       |       |       |       |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        |       | 0     |       |       |       |       |       |       | Zero must be written to this bit.                                                                                       |       |
|            |                | Reserved        | 0     |       |       |       |       |       |       |       | Zero must be written to this bit.                                                                                       |       |

## Table VIII. SD Registers (continued)

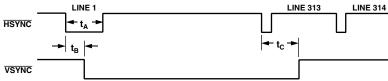



Figure 19. Timing Register 1 in PAL Mode

| Table IX. | Macrovision | <b>Registers</b> * |
|-----------|-------------|--------------------|
|-----------|-------------|--------------------|

| Subaddress | Register    | <b>Bit Description</b> | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register Setting                       | Reset |
|------------|-------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------------------|-------|
| 7Dh        | Reserved    |                        |       |       |       |       |       |       |       |       |                                        |       |
| 7Eh        | Reserved    |                        |       |       |       |       |       |       |       |       |                                        | +     |
| 7Fh        | Reserved    |                        |       |       |       |       |       |       |       |       |                                        | +     |
| 80h        | Macrovision | MV Control Bits        | х     | х     | х     | х     | Х     | х     | х     | х     | MV 3a [7:0]                            | 00h   |
| 81h        | Macrovision | MV Control Bits        | х     | х     | х     | х     | х     | х     | х     | х     | MV 3b [15:8]                           | 00h   |
| 82h        | Macrovision | MV Control Bits        | х     | Х     | х     | Х     | Х     | х     | х     | х     | MV 3c [23:16]                          | 00h   |
| 83h        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 3d [31:24]                          | 00h   |
| 84h        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 3e [39:32]                          | 00h   |
| 85h        | Macrovision | MV Control Bits        | Х     | х     | х     | х     | Х     | х     | х     | х     | MV 3f [47:40]                          | 00h   |
| 86h        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 40 [55:48]                          | 00h   |
| 87h        | Macrovision | MV Control Bits        | х     | х     | х     | х     | х     | х     | х     | х     | MV 41 [63:56]                          | 00h   |
| 88h        | Macrovision | MV Control Bits        | x     | х     | х     | х     | х     | х     | х     | х     | MV 42 [71:64]                          | 00h   |
| 89h        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 43 [79:72]                          | 00h   |
| 8Ah        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 44 [87:80]                          | 00h   |
| 8Bh        | Macrovision | MV Control Bits        | Х     | х     | х     | х     | х     | х     | х     | х     | MV 45 [95:88]                          | 00h   |
| 8Ch        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 46 [103:96]                         | 00h   |
| 8Dh        | Macrovision | MV Control Bits        | х     | Х     | х     | х     | х     | х     | х     | х     | MV 47 [111:104]                        | 00h   |
| 8Eh        | Macrovision | MV Control Bits        | Х     | х     | х     | х     | х     | х     | х     | х     | MV 48 [119:112]                        | 00h   |
| 8Fh        | Macrovision | MV Control Bits        | x     | х     | х     | х     | Х     | х     | х     | х     | MV 49 [127:120]                        | 00h   |
| 90h        | Macrovision | MV Control Bits        | x     | х     | х     | х     | Х     | х     | х     | х     | MV 4A [135:128]                        | 00h   |
| 91h        | Macrovision | MV Control Bit         |       |       |       |       |       |       |       | х     | MV 4B [136]                            | 00h   |
|            |             |                        | 0     | 0     | 0     | 0     | 0     | 0     | 0     |       | Zero must be written<br>to these bits. |       |

\*Macrovision Registers are only available on the ADV7300A.

## INPUT AND OUTPUT CONFIGURATION STANDARD DEFINITION ONLY

The 8- or 10-bit multiplexed input data is input on Pins S9–S0, with S0 being the LSB in 10-Bit Input Mode. For 8-bit Input Mode, the data is input on Pins S9–S2. ITU-R.BT601/ITU-R.BT656 input standards are supported. In 16-Bit Input Mode, the Y pixel data is input on Pins S9–S2 and CrCb data on Pins Y9–Y2. In 20-Bit Input Mode, the Y pixel data is input on S9–S0 and CrCb pixel data on Pins Y9–Y0. The 27 MHz clock input must be input on Pin CLKIN\_A. Input sync signals are optional and are input on the S\_VSYNC, S\_HSYNC, and S\_BLANK pins.

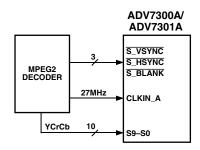



Figure 20. Standard Definition Only Input Mode

## PROGRESSIVE SCAN ONLY OR HDTV ONLY

YCrCb Progressive Scan, HDTV, or any other HD YCrCb data can be input in 4:2:2 or 4:4:4 format. In 4:2:2 Input Mode, the Y data is input on Pins Y9–Y0 and the CrCb data on Pins C9– C0. In 4:4:4 Input Mode, Y data is input on Pins Y9–Y0, Cb data on Pins C9–C0, and Cr data on Pins S9–S0. If the YCrCb data does not conform to SMPTE293M (525 p), ITU-R.BT1358M (625 p), SMPTE274M (1080 i), SMPTE296M (720 p), or BTA-T1004, the Async Timing Mode must be used. RGB data can only be input in 4:4:4 format in PS Input Mode only, or HDTV Input Mode only, when HD RGB input is enabled. G data is input on Pins Y9–Y0, R data on S9–S0, and B data on Pins C9–C0. The clock signal must be input on Pin CLKIN\_A. Synchronization signals are optional and are input on Pins P\_VSYNC, P\_HSYNC, and P\_BLANK.

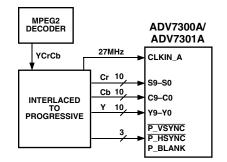



Figure 21. Progressive Scan Only Input Mode

# SIMULTANEOUS STANDARD DEFINITION AND PROGRESSIVE SCAN OR HDTV

YCrCb PS, HDTV, or any other HD data must be input in 4:2:2 format. In 4:2:2 Input Mode, the Y data is input on Pins Y9–Y0 and the CrCb data on C9–C0. If PS 4:2:2 data is interleaved onto a single 10-bit bus, Pins Y9–Y0 are used for the Input Port. The interleaved data is to be input at 27 MHz in setting the Input Mode

Register at Address 01h accordingly. If the YCrCb data does not conform to SMPTE293M (525 p), ITU-R.BT1358M (625 p), SMPTE274M (1080 i), SMPTE296M (720 p), or BTA-T1004, the Async Timing Mode must be used.

The 8- or 10-bit standard definition data must be compliant to ITU-R.BT601/ITU-R.BT656 in 4:2:2 format. Standard definition data is input on Pins S9–S0, with S0 being the LSB. Using 8-bit input format, the data is input on Pins S9–S2. The clock input for SD must be input on CLKIN\_A, and the clock input for HD must be input on CLKIN\_B. Synchronization signals are optional. SD syncs are input on Pins  $\overline{S}_{VSYNC}$ ,  $\overline{S}_{HSYNC}$ , and  $\overline{S}_{BLANK}$ ; the HD syncs on Pins  $\overline{P}_{VSYNC}$ ,  $\overline{P}_{HSYNC}$ , and  $P_{BLANK}$ .

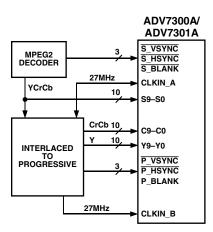



Figure 22. Simultaneous Progressive Scan and SD Input

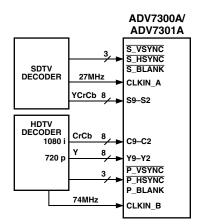
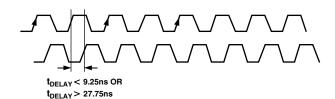
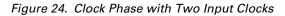





Figure 23. Simultaneous HDTV and SD Input

If in Simultaneous Input Mode the two clock phases differ by less than 9.25 ns or more than 27.75 ns, the Clock Align Bit must be set accordingly. This also applies if the Pixel Align Bit is set. If the application uses the same clock source for both SD and PS, the Clock Align Bit must be set since the phase difference between both inputs is less than 9.25 ns.





## **PROGRESSIVE SCAN AT 27 MHz OR 54 MHz**

YCrCb progressive scan data can be input at 27 MHz or 54 MHz. The input data is interleaved onto a single 10-bit bus and is input on Pins Y9–Y0. For PS Input Only Mode, the input clock must be input on CLKIN\_A. In Simultaneous SD/HD Mode, the input clock is input on CLKIN\_B.

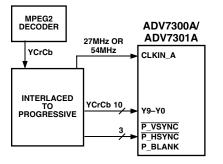



Figure 25.  $1 \times 10$ -Bit PS @ 27 MHz or 54 MHz

When the input sequence of the PS data, i.e., 10-bit interleaved at 27 MHz, starts with Y0 data, as shown in Figure 26, PIXEL ALIGN [Subaddress 01h] must be set to "0." In this case, the timing information embedded in the data stream is recognized and the video data is transferred to the according Y channel and CrCb channel processing blocks.

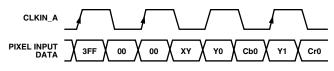
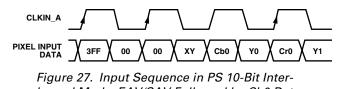




Figure 26. Input Sequence in PS 10-Bit Interleaved Mode, EAV/SAV Followed by Y0 Data

If the input sequence starts with Cb0 data as shown in Figure 27, initially PIXEL ALIGN [Subaddress 01h] must be set to "0." This ensures that the ADV7300A/ADV7301A locks to the input sequence in decoding the embedded timing information correctly. For correct color decoding, the Pixel Align Bit [Subaddress 01h] must then be set to "1" after a delay of one field. The ADV7300A/ADV7301A is now in free run mode; any changes in the timing information are ignored.



*leaved Mode, EAV/SAV Followed by Cb0 Data* PS 10-bit interleaved at 54 MHz must be input with separate timing signals. EAV/SAV codes cannot be used in this mode.

| Input Format                 | Total Bits        |       | Input Video | Input Pins                     | Subaddress | Register Setting    |
|------------------------------|-------------------|-------|-------------|--------------------------------|------------|---------------------|
| ITU-R.BT656                  | 8                 | 4:2:2 | YCrCb       | S9–S2 [MSB = S9]               | 01h, 48h   | 00h, 00h            |
|                              | 10                | 4:2:2 | YCrCb       | S9–S0 [MSB = S9]               | 01h, 48h   | 00h, 10h            |
|                              | 16                | 4:2:2 | Y           | S9–S2 [MSB = S9]               | 01h, 48h   | 00h, 08h            |
|                              |                   |       | CrCb        | Y9-Y2 [MSB = Y9]               |            |                     |
|                              | 20                | 4:2:2 | Y           | S9–S0 [MSB = S9]               | 01h, 48h   | 00h, 18h            |
|                              |                   |       | CrCb        | Y9-Y0 [MSB = Y9]               |            |                     |
| PS Only                      | 8 (27 MHz Clock)  | 4:2:2 | YCrCb       | Y9-Y2 [MSB = Y9]               | 01h, 13h   | 10h, 40h            |
| -                            | 10 (27 MHz Clock) | 4:2:2 | YCrCb       | Y9-Y0 [MSB = Y9]               | 01h, 13h   | 10h, 44h            |
|                              | 8 (54 MHz Clock)  | 4:2:2 | YCrCb       | Y9-Y2 [MSB = Y9]               | 01h, 13h   | 70h, 40h            |
|                              | 10 (54 MHz Clock) |       | YCrCb       | $Y_{9}-Y_{0}$ [MSB = Y9]       | 01h, 13h   | 10h, 44h            |
|                              | 16                |       | Y           | $Y_{9}-Y_{2}$ [MSB = Y9]       | 01h, 13h   | 10h, 40h            |
|                              |                   |       | CrCb        | $C_{9}-C_{2}$ [MSB = C9]       | ,          | ,                   |
|                              | 20                | 4:2:2 | Y           | $Y_{9}-Y_{0}$ [MSB = Y9]       | 01h, 13h   | 10h, 44h            |
|                              | 20                | 1.2.2 | CrCb        | C9-C0 [MSB = C9]               | 0111, 1511 | 1011, 111           |
|                              | 24                | 4:4:4 |             | $Y_{9}-Y_{2} [MSB = Y_{9}]$    | 011 121    | 10h 00h             |
|                              | 24                | 4.4:4 | Y           |                                | 01h, 13h   | 10h, 00h            |
|                              |                   |       | Сь          | C9-C2 [MSB = C9]               |            |                     |
|                              |                   |       | Cr          | S9–S2 [MSB = S9]               |            |                     |
|                              | 30                | 4:4:4 | Y           | Y9–Y0 [MSB = Y9]               | 01h, 13h   | 10h, 04h            |
|                              |                   |       | Cb          | C9-C0 [MSB= C9]                |            |                     |
|                              |                   |       | Cr          | S9-S0 [MSB = S9]               |            |                     |
| IDTV Only                    | 8                 | 4:2:2 | YCrCb       | $Y_{9}-Y_{2}$ [MSB = Y9]       | 01h, 13h   | 20h, 40h            |
|                              | 10                | 4:2:2 | YCrCb       | Y9-Y0 [MSB = Y9]               | 01h, 13h   | 20h, 44h            |
|                              | 16                | 4:2:2 | Y           | Y9–Y2 [MSB = Y9]               | 01h, 13h   | 20h, 40h            |
|                              |                   |       | CrCb        | C9-Y2 [MSB = $C9$ ]            | 1          |                     |
|                              | 20                | 4:2:2 | Y           | Y9–Y0 [MSB = Y9]               | 01h, 13h   | 20h, 44h            |
|                              |                   |       | CrCb        | C9–C0 [MSB = C9]               |            |                     |
|                              | 24                | 4:4:4 | Y           | Y9–Y2 [MSB = Y9]               | 01h, 13h   | 20h, 00h            |
|                              |                   |       | Сь          | C9-Y2 [MSB = C9]               |            |                     |
|                              |                   |       | Cr          | S9–S2 [MSB = S9]               |            |                     |
|                              | 30                | 4:4:4 | Y           | Y9-Y0 [MSB = Y9]               | 01h, 13h   | 20h, 04h            |
|                              |                   |       | Cb          | C9–C0 [MSB = C9]               |            |                     |
|                              |                   |       | Cr          | S9–S0 [MSB = S9]               |            |                     |
| HD RGB                       | 24                | 4:4:4 | G           | Y9-Y2 [MSB = Y9]               | 01h, 13h,  | 10h or 20h,         |
|                              |                   |       | В           | C9–C2 [MSB = C9]               | 15h        | 00h, 02h            |
|                              |                   |       | R           | S9–S2 [MSB = S9]               | 1          |                     |
|                              | 30                | 4:4:4 | G           | Y9-Y0 [MSB = Y9]               | 01h, 13h,  | 10h or 20h,         |
|                              |                   |       | В           | C9-C0 [MSB = C9]               | 15h        | 04h, 02h            |
|                              |                   |       | R           | S9-S0 [MSB = S9]               |            |                     |
| TU-R.BT656                   | 8                 | 4:2.2 | YCrCb       | $S_{9}-S_{2}$ [MSB = $S_{9}$ ] | 01h        | 40h                 |
| nd PS                        |                   |       | YCrCb       | $Y_{9}-Y_{2}$ [MSB = Y9]       | 13h, 48h   | 40h, 00h            |
|                              | 10                |       | YCrCb       | S9-S0 [MSB = S9]               | 01h        | 40h                 |
|                              | 10                |       |             |                                |            |                     |
|                              |                   |       | YCrCb       | Y9-Y0 [MSB = Y9]               | 13h, 48h   | 44h, 10h            |
| TU-R.BT656<br>and PS or HDTV | 8                 |       | YCrCb       | S9–S2 [MSB = S9]               | 01h        | 30h, 50h, or<br>60h |
|                              | 10                |       | YCrCb       | S9–S0 [MSB = S9]               | 01h        | 30h, 50h, or<br>60h |
|                              | 16                | 4:2:2 | Y           | Y9–Y2 [MSB = Y9]               | 13h, 48h   | 40h, 00h            |
|                              |                   |       | CrCb        | C9-C2 [MSB = C9]               |            |                     |
|                              | 20                | 4:2:2 | Y           | Y9-Y0 [MSB = Y9]               | 13h, 48h   | 44h, 10h            |
|                              |                   |       | CrCb        | C9–C0 [MSB = C9]               | 1          |                     |

# Table X. Overview of All Possible Input Configurations

## **OUTPUT CONFIGURATION**

Tables XI-XIII demonstrate what output signals are assigned to the DACs when corresponding control bits are set.

| RGB/YUV O/P<br>Addr 0x02h, Bit 5 | SD DAC O/P 1<br>Addr 0x42h, Bit 2 | SD DAC O/P 2<br>Addr 0x42h, Bit 1 | DAC A | DAC B | DAC C  | DAC D | DAC E | DAC F  |
|----------------------------------|-----------------------------------|-----------------------------------|-------|-------|--------|-------|-------|--------|
| 0                                | 0                                 | 0                                 | CVBS  | Luma  | Chroma | G     | В     | R      |
| 0                                | 0                                 | 1                                 | G     | В     | R      | CVBS  | Luma  | Chroma |
| 0                                | 1                                 | 0                                 | G     | Luma  | Chroma | CVBS  | В     | R      |
| 0                                | 1                                 | 1                                 | CVBS  | В     | R      | G     | Luma  | Chroma |
| 1                                | 0                                 | 0                                 | CVBS  | Luma  | Chroma | Y     | U     | V      |
| 1                                | 0                                 | 1                                 | Y     | U     | V      | CVBS  | Luma  | Chroma |
| 1                                | 1                                 | 0                                 | Y     | Luma  | Chroma | CVBS  | U     | V      |
| 1                                | 1                                 | 1                                 | CVBS  | U     | V      | Y     | Luma  | Chroma |

#### Table XI. Output Configuration in SD Only Mode

Table XII. Output Configuration in HD Only Mode

| HD I/P<br>Format | HD RGB I/P<br>Addr 0x15h, Bit 1 | RGB/YUV O/P<br>Addr 0x02h, Bit 5 | HD Color Swap<br>Addr 0x15h, Bit 3 | DAC A | DAC B | DAC C | DAC D | DAC E | DAC F |
|------------------|---------------------------------|----------------------------------|------------------------------------|-------|-------|-------|-------|-------|-------|
| YCrCb 4:2:2      | N/A                             | 0                                | 0                                  | N/A   | N/A   | N/A   | G     | В     | R     |
| YCrCb 4:2:2      | N/A                             | 0                                | 1                                  | N/A   | N/A   | N/A   | G     | R     | В     |
| YCrCb 4:2:2      | N/A                             | 1                                | 0                                  | N/A   | N/A   | N/A   | Y     | Pb    | Pr    |
| YCrCb 4:2:2      | N/A                             | 1                                | 1                                  | N/A   | N/A   | N/A   | Y     | Pr    | Pb    |
| YCrCb 4:4:4      | N/A                             | 0                                | 0                                  | N/A   | N/A   | N/A   | G     | В     | R     |
| YCrCb 4:4:4      | N/A                             | 0                                | 1                                  | N/A   | N/A   | N/A   | G     | R     | В     |
| YCrCb 4:4:4      | N/A                             | 1                                | 0                                  | N/A   | N/A   | N/A   | Y     | Pb    | Pr    |
| YCrCb 4:4:4      | N/A                             | 1                                | 1                                  | N/A   | N/A   | N/A   | Y     | Pr    | Pb    |
| RGB 4:4:4        | 1                               | 0                                | 0                                  | N/A   | N/A   | N/A   | G     | В     | R     |
| RGB 4:4:4        | 1                               | 0                                | 1                                  | N/A   | N/A   | N/A   | G     | R     | В     |
| RGB 4:4:4        | 1                               | 1                                | 0                                  | N/A   | N/A   | N/A   | G     | В     | R     |
| RGB 4:4:4        | 1                               | 1                                | 1                                  | N/A   | N/A   | N/A   | G     | R     | В     |

## Table XIII. Output Configuration in Simultaneous SD/HD Mode

| Input Formats                              | RGB/YUV O/P<br>Addr 0x02h, Bit 5 | HD Color Swap<br>Addr 0x15h, Bit 3 | DAC A | DAC B | DAC C  | DAC D | DAC E | DAC F |
|--------------------------------------------|----------------------------------|------------------------------------|-------|-------|--------|-------|-------|-------|
| SD YCrCb in 4:2:2 and<br>HD YCrCb in 4:2:2 | 0                                | 0                                  | CVBS  | Luma  | Chroma | G     | В     | R     |
| SD YCrCb in 4:2:2 and<br>HD YCrCb in 4:2:2 | 0                                | 1                                  | CVBS  | Luma  | Chroma | G     | R     | В     |
| SD YCrCb in 4:2:2 and<br>HD YCrCb in 4:2:2 | 1                                | 0                                  | CVBS  | Luma  | Chroma | Y     | Pb    | Pr    |
| SD YCrCb in 4:2:2 and<br>HD YCrCb in 4:2:2 | 1                                | 1                                  | CVBS  | Luma  | Chroma | Y     | Pr    | Pb    |

## TIMING MODES HD Async Timing Mode [Subaddress 10h, Bits 3-2]

For any input data that does not conform to SMPTE293M, SMPTE274M, SMPTE296M, or ITU-R.BT1358 standards, an Asynchronous Timing Mode can be used to interface to the ADV7300A/ADV7301A. Timing control signals for HSYNC, VSYNC, and BLANK have to be programmed by the user. Macrovision is not available in Async Timing Mode.

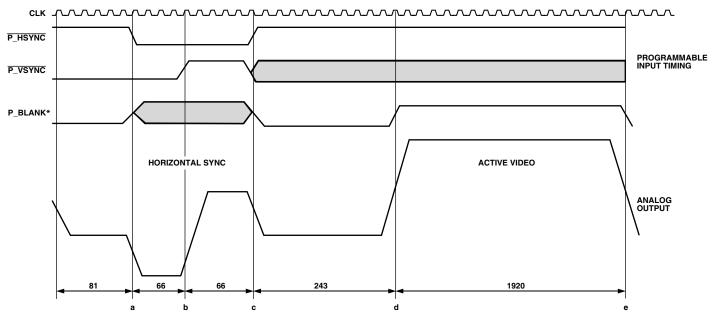
Figure 28 shows an example of how to program the ADV7300A/ ADV7301A to accept a different high definition standard, other than SMPTE293M, SMPTE274M, SMPTE296M, or ITU-R.BT1358 standards.

Table XIV must be followed when programming the control signals in Async Timing Mode.

### HD Timing Reset

A timing reset is achieved in setting the HD Timing Reset Control Bit at Address 14h from "0" to "1." In this state, the horizontal and vertical counters will remain reset. On setting this bit back to "0," the internal counters will again commence counting. The minimum time the pin has to be held high is one clock cycle; otherwise, this reset signal might not be recognized. This timing reset applies to the HD timing counters only.

#### **SD** Timing


#### Realtime Control, Subcarrier Reset, Timing Reset [Subaddress 44h, Bits 2–1]

Together with the RTC\_SCR\_TR pin and SD Mode Register 3 [Address 44h, Bits 1–2], the ADV7300A/ADV7301A can be used in Timing Reset Mode, Subcarrier Phase Reset Mode, or RTC Mode.

a. A timing reset is achieved in a low-to-high transition on the RTC\_SCR\_TR pin (Pin 31). In this state, the horizontal and vertical counters will remain reset. On releasing this pin (set to low), the internal counters will again commence counting.

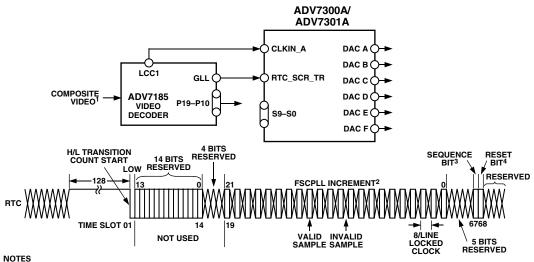
The minimum time the pin has to be held high is one clock cycle; otherwise, this reset signal might not be recognized. This timing reset applies to the SD timing counters only.

- b. Subcarrier phase reset, a low-to-high transition on the RTC\_SCR\_TR pin (Pin 31), will reset the subcarrier phase to zero when the SD RTC/TR/SCR control bits at Address 44h are set to "01." This reset signal will have to be held high for a minimum of one clock cycle. Since the Field Counter is not reset, it is recommended to apply the reset in Field 7 (PAL). The reset of the phase will then occur on the next field by being correctly lined up with the internal counters. The Field Count Register at Address 7Bh can be used to identify the number of the active field.
- c. In RTC Mode, the ADV7300A/ADV7301A can be used to lock to an external video source. The Realtime Control Mode allows the ADV7300A/ADV7301A to automatically alter the subcarrier frequency to compensate for line length variations. When the part is connected to a device that outputs a digital data stream in the RTC format (such as a ADV7185 video decoder; see Figure 29), the part will automatically change to the compensated subcarrier frequency on a line-by-line basis. This digital data stream is 67 bits wide and the subcarrier is contained in Bits 0 to 21. Each bit is two clock cycles long. 00h should be written into all four Subcarrier Frequency Registers when using this mode.



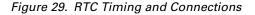
\*SET ADDRESS 10h, BIT 6 TO "1"

Figure 28. Async Timing Mode, Programming Input Control Signals for SMPTE295M Compatibility


Table XIV. Truth Table

| P_HSYNC           | <b>P_VSYNC</b> <sup>1</sup> | P_BLANK <sup>1</sup> |                                                               | Reference <sup>2</sup> |
|-------------------|-----------------------------|----------------------|---------------------------------------------------------------|------------------------|
| $1 \rightarrow 0$ | 0                           | 0 or 1               | 50% point of falling edge of tri-level horizontal sync signal | а                      |
| 0                 | $0 \rightarrow 1$           | 0 or 1               | 25% point of rising edge of tri-level horizontal sync signal  | b                      |
| $0 \rightarrow 1$ | 0 or 1                      | 0                    | 50% point of falling edge of tri-level horizontal sync signal | с                      |
| 1                 | 0 or 1                      | $0 \rightarrow 1$    | 50% start of active video                                     | d                      |
| 1                 | 0 or 1                      | $1 \rightarrow 0$    | 50% end of active video                                       | e                      |

NOTES


For standards that do not require a tri-sync level, P\_BLANK must be tied low at all times.

<sup>1</sup>When Async Timing Mode is enabled, P\_BLANK, Pin 25 becomes an active high input. P\_BLANK is set to active low at Address 10h, Bit 6. <sup>2</sup>See Figure 28.



<sup>1</sup>i.e., VCR OR CABLE <sup>2</sup>F<sub>SC</sub> PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7300A/ADV7301A F<sub>SC</sub> DDS REGISTER IS F<sub>SC</sub> PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS OF THE ADV7300A/ADV7301A <sup>3</sup>PAL: 0 = LINE NORMAL, 1 = LINE INVERTED; NTSC: 0 = NO CHANGE

<sup>4</sup>RESET ADV7300A/ADV7301A DDS



### SD VCR FF/RW Sync

#### [Subaddress 42h, Bit 5]

In DVD record applications where the encoder is used with a decoder, the VCR FF/RW Sync Control Bit can be used for nonstandard input video, i.e., in Fast Forward or Rewind Modes. In Fast Forward Mode, the sync information for the start of a new field in the incoming video usually occurs before the total number of lines/fields are reached; in Rewind Mode, this sync signal occurs usually after the total number of lines/fields are reached. Conventionally, this means that the output video will have an erroneous start of new field signals, one generated by the incoming video and one when the internal lines/field counters reach the end of a field. When VCR FF/RW sync control is

enabled [Subaddress 42h, Bit 5], the lines/field counters are updated according to the incoming VSYNC signal, and the analog output matches the incoming VSYNC signal.

This control is available in all slave timing modes except Slave Mode 0.

#### **RESET SEQUENCE**

A reset is activated with a high-to-low transition on the  $\overline{\text{RESET}}$ pin (Pin 33) according to the timing specifications. The ADV7300A/ADV7301A will revert to the default output configuration. Figure 30 illustrates the  $\overline{\text{RESET}}$  sequence timing.

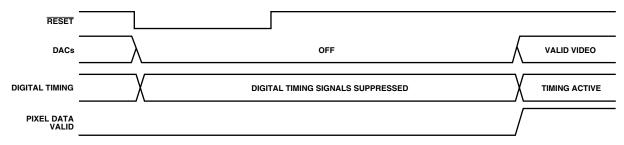



Figure 30. RESET Timing Sequence

#### VERTICAL BLANKING INTERVAL

The ADV7300A/ADV7301A accepts input data that contains VBI data [CGMS, WSS, VITS, etc.] in SD and HD Modes.

For SMPTE293M (525 p) standards, VBI data can be inserted on Lines 13 to 42 of each frame, or Lines 6 to 43 for ITU-R.BT1358 (625 p) standard.

For SD NTSC, this data can be present on Lines 10 to 20, in PAL on Lines 7 to 22.

If VBI is disabled [Address 11h, Bit 4 for HD; Address 43h, Bit 4 for SD], VBI data is not present at the output and the entire VBI is blanked. These control bits are valid in all master and slave modes.

In Slave Mode 0, if VBI is enabled, the Blanking Bit in the EAV/SAV code is overwritten and it is possible to use VBI in this timing mode as well.

In Slave Mode 1 or 2, the BLANK Control Bit must be set to enabled [Address 4Ah, Bit 3] to allow VBI data to pass through the ADV7300A/ADV7301A. Otherwise, the ADV7300A/ ADV7301A automatically blanks the VBI to standard.

If CGMS is enabled and VBI disabled, the CGMS data will nevertheless be available at the output.

#### SD SUBCARRIER FREQUENCY REGISTERS [Subaddress 4Ch-4Fh]

Four 8-bit wide registers are used to set up the subcarrier frequency. The value of these registers is calculated in using the equation:

Subcarrier Frequency Register =

 $\frac{\# of Subcarrier Frequency Cycles in One Video Line}{\# of 27 MHz Clock Cycles in One Video Line} \times 2^{32}$ 

Example: NTSC Mode

Subcarrier Frequency = 
$$\frac{227.5}{1716} \times 2^{32} = 569408542 *$$

Subcarrier Register Value = 21F07C1Eh

- $\begin{array}{l} \text{SD } F_{SC} \text{ Register } 0\text{: }1\text{E} \\ \text{SD } F_{SC} \text{ Register } 1\text{: }7\text{Ch} \\ \text{SD } F_{SC} \text{ Register } 2\text{: }\text{F0h} \end{array}$
- SD F<sub>SC</sub> Register 3: 21h

Refer to the MPU Port Description section for more detail on how to access the subcarrier frequency registers.

#### SUBCARRIER PHASE REGISTER

[Subaddress 50h, 5Ch, Bits 7, 6]

Ten bits are used to set up the subcarrier phase. Each bit represents 0.352°. For normal operation, this register is set to 00h.

#### FILTERS

Table XV shows an overview of the programmable filters available on the ADV7300A/ADV7301A.

| Filter             | Subaddress |
|--------------------|------------|
| SD Luma LPF NTSC   | 40h        |
| SD Luma LPF PAL    | 40h        |
| SD Luma Notch NTSC | 40h        |
| SD Luma Notch PAL  | 40h        |
| SD Luma SSAF       | 40h        |
| SD Luma CIF        | 40h        |
| SD Luma QCIF       | 40h        |
| SD Chroma 0.65 MHz | 40h        |
| SD Chroma 1.0 MHz  | 40h        |
| SD Chroma 1.3 MHz  | 40h        |
| SD Chroma 2.0 MHz  | 40h        |
| SD Chroma 3.0 MHz  | 40h        |
| SD Chroma CIF      | 40h        |
| SD Chroma QCIF     | 40h        |
| SD UV SSAF         | 42h        |
| HD Chroma Input    | 13h        |
| HD Sync Filter     | 13h        |
| HD Chroma SSAF     | 13h        |

#### **HD Sync Filter**

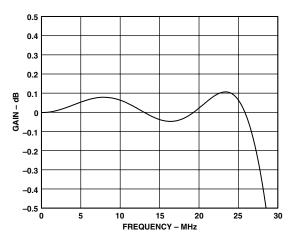



Figure 31. HD Sync Filter Enabled

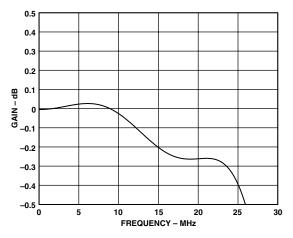



Figure 32. HD Sync Filter Disabled

# HD 4:2:2 to 4:4:4 Interpolation Filters and Chroma SSAF

It is recommended to input data in 4:2:2 Input Mode to make use of the HD chroma SSAFs on the ADV7300A/ADV7301A. This filter has a 0 dB pass-band response and prevents signal components being folded back into the frequency band. In 4:4:4 Input Mode, the video data is already interpolated by the external input device and the chroma SSAFs of the ADV7300A/ ADV7301A are bypassed.

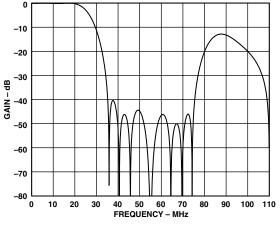



Figure 33. Y – PS 4 $\times$  Oversampling Filter

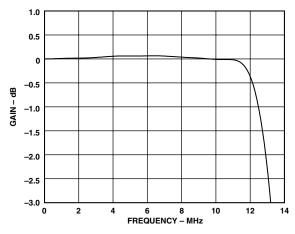



Figure 34. Y – PS 4× Oversampling Filter in the Pass Band

The chroma SSAF is controlled with Address 13h, Bit 5. When the HD input format is 4:2:2, the HD Chroma Input Bit [Address 13h, Bit 6] must be set to "1."

# 2×/4×/8× Oversampling Filters

The oversampling filters are enabled in setting the PLL ON control [Subaddress 00h, Bit 1] to "1." If enabled, PS and ITU-R.BT656 data is output at a rate of 108 MHz, HDTV at a rate of 148 MHz.

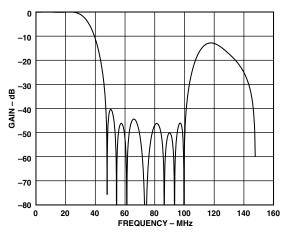



Figure 35. Y – HDTV 2imes Oversampling Filter

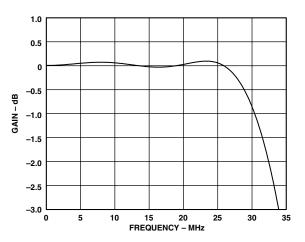



Figure 36. Y – HDTV  $2 \times$  Oversampling Filter in the Pass Band

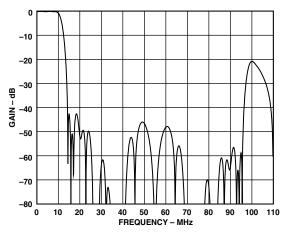



Figure 37. UV – HDTV 2× Oversampling Filter

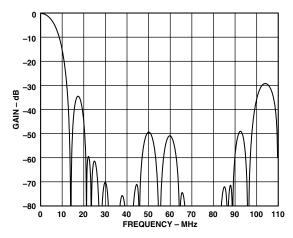



Figure 38. UV – PS  $4 \times$  Oversampling Filter, Linear

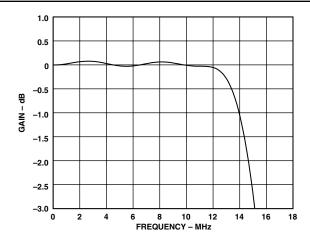



Figure 39. UV – HDTV 2× Oversampling Filter, Pass Band

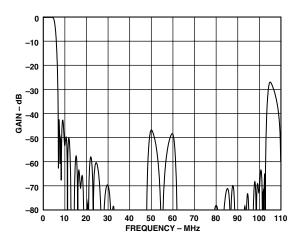



Figure 40. UV – PS 4× Oversampling Filter, SSAF

#### SD Internal Filter Response [Subaddress 42h, Bit 0]

The Y filter supports several different frequency responses including two low-pass responses, two notch responses, an extended (SSAF) response with or without gain boost/attenuation, a CIF response, and a QCIF response. The UV filter supports several different frequency responses, including six low-pass responses, a CIF response, and a QCIF response, as can be seen in Figures 41–59.

If SD SSAF gain is enabled, there is the option of 12 responses in the range from -4 dB to +4 dB. The desired response can be chosen by the user by programming the correct value via the  $I^2C$ . The variation of frequency responses can be seen in Figures 41–59.

Inaddition to the chroma filters listed above, the ADV7300A/ ADV7301A contains an SSAF filter specifically designed for and applicable to the color difference component outputs U and V. This filter has a cutoff frequency of approximately 2.7 MHz and -40 dB at 3.8 MHz, as shown in Figure 41. This filter can be controlled via Address 42h, Bit 0. If this filter is disabled, the selectable chroma filters shown in Table XVI can be used for the CVBS or chroma signal.

Table XVI. Internal Filter Specifications

| Filter          | Pass-Band<br>Ripple <sup>1</sup> (dB) | 3 dB<br>Bandwidth <sup>2</sup> (MHz) |
|-----------------|---------------------------------------|--------------------------------------|
| Luma LPF NTSC   | 0.16                                  | 4.24                                 |
| Luma LPF PAL    | 0.1                                   | 4.81                                 |
| Luma Notch NTSC | 0.09                                  | 2.3/4.9/6.6                          |
| Luma Notch PAL  | 0.1                                   | 3.1/5.6/6.4                          |
| Luma SSAF       | 0.04                                  | 6.45                                 |
| Luma CIF        | 0.127                                 | 3.02                                 |
| Luma QCIF       | Monotonic                             | 1.5                                  |
| Chroma 0.65 MHz | Monotonic                             | 0.65                                 |
| Chroma 1.0 MHz  | Monotonic                             | 1                                    |
| Chroma 1.3 MHz  | 0.09                                  | 1.395                                |
| Chroma 2.0 MHz  | 0.048                                 | 2.2                                  |
| Chroma 3.0 MHz  | Monotonic                             | 3.2                                  |
| Chroma CIF      | Monotonic                             | 0.65                                 |
| Chroma QCIF     | Monotonic                             | 0.5                                  |

NOTES

<sup>1</sup>Pass-band ripple is the maximum fluctuation from the 0 dB response in the pass band, measured in dB. The pass band is defined to have 0 Hz to fc (Hz) frequency limits for a low-pass filter, 0 Hz to f1 (Hz) and f2 (Hz) to infinity for a notch filter, where fc, f1, f2 are the -3 dB points.

<sup>2</sup>+3 dB bandwidth refers to the –3 dB cutoff frequency.

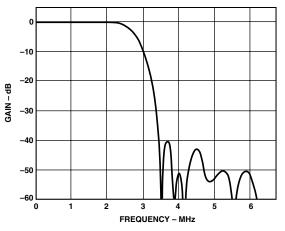



Figure 41. UV SSAF Filter

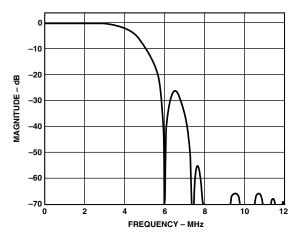



Figure 42. Luma NTSC Low-Pass Filter

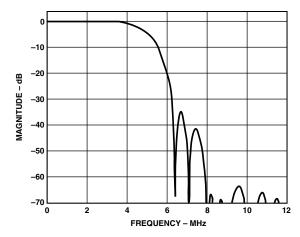



Figure 43. Luma PAL Low-Pass Filter

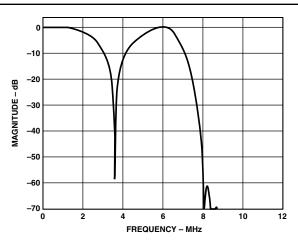



Figure 44. Luma NTSC Notch Filter

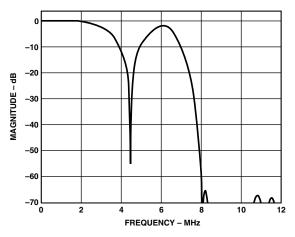



Figure 45. Luma PAL Notch Filter

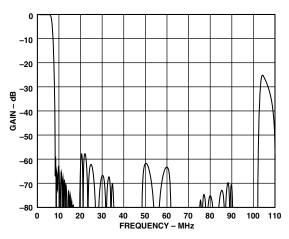



Figure 46. Luma SSAF Filter up to 108 MHz

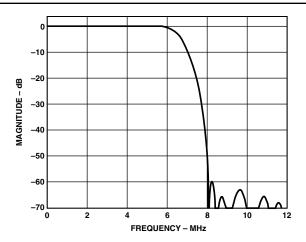



Figure 47. Luma SSAF Filter up to 12 MHz

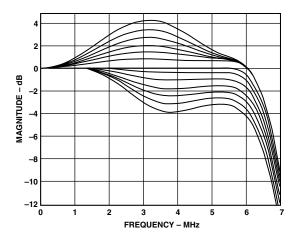



Figure 48. Luma SSAF Filter, Programmable Responses

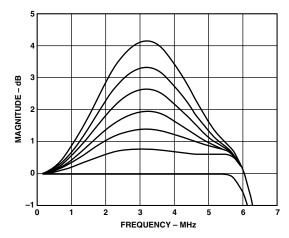



Figure 49. Luma SSAF Filter, Programmable Gain

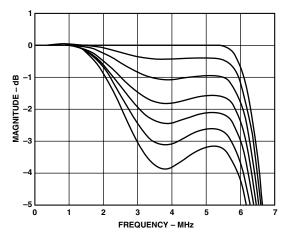



Figure 50. Luma SSAF Filter, Programmable Attenuation

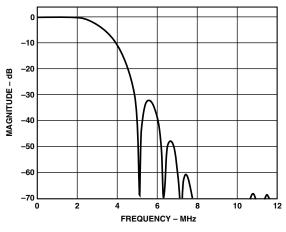



Figure 51. Luma CIF LP Filter

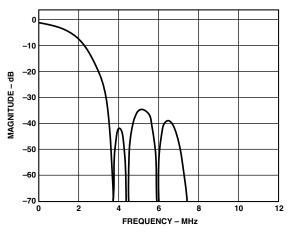



Figure 52. Luma QCIF LP Filter

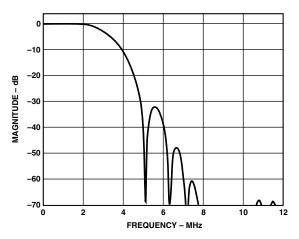



Figure 53. Chroma 3.0 MHz LP Filter

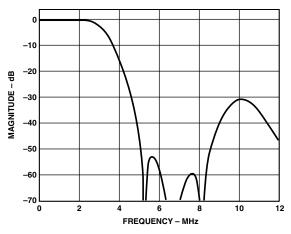



Figure 54. Chroma 2.0 MHz LP Filter

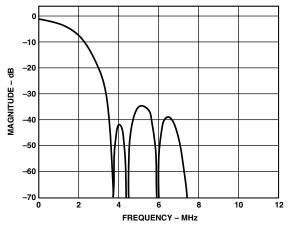



Figure 55. Chroma 1.3 MHz LP Filter

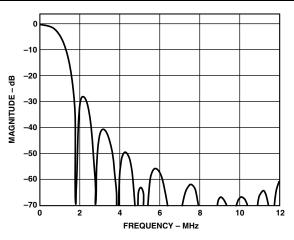



Figure 56. Chroma 1.0 MHz LP Filter

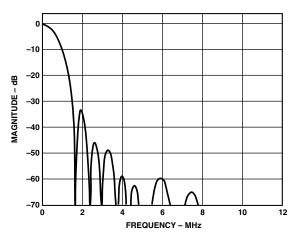



Figure 57. Chroma 0.65 MHz LP Filter

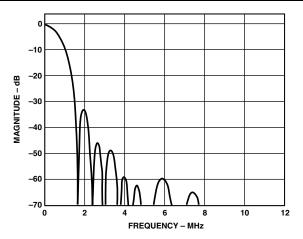



Figure 58. Chroma CIF LP Filter

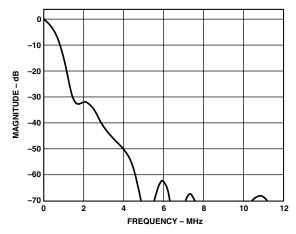



Figure 59. Chroma QCIF LP Filter

# COLOR CONTROLS AND RGB MATRIX

HD Y Color, HD Cr Color, HD Cb Color

[Subaddresses 16h-18h]

Three 8-bit wide registers at Addresses 16h, 17h, and 18h are used to program the output color of the internal HD test pattern generator, be it the lines of the crosshatch pattern or the uniform field test pattern. They are not functional as color controls on external pixel data input. For this purpose, the RGB matrix is used.

The standard used for the values for Y and the color difference signals to obtain white, black, and the saturated primary and complementary colors conforms to the ITU-R.BT601–ITU-R.BT604 standards. Table XVII shows sample color values to be programmed into the color registers when Output Standard Selection is set to EIA 770.2.

Table XVII. Sample Color Values for EIA 770.2 OutputStandard Selection

| Sample<br>Color | Color Y<br>Value | Color Cr<br>Value | Color Cb<br>Value |
|-----------------|------------------|-------------------|-------------------|
| White           | 235 (EB)         | 128 (80)          | 128 (80)          |
| Black           | 16 (10)          | 128 (80)          | 128 (80)          |
| Red             | 81 (51)          | 240 (F0)          | 90 (5A)           |
| Green           | 145 (91)         | 34 (22)           | 54 (36)           |
| Blue            | 41 (29)          | 110 (6E)          | 240 (F0)          |
| Yellow          | 210 (D2)         | 146 (92)          | 16 (10)           |
| Cyan            | 170 (AA)         | 16 (10)           | 166 (A6)          |
| Magenta         | 106 (6A)         | 222 (DE)          | 202 (CA)          |

## HD RGB Matrix

## [Subaddresses 03h-09h]

When the programmable RGB matrix is disabled [Address 02h, Bit 3], the internal RGB matrix takes care of all YCrCb to YUV or RGB scaling according to the input standard programmed into the device.

When the programmable RGB matrix is enabled, the color components are converted according to the SMPTE274M standard (1080 i):

$$Y' = (0.2126 \times R') + (0.7152 \times G') + (0.0722 \times B')$$
$$Cb' = \frac{0.5}{1 - 0.0722} \times (B' - Y')$$
$$Cr' = \frac{0.5}{1 - 0.2126} \times (R' - Y')$$

This is reflected in the preprogrammed values for GY = 13Bh, RV = 1F0h, BU = 248h, GV = 93h, and GU = 3Bh.

If another input standard is used, the scale values for GY, GU, GV, BU, and RV have to be adjusted according to this input standard. It must be considered by the user that the color component conversion might use different scale values. For example, SMPTE293M uses the following conversion:

$$Y' = (0.299 \times R') + (0.587 \times G') + (0.114 \times B')$$
$$Cb' = \frac{0.5}{1 - 0.114} \times (B' - Y')$$
$$Cr' = \frac{0.5}{1 - 0.299} \times (R' - Y')$$

The programmable RGB matrix can be used to control the HD output levels in cases where the video output does not conform to

standards due to altering the DAC output stages, such as termination resistors, for example. The programmable RGB matrix is used for external HD data and is not functional when the HD test pattern is enabled.

To make use of the programmable RGB matrix, the YCrCb data should contain the HSYNC signal on the Y channel only. The RGB matrix should be enabled [Address 02h, Bit 3], the output should be set to RGB [Address 02h, Bit 3], Sync on PrPb should be disabled [Address 15h, Bit 2], and Sync on RGB is optional [Address 02h, Bit 4].

GY at Addresses 03h and 05h control the output levels on the green signal, BU at 04h and 08h the blue signal output levels, and RV at 04h and 09h the red output levels. To control YPrPb output levels, YUV output should be enabled [Address 02h, Bit 5]. In this case, GY [Address 05h; Address 03, Bits 0–1] is used for the Y output, RV [Address 09; Address 04, Bits 0–1] is used for the Pr output, and BU [Address 08h; Address 04h, Bits 2–3] is used for the Pb output.

If RGB output is selected, the RGB matrix scaler uses the following equations:

$$R = GY \times Y + RV \times Cr$$
$$G = GY \times Y - GU \times Cb - GV \times Ct$$
$$B = GY \times Y + BU \times Cb$$

If YUV output is selected, the following equations are used:

 $R = RV \times Cr$  $G = GY \times Y$  $B = BU \times Cb$ 

On power-up, the RGB matrix is programmed with default values:

| Address 0x03h: 03h |
|--------------------|
| Address 0x04h: F0h |
| Address 0x05h: 4Eh |
| Address 0x06h: 0Eh |
| Address 0x07h: 24h |
| Address 0x08h: 92h |
| Address 0x09h: 7Ch |

When the programmable RGB matrix is not functional, the ADV7300A/ADV7301A automatically scales YCrCb inputs to all standards supported. For SMPTE293M, the register values are as follows:

Address 0x03h: 03h Address 0x04h: 1Eh Address 0x05h: 4Eh Address 0x06h: 1Bh Address 0x07h: 38h Address 0x08h: 8Bh Address 0x09h: 6Eh

Address 15h, Bit 3 must be set to "1" in this mode.

#### **SD** Color Control

[Subaddresses 5Ch, 5Dh, 5Eh, and 5Fh]

SD Y SCALE, SD Cr SCALE, and SD Cb SCALE are three 10-bit wide control registers to scale the Y, U, and V output levels.

Each of these registers represents the value required to scale the U or V level from 0 to 2.0 and the Y level from 0 to 1.5 of its initial level. The value of these 10 bits is calculated using the equation:

*Y*, *U*, or *V* Scalar Value = Scale Factor  $\times$  512

Example:

Scale Factor = 1.18

Y, U, or V Scale Value =  $1.18 \times 512 = 665.6$ Y, U, or V Scale Value = 665 (rounded to nearest integer) Y, U, or V Scale Value =  $1010011001_{b}$ 

Address 5Ch, SD LSB Register = 15h Address 5Dh, SD Y Scale Register = A6h Address 5Eh, SD V Scale Register = A6h Address 5Fh, SD U Scale Register = A6h

# SD Hue Adjust Value

## [Subaddress 60h]

The hue adjust value is used to adjust the hue on the composite and chroma outputs.

These 8 bits represent the value required to vary the hue of the video data, i.e., the variance in phase of the subcarrier during active video with respect to the phase of the subcarrier during the color burst. The ADV7300A/ADV7301A provide a range of  $\pm 22.5^{\circ}$  increments of 0.17578125°. For normal operation (zero adjustment), this register is set to 80h. FFh and 00h represent the upper and lower limit (respectively) of adjustment attainable.

For a positive hue adjust value:

$$0.17578125^{\circ} \times (HCR - 128)$$

Example:

To adjust the hue by  $+4^{\circ}$ , write 97h to the Hue Adjust Value Register:

$$\frac{+4}{0.17578125} + 128 = 151 = 97h$$

where 151 is rounded to the nearest integer. To adjust the hue by  $-4^{\circ}$ , write 69h to the Hue Adjust Value Register:

$$\frac{-4}{0.17578125} + 128 = 105 = 69h$$

where 105 is rounded to the nearest integer.

#### SD Brightness Control [Subaddress 61h]

The brightness is controlled by adding a programmable setup level onto the scaled Y data. This brightness level may be added onto the scaled Y data. For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and PAL, the setup can vary from -7.5 IRE to +15 IRE.

The Brightness Control Register is an 8-bit wide register. Seven bits are used to control the brightness level. This brightness level can be a positive or negative value.

#### Example:

Standard: NTSC with pedestal. To add +20 IRE brightness level, write 28h to Address 61h, SD Brightness:

SD Brightness Value (hex) = (IRE Value  $\times$  2.015631)

 $28h = (20 \times 2.015631) = 40.31262$ 

Standard: PAL. To add –7 IRE brightness level, write 72h to Address 61h, SD Brightness:

SD Brightness Value (hex) = (IRE Value  $\times$  2.015631)

 $0001110_{\rm b} = (7 \times 2.015631) = 14.109417$ 

0001110 into two's complement equals 1110010, or 72h.

#### SD Brightness Detect [Subaddress 7Ah]

The ADV7300A/ADV7301A allows monitoring of the brightness level of the incoming video data. The Brightness Detect Register is a read-only register.

#### **Double Buffering**

#### [Subaddress 13h, Bit 7; Subaddress 48h, Bit 2]

Double buffered registers are updated once per field on the falling edge of the VSYNC signal. Double buffering improves the overall performance since modifications to register settings will not be made during active video but take effect on the start of the active video.

Double buffering can be activated on the following HD registers: HD Gamma A and Gamma B curves and HD CGMS Registers. Double buffering can be activated on the following SD Registers: SD Gamma A and Gamma B Curves, SD Y Scale, SD U Scale, SD V Scale, SD Brightness, SD Closed Captioning, and SD Macrovision Bits 5–0.

| Table XVIII. | Brightness | <b>Control Values</b> |
|--------------|------------|-----------------------|
|--------------|------------|-----------------------|

| Setup Level—<br>NTSC w/ Pedestal (IRE) | Setup Level—<br>NTSC w/o Pedestal (IRE) | Setup Level—<br>PAL (IRE) | SD Brightness<br>Value |
|----------------------------------------|-----------------------------------------|---------------------------|------------------------|
| 22.5                                   | +15                                     | +15                       | 1Eh                    |
| 15                                     | +7.5                                    | +7.5                      | 0Fh                    |
| 7.5                                    | 0                                       | 0                         | 00h                    |
| 0                                      | -7.5                                    | -7.5                      | 71h                    |

Values in the range from 3Fh to 44h might result in an invalid output signal.

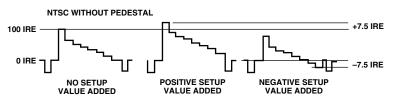



Figure 60. Examples for Brightness Control Values

Gamma Correction [Subaddresses 21h–37h for HD; Subaddresses 66h–79h for SD]

Gamma correction is available for SD and HD video. For each standard there are twenty 8-bit wide registers. They are used to program the Gamma Correction Curves A and B. HD Gamma Curve A is programmed at Addresses 0x24h–0x2Dh and HD Gamma Curve B at 0x2Eh–0x37h. SD Gamma Curve A is programmed at Addresses 0x66h–0x6Fh, and SD Gamma Curve B at Addresses 0x70h–0x79h.

Generally, gamma correction is applied to compensate for the nonlinear relationship between signal input and brightness level output (as perceived on the CRT). It can also be applied wherever nonlinear processing is used.

Gamma correction uses the function:

$$Signal_{OUT} = (Signal_{IN})^{\gamma}$$

where  $\gamma$  equals the gamma power factor.

Gamma correction is performed on the luma data only. The user has the choice to use two different curves, Curve A or Curve B. At any one time only one of these curves can be used. The response of the curve is programmed at 10 predefined locations. In changing the values at these locations, the gamma curve can be modified. Between these points, linear interpolation is used to generate intermediate values. Considering the curve to have a total length of 256 points, the 10 locations are at: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. Locations 0, 16, 240, and 255 are fixed and cannot be changed.

For the length of 16 to 240, the gamma correction curve must be calculated as:

$$y = x^{\gamma}$$

where y = gamma corrected output, x = linear input signal, and  $\gamma =$  the gamma power factor.

To program the gamma correction registers, the values for y must be calculated using the formula:

$$y_n = \left(\frac{x_{(n-16)}}{240 - 16}\right)^n \times (240 - 16) + 16$$

where  $x_{(n-16)}$  = the value for x along the x-axis at points n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224,  $y_n$  = the value for y along the y-axis, which has to be written into the Gamma Correction Register.

Example:

$$y_{24} = \left(\left(\frac{8}{224}\right)^{0.5} \times 224\right) + 16 = 58 *$$

$$y_{32} = \left(\left(\frac{16}{224}\right)^{0.5} \times 224\right) + 16 = 76 *$$

$$y_{48} = \left(\left(\frac{32}{224}\right)^{0.5} \times 224\right) + 16 = 101 *$$

$$y_{64} = \left(\left(\frac{48}{224}\right)^{0.5} \times 224\right) + 16 = 120 *$$

$$y_{80} = \left(\left(\frac{64}{224}\right)^{0.5} \times 224\right) + 16 = 136 *$$

$$y_{96} = \left(\left(\frac{80}{224}\right)^{0.5} \times 224\right) + 16 = 150 *$$

$$y_{128} = \left(\left(\frac{112}{224}\right)^{0.5} \times 224\right) + 16 = 174 *$$

$$y_{160} = \left(\left(\frac{144}{224}\right)^{0.5} \times 224\right) + 16 = 195 *$$

$$y_{192} = \left(\left(\frac{176}{224}\right)^{0.5} \times 224\right) + 16 = 214 *$$

$$y_{224} = \left(\left(\frac{208}{224}\right)^{0.5} \times 224\right) + 16 = 232 *$$

The gamma curves shown in Figures 61 and 62 are examples. Any user-defined curve is acceptable in the range of 16–240.

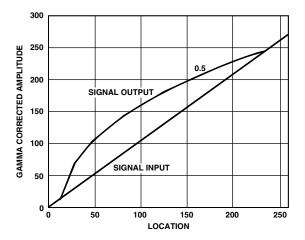



Figure 61. Signal Input (Ramp) and Signal Output for Gamma 0.5

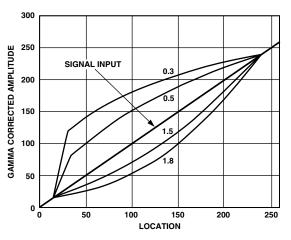



Figure 62. Signal Input (Ramp) and Selectable Gamma Output

# HD SHARPNESS FILTER CONTROL AND ADAPTIVE FILTER CONTROL

#### [Subaddresses 20h and 38h-3Dh]

There are three filter modes available on the ADV7300A/ ADV7301A: Sharpness Filter Mode and two adaptive filter modes.

#### **HD Sharpness Filter Mode**

To enhance or attenuate the Y signal in the frequency ranges shown in Figure 63, the following register settings must be used: HD Sharpness Filter must be enabled and HD Adaptive Filter Enable must be set to disabled. To select one of the 256 individual responses, the corresponding gain values for each filter, which range from -8 to +7, must be programmed into the HD Sharpness Filter Gain Register at Address 0x20h.

#### HD Adaptive Filter Mode

The HD Adaptive Filter Threshold A, B, C Registers, the HD Adaptive Filter Gain 1, 2, and 3 Registers, and the HD Sharpness Filter Gain Register are used in Adaptive Filter Mode. To activate the adaptive filter control, the HD Sharpness Filter and HD Adaptive Filter Enable must be enabled.

The derivative of the incoming signal is compared to the three programmable threshold values: HD Adaptive Filter Threshold A, B, C. The recommended threshold range is from 16–235, although any value in the range of 0–255 can be used.

The edges can then be attenuated with the settings in HD Adaptive Filter Gain 1, 2, 3 Registers and HD Sharpness Filter Gain Register.

According to the settings of the HD Adaptive Filter Mode control, there are two adaptive filter modes available:

- 1. Mode A is used when Adaptive Filter Mode is set to "0." In this case, Filter B (LPF) will be used in the adaptive filter block. Also, only the programmed values for Gain B in the HD Sharpness Filter Gain, HD Adaptive Filter Gain 1, 2, 3 are applied when needed. The Gain A values are fixed and cannot be changed.
- 2. Mode B is used when Adaptive Filter Mode is set to "1." In this mode, a cascade of Filter A and Filter B is used. Both settings for Gain A and Gain B in the HD Sharpness Filter Gain, HD Adaptive Filter Gain 1, 2, 3 become active when needed.

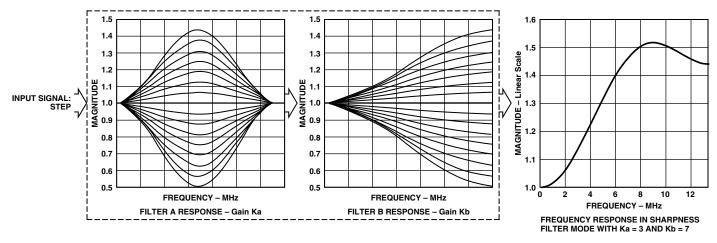



Figure 63. Sharpness and Adaptive Filter Control Block

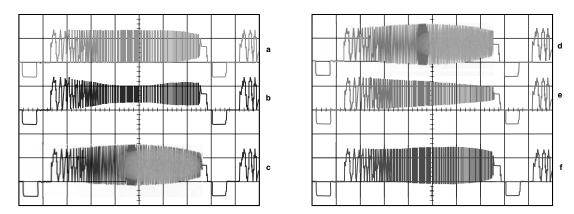



Figure 64. HD Sharpness Filter Control with Different Gain Settings for HD Sharpness Filter Gain Value

### HD Sharpness Filter and Adaptive Filter Application Examples HD Sharpness Filter Application

The HD sharpness filter can be used to enhance or attenuate the Y video output signal.

The register settings in Tables XIX and XX are used to achieve the results shown in Figure 64. Input data was generated by an external signal source.

| Address | Register Setting | Reference* |
|---------|------------------|------------|
| 00h     | FCh              |            |
| 01h     | 10h              |            |
| 02h     | 20h              |            |
| 10h     | 00h              |            |
| 11h     | 81h              |            |
| 20h     | 00h              | а          |
| 20h     | 08h              | b          |
| 20h     | 04h              | с          |
| 20h     | 40h              | d          |
| 20h     | 80h              | e          |
| 20h     | 22h              | f          |

\*See Figure 64.

The effect of the sharpness filter can also be seen when using the internally generated crosshatch pattern.

Table XX. Sharpness Filter on Internal Test Pattern

| Address | Register Setting |
|---------|------------------|
| 00h     | FCh              |
| 01h     | 10h              |
| 02h     | 20h              |
| 10h     | 00h              |
| 11h     | 85h              |
| 20h     | 99h              |

In toggling the Sharpness Filter Enable Bit [Address 11h, Bit 8], it can be seen that the line contours of the crosshatch pattern change their sharpness.

## Adaptive Filter Control Application

Figure 65 shows a typical signal to be processed by the adaptive filter control block.

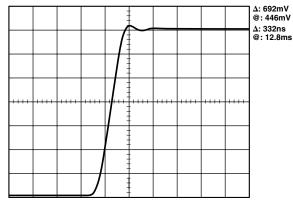
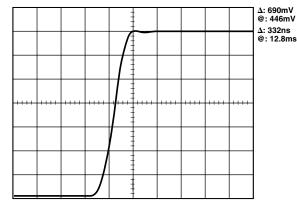




Figure 65. Input Signal to Adaptive Filter Control



## Figure 66. Output Signal After Adaptive Filter Control

The register settings in Table XXI are used to obtain the results shown in Figure 66, i.e., to remove the ringing on the Y signal. Input data was generated by an external signal source.

#### Table XXI. Adaptive Filter Control on Step Input Signal

| Address | Register Setting |
|---------|------------------|
| 00h     | FCh              |
| 01h     | 38h              |
| 02h     | 20h              |
| 10h     | 00h              |
| 11h     | 81h              |
| 15h     | 80h              |
| 20h     | 00h              |
| 38h     | ACh              |
| 39h     | 9Ah              |
| 3Ah     | 88h              |
| 3Bh     | 28h              |
| 3Ch     | 3Fh              |
| 3Dh     | 64h              |

All other register settings are 00h.

When changing the Adaptive Filter Mode to Mode B [Address 15h, Bit 6], the output in Figure 67 can be obtained.

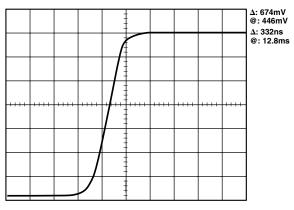


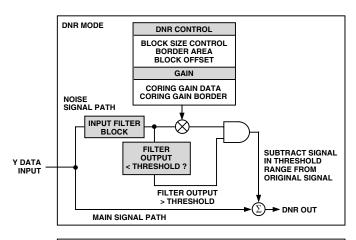

Figure 67. Output Signal from Adaptive Filter Control

The adaptive filter control can also be demonstrated using the internally generated crosshatch test pattern and toggling the Adaptive Filter Control Bit [Address 15h, Bit 7], shown in Table XXII.

Table XXII. Adaptive Filter Control on Internal Test Pattern

| Address | Register Setting |  |
|---------|------------------|--|
| 00h     | FCh              |  |
| 01h     | 38h              |  |
| 02h     | 20h              |  |
| 10h     | 00h              |  |
| 11h     | 85h              |  |
| 15h     | 80h              |  |
| 20h     | 00h              |  |
| 38h     | ACh              |  |
| 39h     | 9Ah              |  |
| 3Ah     | 88h              |  |
| 3Bh     | 28h              |  |
| 3Ch     | 3Fh              |  |
| 3Dh     | 64h              |  |

#### SD DIGITAL NOISE REDUCTION [Subaddresses 63h, 64h, and 65h]


DNR is applied to the Y data only. A filter block selects the high frequency, low amplitude components of the incoming signal (DNR input select). The absolute value of the filter output is compared to a programmable threshold value (DNR threshold control). There are two DNR modes available: DNR Mode and DNR Sharpness Mode.

In DNR Mode, if the absolute value of the filter output is smaller than the threshold, it is assumed to be noise. A programmable amount (coring gain border, coring gain data) of this noise signal will be subtracted from the original signal.

In DNR Sharpness Mode, if the absolute value of the filter output is less than the programmed threshold, it is assumed to be noise, as before. Otherwise, if the level exceeds the threshold, now being identified as a valid signal, a fraction of the signal (coring gain border, coring gain data) will be added to the original signal in order to boost high frequency components and to sharpen the video image.

In MPEG systems, it is common to process the video information in blocks of  $8 \times 8$  pixels for MPEG2 systems or  $16 \times 16$  pixels for MPEG1 systems (block size control). DNR can be applied to the resulting block transition areas that are known to contain noise. Generally, the block transition area contains two pixels. It is possible to define this area to contain four pixels (border area.)

It is also possible to compensate for variable block positioning or differences in YCrCb pixel timing with the use of the (DNR block offset.)



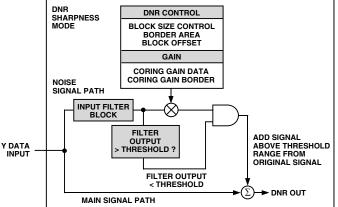



Figure 68. DNR Block Diagram

The Digital Noise Reduction Registers are three 8-bit-wide registers. They are used to control the DNR processing.

#### Coring Gain Border [Address 63h, Bits 3-0]

These four bits are assigned to the gain factor applied to the border areas. In DNR Mode the range of gain values is 0-1, in increments of 0.125. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal.

In DNR Sharpness Mode, the range of gain values is 0 to 0.5, in increments of 0.0625. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal.

# Coring Gain Data

### [Address 63h, Bits 7-4]

These four bits are assigned to the gain factor applied to the luma data inside the MPEG pixel block.

In DNR Mode, the range of gain values is 0–1, in increments of 0.125. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal.

In DNR Sharpness Mode, the range of gain values is 0–0.5, in increments of 0.0625. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal.

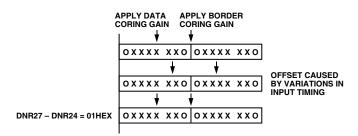
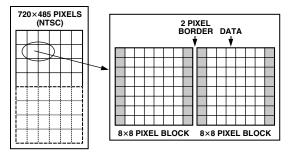



Figure 69. DNR Block Offset Control

## **DNR** Threshold


## [Address 64h, Bits 5-0]

These six bits are used to define the threshold value in the range of 0 to 63. The range is an absolute value.

## Border Area

## [Address 64h, Bit 6]

In setting this bit to a Logic "1," the block transition area can be defined to consist of four pixels. If this bit is set to a Logic "0," the border transition area consists of two pixels, where one pixel refers to two clock cycles at 27 MHz.



## Block Size Control [Address 64h, Bit 7]

This bit is used to select the size of the data blocks to be processed. Setting the block size control function to a Logic "1" defines a  $16 \times 16$  pixel data block; a Logic "0" defines an  $8 \times 8$ pixel data block, where one pixel refers to two clock cycles at 27 MHz.

#### DNR Input Select Control [Address 65h, Bits 2–0]

Three bits are assigned to select the filter that is applied to the incoming Y data. The signal that lies in the pass band of the selected filter is the signal that will be DNR processed. The figure below shows the filter responses selectable with this control.

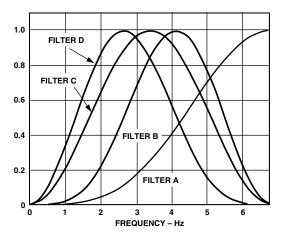



Figure 71. DNR Input Select

## DNR Mode Control [Address 65h, Bit 4]

This bit controls the DNR Mode selected. A Logic "0" selects DNR Mode, and a Logic "1" selects DNR Sharpness Mode. DNR works on the principle of defining low amplitude, high frequency signals as probable noise and subtracting this noise from the original signal.

In DNR Mode, it is possible to subtract a fraction of the signal that lies below the set threshold, assumed to be noise, from the original signal. The threshold is set in DNR Register 1.

When DNR Sharpness Mode is enabled, it is possible to add a fraction of the signal that lies above the set threshold to the original signal, since this data is assumed to be valid data and not noise. The overall effect is that the signal will be boosted (similar to using extended SSAF filter).

#### Block Offset Control [Address 65h, Bits 7–4]

Four bits are assigned to this control that allow a shift of the data block of 15 pixels maximum. Consider the coring gain positions fixed. The block offset shifts the data in steps of one pixel such that the border coring gain factors can be applied at the same position regardless of variations in input timing of the data.

Figure 70. DNR Border Area

## SD ACTIVE VIDEO EDGE

#### [Subaddress 42h, Bit 7]

When the active video edge is enabled, the first three pixels and the last three pixels of the active video, on the Luma Channel are scaled in such a way that maximum transitions on these pixels are not possible. The scaling factors are  $1/8 \times$ ,  $1/2 \times$ , and  $7/8 \times$ . All other active video passes through unprocessed.

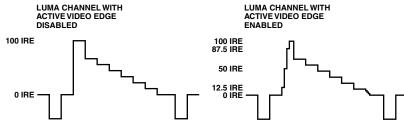



Figure 72. Active Video Edge Functionality Example

#### BOARD DESIGN AND LAYOUT CONSIDERATIONS DAC Termination and Layout Considerations

The ADV7300A/ADV7301A contain an on-board voltage reference. The V<sub>REF</sub> pin is normally terminated to V<sub>AA</sub> through a 0.1  $\mu$ F capacitor when the internal V<sub>REF</sub> is used. Alternatively, the ADV7300A/ADV7301A can be used with an external V<sub>REF</sub> (i.e., AD1580). The RSET resistors are connected between the R<sub>SET</sub> pins and AGND and are used to control the full-scale output current and, therefore, the DAC voltage output levels. For full-scale output, R<sub>SET</sub> must have a value of 760  $\Omega$ . The R<sub>SET</sub> values should not be changed. R<sub>LOAD</sub> has a value of 150  $\Omega$  for full-scale output.

## Video Output Buffer and Optional Output Filter

Output buffering on all six DACs is necessary in order to drive output devices, such as SD or HD monitors. Analog Devices produces a range of suitable op amps for this application, for example the AD8061. More information on line driver buffering circuits is given in the relevant op amp data sheets.

An optional analog reconstruction LPF might be required as an antialias filter if the ADV7300A/ADV7301A is connected to a device that requires this filtering. The filter specifications vary with the application, see Table XXIII.

| Table XXIII. | External | Filter | Requirements |
|--------------|----------|--------|--------------|
|--------------|----------|--------|--------------|

| Input<br>Mode | External Filter<br>Oversampling | Cutoff<br>Frequency | Attenuation        |
|---------------|---------------------------------|---------------------|--------------------|
| SD            | $2 \times$                      | >6.5 MHz            | –50 dB @ 20.5 MHz  |
| SD            | $8 \times$                      | >6.5 MHz            | -50 dB @ 101.5 MHz |
| PS            | $1 \times$                      | >12.5 MHz           | –50 dB @ 14.5 MHz  |
| PS            | $4 \times$                      | >12.5 MHz           | –50 dB @ 95.5 MHz  |
| HDTV          | $1 \times$                      | >30 MHz             | -50 dB @ 44.25 MHz |
| HDTV          | $2 \times$                      | >30 MHz             | –50 dB @ 118.5 MHz |

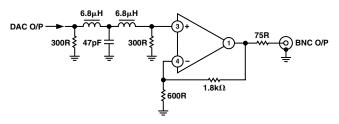
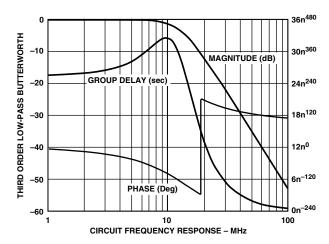
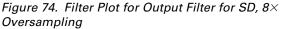





Figure 73. Example for Output Filter for SD,  $8 \times$  Oversampling





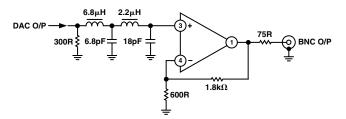



Figure 75. Example of Output for Output Filter for PS,  $4 \times$  Oversampling

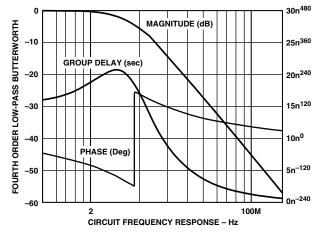
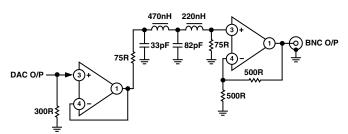
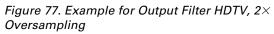





Figure 76. Filter Plot for Output Filter for PS,  $4 \times$  Oversampling





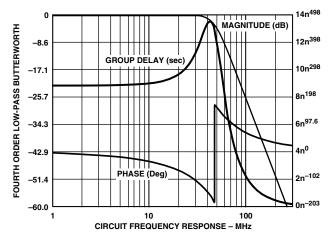



Figure 78. Filter Plot for Output Filter for HDTV,  $2 \times$  Oversampling

| Input Mode<br>Addr 01h, Bits 6–4 | PLL<br>Addr 00h, Bit 1 | Output Rate                                                                                                              |
|----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|
| SD                               | Off<br>On              | 27 MHz (2×)<br>108 MHz (8×)                                                                                              |
| PS                               | Off<br>On              | 27 MHz (1×)<br>108 MHz (4×)                                                                                              |
| HDTV                             | Off<br>On              | 74.25 MHz (1×)<br>148.5 MHz (2×)                                                                                         |
| SD and                           | Off<br>On              | 27 MHz (2×)<br>108 MHz (8×)                                                                                              |
| PS                               | Off<br>On              | 27 MHz (1×)<br>108 MHz (4×)                                                                                              |
| SD* and                          | Off<br>On              | 27 MHz (2×)<br>108 MHz (8×)                                                                                              |
| HDTV                             | Off<br>On              | 74.25 MHz (1×)<br>74.25 MHz (1×)                                                                                         |
| SD and                           | Off<br>On              | 27 MHz (2×)<br>27 MHz (2×)                                                                                               |
| HDTV*                            | Off<br>On              | $\begin{array}{c} 74.25 \text{ MHz} (2\times) \\ 74.25 \text{ MHz} (1\times) \\ 148.5 \text{ MHz} (2\times) \end{array}$ |

Table XXIV. Possible Output Rates

## \*Oversampled

## PCB Board Layout Considerations

The ADV7300A/ADV7301A is optimally designed for lowest noise performance, both radiated and conducted noise. To complement the excellent noise performance of the ADV7300A/ADV7301A, it is imperative that great care be given to the PC board layout. The layout should be optimized for the lowest noise on the ADV7300A/ADV7301A power and ground lines. This can be achieved by shielding the digital inputs and providing good decoupling. The lead length between groups of  $V_{AA}$  and AGND,  $V_{DD}$  and DGND, and  $V_{DD_{-IO}}$  and GND\_IO pins should be kept as short as possible to minimize inductive ringing.

It is recommended that a four-layer printed circuit board be used with power and ground planes separating the layer of the signal carrying traces of the components and solder side layer. Placement of components should take into account noisy circuits, such as crystal clocks, high speed logic circuitry, and analog circuitry.

There should be a separate analog ground plane and a separate digital ground plane.

Power planes should encompass a digital and an analog power plane. The analog power plane should contain the DACs and all associated circuitry,  $V_{REF}$  circuitry. The digital power plane should contain all logic circuitry. The analog and digital power planes should be individually connected to the common power plane at one single point through a suitable filtering device, such as a ferrite bead.

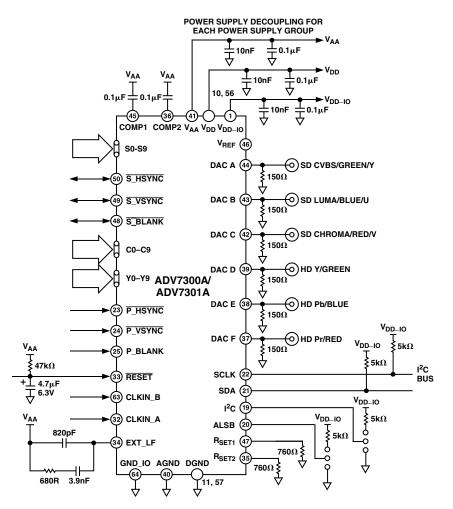
DAC output traces on a PCB should be treated as transmission lines. It is recommended that the DACs be placed as close as possible to the output connector, with the analog output traces being as short as possible (less than three inches). The DAC termination resistors should be placed as close as possible to the DAC outputs and should overlay the PCB's ground plane. As

well as minimizing reflections, short analog output traces will reduce noise pickup due to neighboring digital circuitry.

To avoid crosstalk between the DAC outputs, it is recommended to leave as much space as possible between the tracks of the individual DAC output pins.

#### **Supply Decoupling**

Noise on the analog power plane can be further reduced by the use of decoupling capacitors. Optimum performance is achieved by the use of 0.1  $\mu$ F ceramic capacitors. Each of the group of V<sub>AA</sub>, V<sub>DD</sub>, or V<sub>DD\_IO</sub> pins should be individually decoupled to ground. This should be done by placing the capacitors as close as possible to the device with the capacitor leads as short as possible, thus minimizing lead inductance.


#### **Digital Signal Interconnect**

The digital signal lines should be isolated as much as possible from the analog outputs and other analog circuitry. Digital signal lines should not overlay the analog power plane. Due to the high clock rates used, long clock lines to the ADV7300A/ ADV7301A should be avoided to minimize noise pickup. Any active pull-up termination resistors for the digital inputs should be connected to the digital power plane and not the analog power plane.

#### **Analog Signal Interconnect**

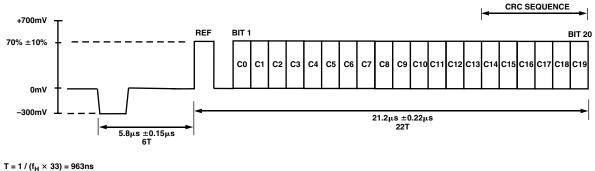
The ADV7300A/ADV7301A should be located as close as possible to the output connectors, thus minimizing noise pickup and reflections due to impedance mismatch. For optimum performance, the analog outputs should each be source and load terminated, as shown in Figure 79. The termination resistors should be as close as possible to the ADV7300A/ADV7301A to minimize reflections.

Any unused inputs should be tied to ground.



UNUSED INPUTS SHOULD BE GROUNDED

Figure 79. Circuit Layout


# Appendix A

## COPY GENERATION MANAGEMENT SYSTEM HD CGMS DATA Registers 2-0

#### [Subaddress 12h]

HD CGMS is available in 525 p Mode only, conforming to "CGMS-A EIA-J CPR1204-1, Transfer Method of Video ID information using vertical blanking interval (525 p System), March 1998" and IEC61880, 1998, video systems (525/60)—video and accompanied data using the vertical blanking interval—analog interface.

When HD CGMS is enabled, CGMS data is inserted on Line 41. The HD CGMS Data Registers are to be found at Addresses 0x21h, 0x22h, and 0x23h.



T = 1 / ( $f_H \times 33$ ) = 963ns  $f_H$  = HORIZONTAL SCAN FREQUENCY T ±30ns

#### Figure 80. CGMS Waveform

## SD CGMS Data Registers 2-0 {Subaddresses 59h, 5Ah, and 5Bh]

The ADV7300A/ADV7301A supports Copy Generation Management System (CGMS) conforming to the standard. CGMS data is transmitted on Line 20 of the odd fields and Line 283 of the even fields. Bits C/W05 and C/W06 control whether or not CGMS data is output on odd and even fields. CGMS data can only be transmitted when the ADV7300A/ADV7301A is configured in NTSC Mode. The CGMS data is 20 bits long; the function of each of these bits is as shown below. The CGMS data is preceded by a reference pulse of the same amplitude and duration as a CGMS bit, see Figure 81.

If SD CGMS CRC [Address 59h, Bit 4] is set to a Logic "1," the last six bits, C19–C14, that comprise the 6-bit CRC check sequence are calculated automatically on the ADV7300A/ ADV7301A based on the lower 14 bits (C0–C13) of the data in the data registers and output with the remaining 14 bits to form the complete 20 bits of the CGMS data. The calculation of the CRC sequence is based on the polynomial:

## $x^{6} + x + 1$

with a preset value of 111111. If SD CGMS CRC [Address 59h, Bit 4] is set to a Logic "0," then all 20 bits (C0–C19) are

output directly from the CGMS registers (no CRC calculated; must be calculated by the user).

| Table XXV. | Function of | of CGMS Bits |
|------------|-------------|--------------|
|------------|-------------|--------------|

| Word | Bit     | Function                              |                           |
|------|---------|---------------------------------------|---------------------------|
| 0    | B1      | Aspect Ratio                          | 0 = 4:3                   |
|      |         |                                       | 1 = 16:9                  |
|      | B2      | Display Format                        | 0 = Normal                |
|      |         |                                       | 1 = Letterbox             |
|      | B3      | Undefined                             |                           |
|      | B4–B6   | Identification Information about Vide |                           |
|      |         | and Other Signals                     | (i.e., Audio)             |
| 1    | B7-B10  | Identification Sign                   | al. Incidental to Word 0. |
| 2    | B11-B14 | Identification Sign                   | al and Information.       |
|      |         | Incidental to Word                    |                           |

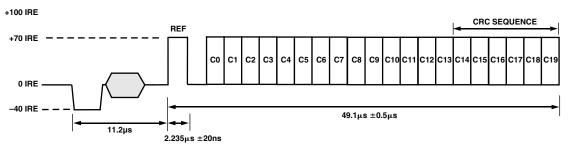



Figure 81. CGMS Waveform

# **Appendix B**

# SD WIDE SCREEN SIGNALLING

[Subaddresses 59h, 5Ah, and 5Bh]

The ADV7300A/ADV7301A supports Wide Screen Signalling (WSS) conforming to the standard. WSS data is transmitted on Line 23. WSS data can only be transmitted when the ADV7300A/ ADV7301A is configured in PAL Mode. The WSS data is 14 bits long. The function of each of these bits is shown in Table XXVI. The WSS data is preceded by a run-in sequence and a start code (see Figure 82). If SD WSS [Address 59h, Bit 7] is set to a Logic "1," it enables the WSS data to be transmitted on Line 23. The latter portion of Line 23 (42.5 µs from the falling edge of HSYNC) is available for the insertion of video.

It is possible to blank the WSS portion of Line 23 with Subaddress 61h, Bit 7.

## Table XXVI. Function of WSS Bits

| Bit   | Function                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------|
| 0     | Aspect Ratio                                                                                                                   |
| 1     | Format                                                                                                                         |
| 2     | Position                                                                                                                       |
| 3     | Odd Parity Check of Bits 0–2                                                                                                   |
| 4     | 0 = Camera Mode<br>1 = Film Mode                                                                                               |
| 5     | 0 = Standard Coding<br>1 = Motion Adaptive Color Plus                                                                          |
| 6     | 0 = No Helper<br>1 = Modulated Helper                                                                                          |
| 7     | Reserved                                                                                                                       |
| 8     |                                                                                                                                |
| 9–10  | 00 = No Open Subtitles<br>10 = Subtitles Inside Active Image Area<br>01 = Subtitles Outside Active Image Area<br>11 = Reserved |
| 11    | 0 = No Surround Sound Information<br>1 = Surround Sound Mode                                                                   |
| 12–13 | Reserved                                                                                                                       |

# 500mV RUN-IN SEQUENCE START CODE W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10W11 W12W13 ACTIVE VIDEO

Figure 82. WSS Waveform

| Table XXVII. Function of WSS | Bits 0-3 |
|------------------------------|----------|
|------------------------------|----------|

| <b>B</b> 0 | <b>B</b> 1 | <b>B</b> 2 | <b>B</b> 3 | Aspect Ratio | Format      | Position |
|------------|------------|------------|------------|--------------|-------------|----------|
| 0          | 0          | 0          | 1          | 4:3          | Full Format | N/A      |
| 1          | 0          | 0          | 0          | 14:9         | Letterbox   | Center   |
| 0          | 1          | 0          | 0          | 14:9         | Letterbox   | Тор      |
| 1          | 1          | 0          | 1          | 16:9         | Letterbox   | Center   |
| 0          | 0          | 1          | 0          | 16:9         | Letterbox   | Тор      |
| 1          | 0          | 1          | 1          | >16:9        | Letterbox   | Center   |
| 0          | 1          | 1          | 1          | 14:9         | Full Format | Center   |
| 1          | 1          | 1          | 0          | 16:9         | N/A         | N/A      |

# Appendix C

## SD CLOSED CAPTIONING

## [Subaddresses 51h-54h]

The ADV7300A/ADV7301A supports closed captioning conforming to the standard television synchronizing waveform for color transmission. Closed captioning is transmitted during the blanked active line time of Line 21 of the odd fields and Line 284 of the even fields.

Closed captioning consists of a seven cycle sinusoidal burst that is frequency and phase-locked to the caption data. After the clock run-in signal, the blanking level is held for 2 data bits and is followed by a Logic Level "1" start bit. Sixteen bits of data follow the start bit. These consist of two 8-bit bytes, 7 data bits, and 1 odd parity bit. The data for these bytes is stored in the SD Closed Captioning Registers [Addresses 53h–54h].

The ADV7300A/ADV7301A also supports the extended closed captioning operation that is active during even fields and is encoded on Line 284. The data for this operation is stored in the SD Closed Captioning Registers [Addresses 51h–52h].

All clock run-in signals and timing to support closed captioning on Lines 21 and 284 are generated automatically by the ADV7300A/

ADV7301A. All pixels inputs are ignored during Lines 21 and 284 if closed captioning is enabled.

FCC Code of Federal Regulations (CFR) 47, Section 15.119 and EIA608 describe the closed captioning information for Lines 21 and 284.

The ADV7300A/ADV7301A uses a single buffering method. This means that the closed captioning buffer is only 1 byte deep; therefore, there will be no frame delay in outputting the closed captioning data unlike other 2 byte deep buffering systems. The data must be loaded one line before (Line 20 or Line 283) it is output on Line 21 and Line 284. A typical implementation of this method is to use VSYNC to interrupt a microprocessor that in turn will load the new data (2 bytes) every field. If no new data is required for transmission, "0" must be inserted in both data registers; this is called nulling. It is also important to load "control codes," all of which are double bytes on Line 21, or a TV will not recognize them. If there is a message like "Hello World" that has an odd number of characters, it is important to pad it out to even to get the "end of caption" 2-byte control code to land in the same field.

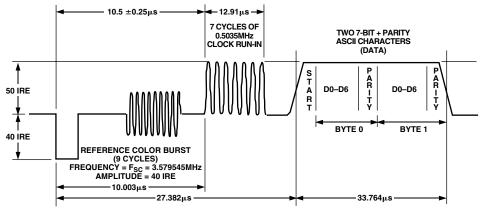



Figure 83. Closed Captioning Waveform, NTSC

# Appendix D

## **TEST PATTERNS**

The ADV7300A/ADV7301A can generate SD and HD test patterns.




Figure 84. NTSC Color Bars

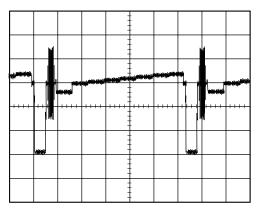



Figure 85. NTSC Black Bar (–21 mV, 0 mV, +3.5 mV, +7 mV, +10.5 mV, +14 mV, +18 mV, +23 mV)

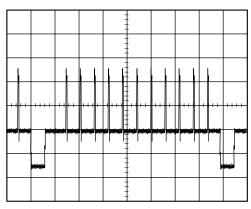



Figure 86. 525 p Hatch Pattern

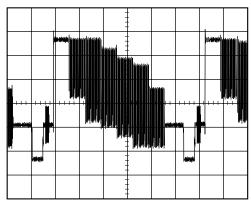



Figure 87. PAL Color Bars

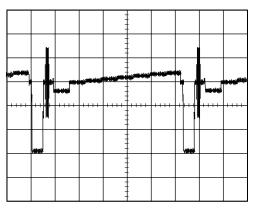



Figure 88. PAL Black Bar (–21 mV, 0 mV, +3.5 mV, +7 mV, +10.5 mV, +14 mV, +18 mV, +23 mV)

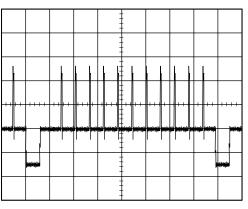



Figure 89. 625 p Hatch Pattern

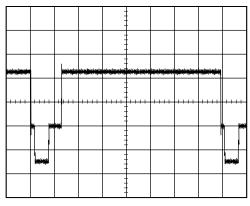



Figure 90. 525 p Field Pattern

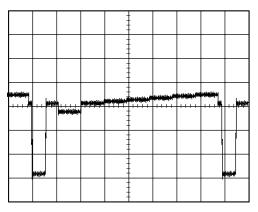



Figure 91. 525 p Black Bar (–35 mV, 0 mV, +7 mV, +14 mV, +21 mV, +28 mV, +35 mV)

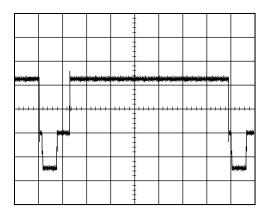



Figure 92. 625 p Field Pattern

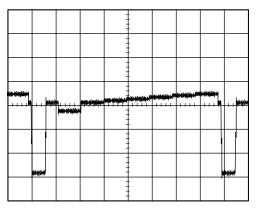



Figure 93. 625 p Black Bar (–35 mV, 0 mV, +7 mV, +14 mV, +21 mV, +28 mV, +35 mV)

## Table XXVIII. NTSC CVBS Output on DAC A

| Subaddress | Register Setting |
|------------|------------------|
| 00h        | 82h              |
| 11h        | 01h              |
| 40h        | 10h              |
| 42h        | 40h              |
| 44h        | 40h              |
| 4Ah        | 08h              |
| 4Ch        | 16h              |
| 4Dh        | 7Ch              |
| 4Eh        | F0h              |
| 4Fh        | 21h              |

All other registers are set to 00h.

For PAL CVBS output on DAC A, the same settings in Table XXVIII are used except those listed in Table XXIX.

#### Table XXIX. PAL CVBS Output on DAC A

| Subaddress | Register Setting |
|------------|------------------|
| 40h        | 11h              |
| 4Ch        | CBh              |
| 4Dh        | 8Ah              |
| 4Eh        | 09h              |
| 4Fh        | 2Ah              |

## Table XXX. NTSC Black Bar Pattern Output on DAC A

| Subaddress | Register Setting |
|------------|------------------|
| 00h        | 82h              |
| 02h        | 04h              |
| 11h        | 01h              |
| 40h        | 10h              |
| 42h        | 40h              |
| 44h        | 40h              |
| 4Ah        | 08h              |
| 4Ch        | 16h              |
| 4Dh        | 7Ch              |
| 4Eh        | F0h              |
| 4Fh        | 21h              |

All other registers are set to 00h. The Subcarrier Frequency Registers 4Ch–4Fh will be needed to generate the correct color burst signal.

For PAL Black Bar Pattern Output on DAC A, the same settings in Table XXX are used except those listed in Table XXXI.

#### Table XXXI. PAL Black Bar Pattern Output on DAC A

| Subaddress | Register Setting |
|------------|------------------|
| 40h        | 11h              |
| 4Ch        | CBh              |
| 4Dh        | 8Ah              |
| 4Eh        | 09h              |
| 4Fh        | 2Ah              |

#### Table XXXII. 525 p Hatch Pattern on DAC D

| Subaddress | Register Setting |
|------------|------------------|
| 00h        | 12h              |
| 01h        | 10h              |
| 02h        | 20h              |
| 10h        | 40h              |
| 11h        | 05h              |
| 16h        | A0h              |
| 17h        | 80h              |
| 18h        | 80h              |

All other registers are set to 00h.

For a 625 p Hatch Pattern on DAC D, the same settings in Table XXXII are used except for Subaddress 10h, which has a register setting of 50h.

Table XXXIII. 525 p Field Pattern\*

| Register Setting |
|------------------|
| 12h              |
| 10h              |
| 20h              |
| 40h              |
| 0Dh              |
| A0h              |
| 80h              |
| 80h              |
|                  |

All other registers are set to 00h.

\*See Figure 90.

For a 625 p Field Pattern on DAC D, the same settings in Table XXXIII are used except for Subaddress 10h, which has a register setting of 50h.

For a 525 p Black Bar Pattern Output on DAC D, the same settings in Table XXXIII are used except for Subaddresses 02h, which has a register setting of 24h.

For a 625 p Black Bar Pattern Output on DAC D, the same settings in Table XXXIII are used except for Subaddresses 02h and 10h, which have register settings of 24h and 50h, respectively.

# Appendix E

## **SD TIMING MODES**

[Subaddress 4Ah] Mode 0 (CCIR-656): Slave Option

(Timing Register 0 TR0 = X X X X X 0 0 0)

The ADV7300A/ADV7301A is controlled by the start active video (SAV) and end active video (EAV) time codes in the pixel data. All

timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after each line during active picture and retrace.  $\overline{S_VSYNC}$ ,  $\overline{S_HSYNC}$ , and  $\overline{S_BLANK}$  (if not used) pins should be tied high during this mode. Blank output is available.

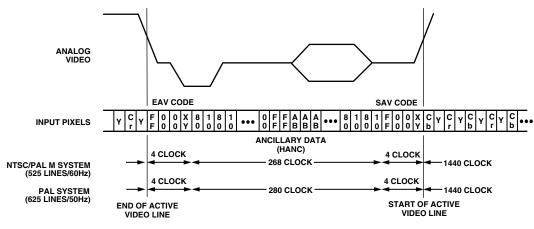



Figure 94. SD Slave Mode 0

## Mode 0 (CCIR-656): Master Option

(Timing Register 0 TR0 = X X X X 0 0 1) The ADV7300A/ADV7301A generates H, V, and F signals required for the SAV and EAV time codes in the CCIR-656 standard. The H bit is output on the  $\overline{S}$ -HSYNC pin, the V bit is output on the  $\overline{S}$ -BLANK pin, and the F bit is output on the  $\overline{S}$ -VSYNC pin.

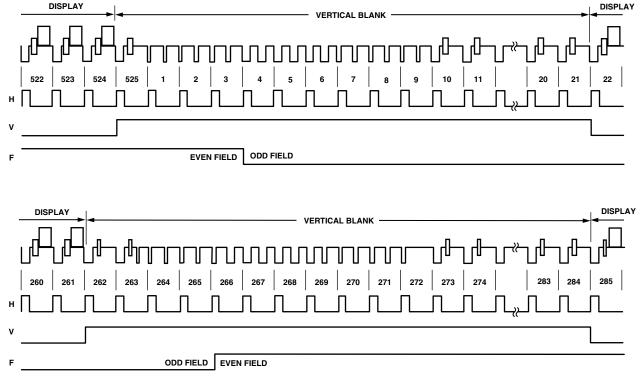
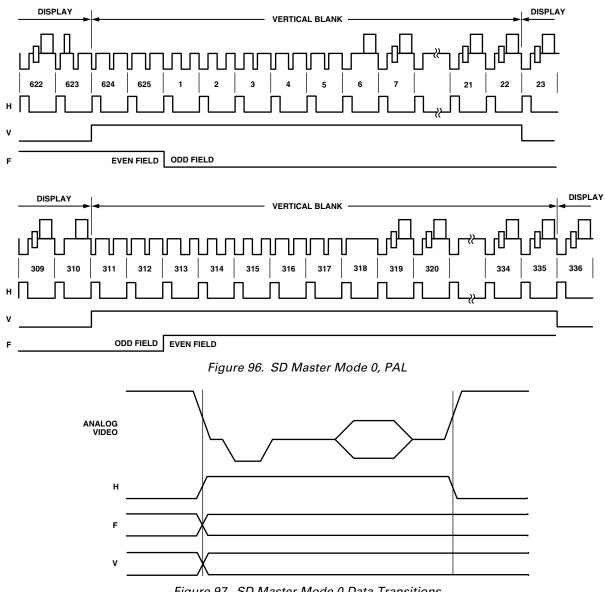
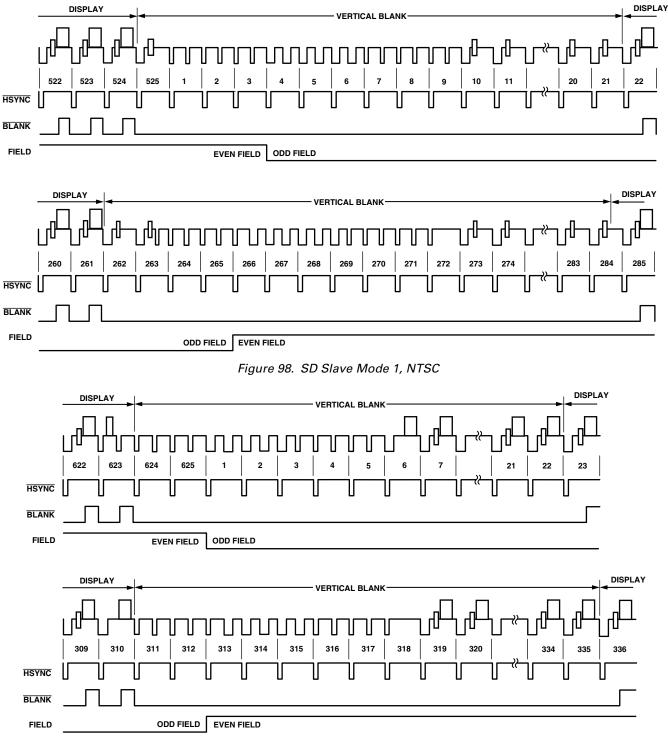
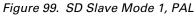



Figure 95. SD Master Mode 0, NTSC



Figure 97. SD Master Mode 0 Data Transitions

Mode 1: Slave Option HSYNC, BLANK, FIELD (Timing Register 0 TR0 = X X X X X 0 1 0) In this mode, the ADV7300A/ADV7301A accepts horizontal SYNC and odd/even FIELD signals. A transition of the FIELD

input when HSYNC is low indicates a new frame, i.e., vertical

retrace. The  $\overline{\text{BLANK}}$  signal is optional. When the  $\overline{\text{BLANK}}$  input is disabled, the ADV7300A/ADV7301A automatically blanks all normally blank lines as per CCIR-624. HSYNC is input on the  $\overline{\text{S}}$ -HSYNC pin,  $\overline{\text{BLANK}}$  on the  $\overline{\text{S}}$ -BLANK pin, and FIELD on the  $\overline{\text{S}}$ -VSYNC pin.





#### Mode 1: Master Option HSYNC, BLANK, FIELD (Timing Register 0 TR0 = X X X)

(Timing Register 0 TR0 = X X X X X 0 1 1) In this mode, the ADV7300A/ADV7301A can generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  $\overline{\text{HSYNC}}$  is low indicates a new frame, i.e., vertical retrace. The blank signal is optional. When the  $\overline{\text{BLANK}}$  input is disabled, the ADV7300A/ADV7301A automatically blanks all normally blank lines as per CCIR-624. Pixel data is latched on the rising clock edge following the timing signal transitions. <u>HSYNC</u> is output on the <u>S\_HSYNC</u> pin, <u>BLANK</u> on the <u>S\_BLANK</u> pin, and FIELD on the <u>S\_VSYNC</u> pin.

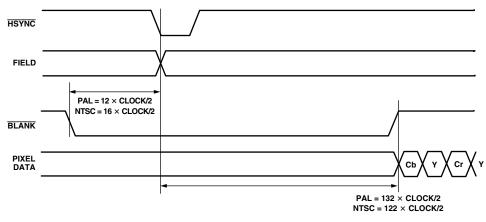



Figure 100. SD Timing Mode 1 Odd/Even Field Transitions, Master/Slave

Mode 2: Slave Option HSYNC, VSYNC, BLANK (Timing Register 0 TR0 = X X X X X 1 0 0) In this mode, the ADV7300A/ADV7301A accepts horizontal and vertical SYNC signals. A coincident low transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A  $\overline{\text{VSYNC}}$  low transition when  $\overline{\text{HSYNC}}$  is high indicates the start of an even field. The  $\overline{\text{BLANK}}$  signal is optional. When the  $\overline{\text{BLANK}}$  input is disabled, the ADV7300A/ADV7301A automatically blanks all normally blank lines as per CCIR-624. <u>HSYNC</u> is input on the  $\overline{\text{S}}$ -HSYNC pin, BLANK on the  $\overline{\text{S}}$ -BLANK pin, and FIELD on the  $\overline{\text{S}}$ -VSYNC pin.

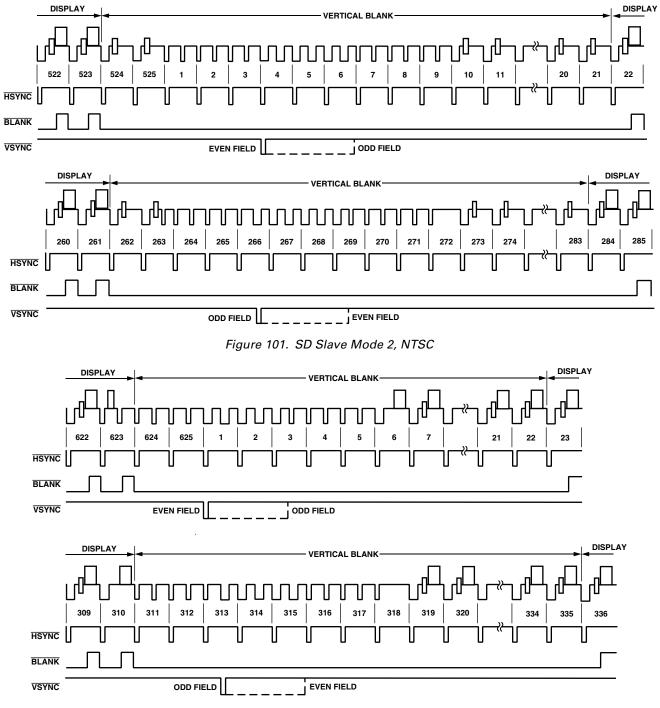



Figure 102. SD Slave Mode 2, PAL

## Mode 2: Master Option HSYNC, VSYNC, BLANK

(Timing Register 0 TR0 = X X X X X 1 0 1) In this mode, the ADV7300A/ADV7301A can generate horizontal and vertical SYNC signals. A coincident low transition of both  $\overline{\text{HSYNC}}$  and  $\overline{\text{VSYNC}}$  inputs indicates the start of an odd field. A  $\overline{\text{VSYNC}}$  low transition when  $\overline{\text{HSYNC}}$  is high indicates the start of an even field. The  $\overline{\text{BLANK}}$  signal is optional. When the  $\overline{\text{BLANK}}$  input is disabled, the ADV7300A/ADV7301A automatically blanks all normally blank lines as per CCIR-624. <u>HSYNC</u> is output on the S\_HSYNC pin,  $\overline{\text{BLANK}}$  on the S\_BLANK pin, and FIELD on the S\_VSYNC pin.

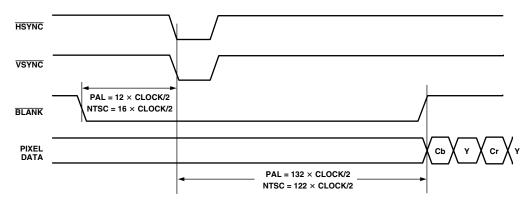



Figure 103. SD Timing Mode 2 Even to Odd Field Transition, Master/Slave

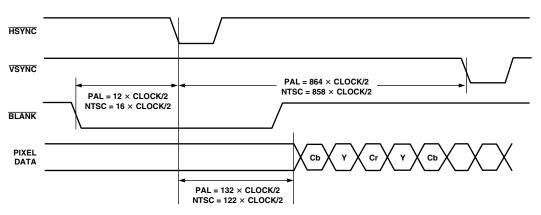



Figure 104. SD Timing Mode 2 Odd to Even Field Transition, Master/Slave

Mode 3: Master/Slave Option HSYNC, BLANK, FIELD

(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1) In this mode, the ADV7300A/ADV7301A accepts or generates horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  $\overline{\text{HSYNC}}$  is high indicates a new frame, i.e., vertical retrace. The  $\overline{\text{BLANK}}$  signal is optional. When the  $\overline{\text{BLANK}}$  input is disabled, the ADV7300A/ADV7301A automatically blanks all normally blank lines as per CCIR-624.  $\overline{\text{HSYNC}}$  is interfaced on the  $\overline{\text{S}}_{-}$ HSYNC pin,  $\overline{\text{BLANK}}$  on the  $\overline{\text{S}}_{-}$ BLANK pin, and FIELD on the  $\overline{\text{S}}_{-}$ VSYNC pin.

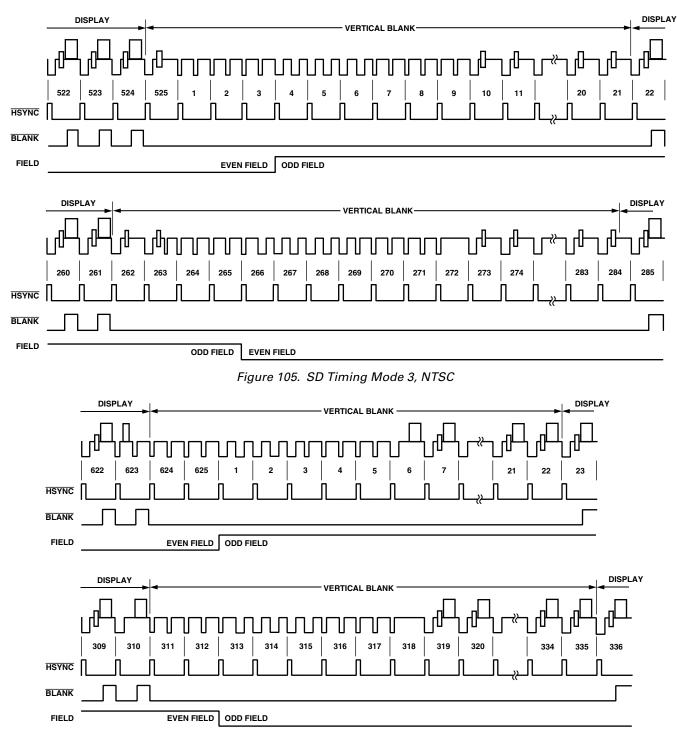



Figure 106. SD Timing Mode 3, PAL

## Appendix F

## VIDEO OUTPUT LEVELS

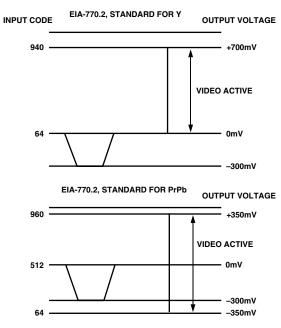



Figure 107. EIA-770.2 Standard Output Signals (525 p)

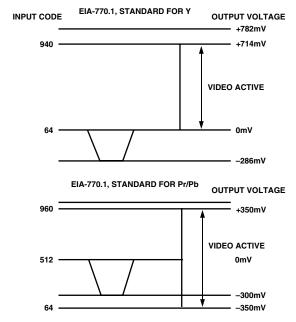



Figure 108. EIA-770.1 Standard Output Signals (525 p)

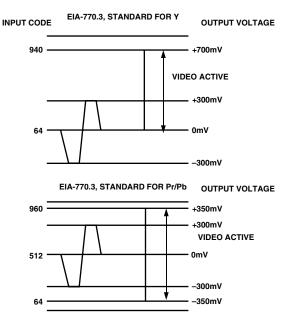



Figure 109. EIA-770.3 Standard Output Signals (1080 i, 720 p)

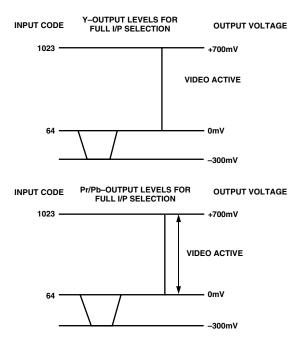



Figure 110. Output Levels for Full Input Selection

## Appendix G

## VIDEO STANDARDS

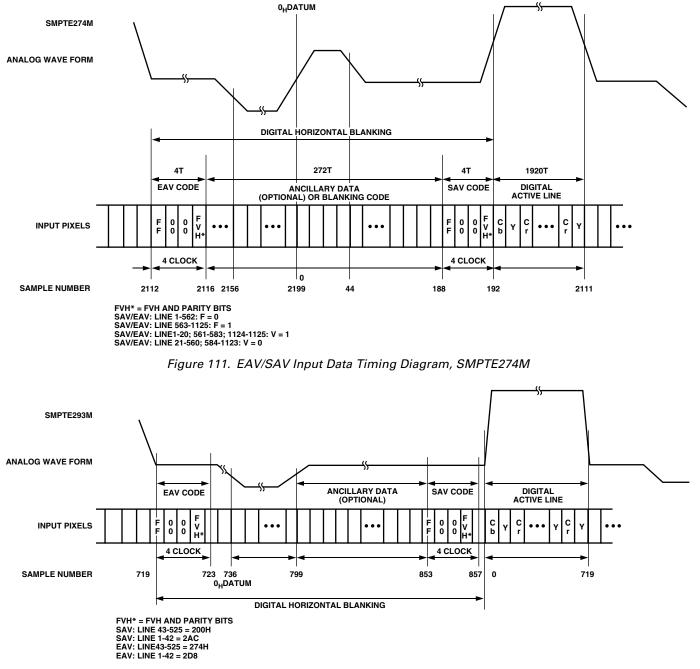



Figure 112. EAV/SAV Input Data Timing Diagram, SMPTE293M

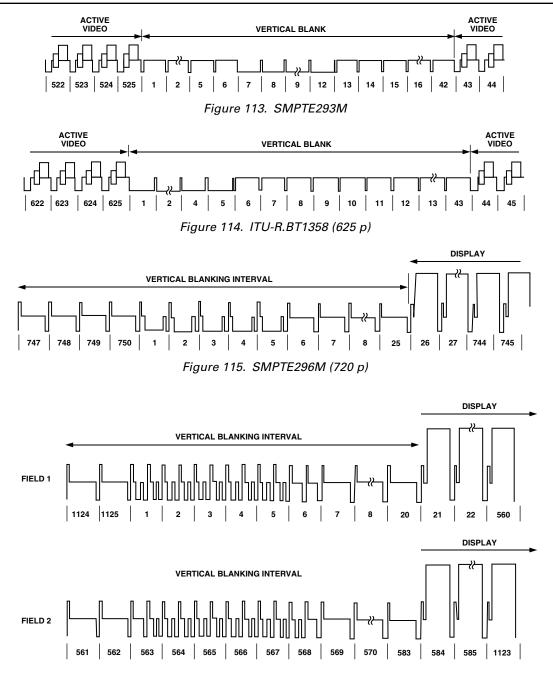
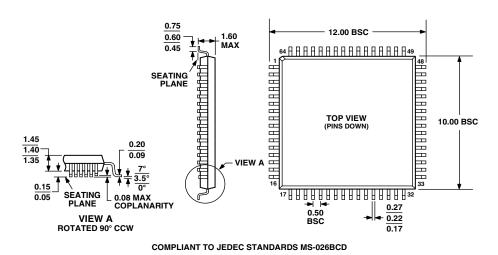




Figure 116. SMPTE274M (1080 i)

### **OUTLINE DIMENSIONS**

Dimensions shown in millimeters

#### 64-Lead Thin Plastic Quad Flatpack [LQFP] (ST-64B)

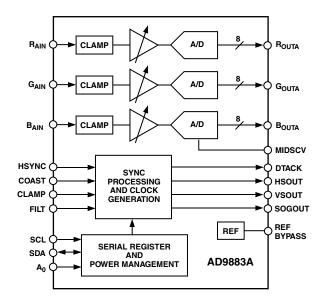


# **Revision History**

| Location                                                                | Page |
|-------------------------------------------------------------------------|------|
| 9/02—Data Sheet changed from REV. 0 to REV. A.                          |      |
| Changes to Figure 1                                                     | 2    |
| Changes to SPECIFICATIONS                                               | 3    |
| Changes to TIMING SPECIFICATIONS                                        | 5    |
| Added Thermal Characteristics                                           | 12   |
| Changes to PIN FUNCTION DESCRIPTIONS                                    | 12   |
| Changes to Table IV                                                     |      |
| Changes to Table XII                                                    |      |
| Changes to Table XIII                                                   |      |
| Changes to the Realtime Control, Subcarrier Reset, Timing Reset section |      |
| Changes to SD SUBCARRIER FREQUENCY REGISTERS [Subaddress 4Ch-4Fh]       |      |
| Changes to Figure 79                                                    | 51   |
| Updated OUTLINE DIMENSIONS                                              | 68   |
|                                                                         |      |



# 110 MSPS/140 MSPS Analog Interface for Flat Panel Displays


# AD9883A

#### FEATURES

140 MSPS Maximum Conversion Rate 300 MHz Analog Bandwidth 0.5 V to 1.0 V Analog Input Range 500 ps p-p PLL Clock Jitter at 110 MSPS 3.3 V Power Supply Full Sync Processing Sync Detect for "Hot Plugging" Midscale Clamping Power-Down Mode Low Power: 500 mW Typical 4:2:2 Output Format Mode

APPLICATIONS RGB Graphics Processing LCD Monitors and Projectors Plasma Display Panels Scan Converters Microdisplays Digital TV

### FUNCTIONAL BLOCK DIAGRAM



#### **GENERAL DESCRIPTION**

The AD9883A is a complete 8-bit, 140 MSPS monolithic analog interface optimized for capturing RGB graphics signals from personal computers and workstations. Its 140 MSPS encode rate capability and full power analog bandwidth of 300 MHz supports resolutions up to SXGA ( $1280 \times 1024$  at 75 Hz).

The AD9883A includes a 140 MHz triple ADC with internal 1.25 V reference, a PLL, and programmable gain, offset, and clamp control. The user provides only a 3.3 V power supply, analog input, and Hsync and COAST signals. Three-state CMOS outputs may be powered from 2.5 V to 3.3 V.

The AD9883A's on-chip PLL generates a pixel clock from the Hsync input. Pixel clock output frequencies range from 12 MHz to

140 MHz. PLL clock jitter is 500 ps p-p typical at 140 MSPS. When the COAST signal is presented, the PLL maintains its output frequency in the absence of Hsync. A sampling phase adjustment is provided. Data, Hsync, and clock output phase relationships are maintained. The AD9883A also offers full sync processing for composite sync and sync-on-green applications.

A clamp signal is generated internally or may be provided by the user through the CLAMP input pin. This interface is fully programmable via a 2-wire serial interface.

Fabricated in an advanced CMOS process, the AD9883A is provided in a space-saving 80-lead LQFP surface-mount plastic package and is specified over the 0°C to 70°C temperature range.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781/329-4700
 www.analog.com

 Fax: 781/326-8703
 © Analog Devices, Inc., 2002

# AD9883A-SPECIFICATIONS

**Analog Interface** ( $V_D = 3.3 V$ ,  $V_{DD} = 3.3 V$ , ADC Clock = Maximum Conversion Rate unless otherwise noted.)

|                                                 |              | Test     |      | AD9883A   | KST-110                 |      | AD9883A  | KST-140           |                   |
|-------------------------------------------------|--------------|----------|------|-----------|-------------------------|------|----------|-------------------|-------------------|
| Parameter                                       | Temp         | Level    | Min  | Тур       | Max                     | Min  | Тур      | Max               | Unit              |
| RESOLUTION                                      |              |          |      | 8         |                         |      | 8        |                   | Bits              |
| DC ACCURACY                                     |              |          |      |           |                         |      |          |                   |                   |
| Differential Nonlinearity                       | 25°C         | I        |      | $\pm 0.5$ | +1.25/-1.0              |      | ±0.5     | +1.35/-1.0        | LSB               |
|                                                 | Full         | VI       |      |           | +1.35/-1.0              |      |          | +1.45/-1.0        | LSB               |
| Integral Nonlinearity                           | 25°C         | Ι        |      | $\pm 0.5$ | $\pm 1.85$              |      | ±0.5     | $\pm 2.0$         | LSB               |
| 6                                               | Full         | VI       |      |           | $\pm 2.0$               |      |          | ±2.3              | LSB               |
| No Missing Codes                                | Full         | VI       |      | Guara     |                         |      | Guara    | anteed            |                   |
| ANALOG INPUT                                    |              |          |      |           |                         |      |          |                   |                   |
| Input Voltage Range                             |              |          |      |           |                         |      |          |                   |                   |
| Minimum                                         | Full         | VI       |      |           | 0.5                     |      |          | 0.5               | V p-p             |
| Maximum                                         | Full         | VI       | 1.0  |           |                         | 1.0  |          |                   | V p-p             |
| Gain Tempco                                     | 25°C         | V        |      | 100       |                         |      | 100      |                   | ppm/°C            |
| Input Bias Current                              | 25°C         | IV       |      |           | 1                       |      |          | 1                 | μA                |
| •                                               | Full         | IV       |      |           | 1                       |      |          | 1                 | μA                |
| Input Offset Voltage                            | Full         | VI       |      | 7         | 50                      |      | 7        | 70                | mV                |
| Input Full-Scale Matching                       | Full         | VI       |      | 1.5       | 6.0                     |      | 1.5      | 8.0               | % FS              |
| Offset Adjustment Range                         | Full         | VI       | 46   | 49        | 52                      | 46   | 49       | 52                | % FS              |
| REFERENCE OUTPUT                                |              |          |      |           |                         |      |          |                   |                   |
| Output Voltage                                  | Full         | VI       | 1.20 | 1.25      | 1.32                    | 1.20 | 1.25     | 1.32              | V                 |
| Temperature Coefficient                         | Full         | V        | 1.20 | $\pm 50$  | 1.5 -                   |      | $\pm 50$ | 1.5 -             | ppm/°C            |
| SWITCHING PERFORMANCE                           |              |          |      |           |                         |      |          |                   | II · ·            |
| Maximum Conversion Rate                         | Full         | VI       | 110  |           |                         |      | 140      |                   | MSPS              |
| Minimum Conversion Rate                         | Full         | IV       | 110  |           | 10                      |      | 140      | 10                | MSPS              |
| Data to Clock Skew                              | Full         | IV       | -0.5 |           | +2.0                    | -0.5 |          | +2.0              |                   |
|                                                 | Full         | VI       | 4.7  |           | +2.0                    | 4.7  |          | +2.0              | ns                |
| t <sub>BUFF</sub>                               | Full         | VI       | 4.0  |           |                         | 4.0  |          |                   | μs                |
| t <sub>STAH</sub>                               | Full         | VI       | 0    |           |                         | 0    |          |                   | μs                |
| t <sub>DHO</sub>                                | Full         | VI       | 4.7  |           |                         | 4.7  |          |                   | μs                |
| t <sub>DAL</sub>                                | Full         | VI       | 4.0  |           |                         | 4.0  |          |                   | μs                |
| t <sub>DAH</sub>                                | Full         | VI       | 250  |           |                         | 250  |          |                   | μs                |
| t <sub>DSU</sub>                                | Full         | VI       | 4.7  |           |                         | 4.7  |          |                   | ns                |
| t <sub>STASU</sub>                              | Full         | VI       |      |           |                         | 4.7  |          |                   | μs                |
| t <sub>STOSU</sub>                              | 1            |          | 4.0  |           | 110                     |      |          | 110               | μs<br>1-TT-       |
| HSYNC Input Frequency<br>Maximum PLL Clock Rate | Full         | IV       | 15   |           | 110                     | 15   |          | 110               | kHz               |
|                                                 | Full         | VI       | 110  |           | 10                      | 140  |          | 10                | MHz               |
| Minimum PLL Clock Rate                          | Full         | IV       |      | 400       | 12<br>7001              |      | 100      | 12<br>7001        | MHz               |
| PLL Jitter                                      | 25°C         | IV       |      | 400       | $700^{1}$<br>$1000^{1}$ |      | 400      | 700 <sup>1</sup>  | ps p-p            |
| Sampling Phase Tempco                           | Full<br>Full | IV<br>IV |      | 15        | 1000-                   |      | 15       | 1000 <sup>1</sup> | ps p-p<br>ps/°C   |
| DIGITAL INPUTS                                  |              |          |      | 13        |                         |      |          |                   | P <sup>07</sup> C |
|                                                 | E-11         | VT.      | 2.5  |           |                         | 2.5  |          |                   | V                 |
| Input Voltage, High $(V_{IH})$                  | Full         | VI       | 2.5  |           | 0.8                     | 2.5  |          | 0.8               | V<br>V            |
| Input Voltage, Low $(V_{IL})$                   | Full         | VI       |      |           | 0.8                     |      |          | 0.8               |                   |
| Input Voltage, High $(V_{IH})$                  | Full         | V        |      |           | -1.0                    |      |          | -1.0              | μA                |
| Input Voltage, Low (V <sub>IL</sub> )           | Full         | V        |      | 2         | +1.0                    |      | 2        | +1.0              | μA<br>πE          |
| Input Capacitance                               | 25°C         | V        |      | 3         |                         |      | 3        |                   | pF                |

|                                         |      | Test  | AD                | 9883AKS | <b>T-110</b> | AI                | D9883AKS | ST-140 |      |
|-----------------------------------------|------|-------|-------------------|---------|--------------|-------------------|----------|--------|------|
| Parameter                               | Temp | Level | Min               | Тур     | Max          | Min               | Тур      | Max    | Unit |
| DIGITAL OUTPUTS                         |      |       |                   |         |              |                   |          |        |      |
| Output Voltage, High (V <sub>OH</sub> ) | Full | VI    | $V_{\rm D} - 0.1$ |         |              | $V_{\rm D} - 0.1$ | 1        |        | V    |
| Output Voltage, Low $(V_{OI})$          | Full | VI    |                   |         | 0.1          |                   |          | 0.1    | V    |
| Duty Cycle DATACK                       | Full | IV    | 45                | 50      | 55           | 45                | 50       | 55     | %    |
| Output Coding                           |      |       |                   | Binary  |              |                   | Binary   |        |      |
| POWER SUPPLY                            |      |       |                   |         |              |                   |          |        |      |
| V <sub>D</sub> Supply Voltage           | Full | IV    | 3.0               | 3.3     | 3.6          | 3.15              | 3.3      | 3.6    | V    |
| V <sub>DD</sub> Supply Voltage          | Full | IV    | 2.2               | 3.3     | 3.6          | 2.2               | 3.3      | 3.6    | V    |
| P <sub>VD</sub> Supply Voltage          | Full | IV    | 3.0               | 3.3     | 3.6          | 3.0               | 3.3      | 3.6    | V    |
| $I_D$ Supply Current (V <sub>D</sub> )  | 25°C | V     |                   | 132     |              |                   | 180      |        | mA   |
| $I_{DD}$ Supply Current $(V_{DD})^2$    | 25°C | V     |                   | 19      |              |                   | 26       |        | mA   |
| $IP_{VD}$ Supply Current ( $P_{VD}$ )   | 25°C | V     |                   | 8       |              |                   | 11       |        | mA   |
| Total Power Dissipation                 | Full | VI    |                   | 525     | 650          |                   | 650      | 800    | mW   |
| Power-Down Supply Current               | Full | VI    |                   | 5       | 10           |                   | 5        | 10     | mA   |
| Power-Down Dissipation                  | Full | VI    |                   | 16.5    | 33           |                   | 16.5     | 33     | mW   |
| DYNAMIC PERFORMANCE                     |      |       |                   |         |              |                   |          |        |      |
| Analog Bandwidth, Full Power            | 25°C | V     |                   | 300     |              |                   | 300      |        | MHz  |
| Transient Response                      | 25°C | V     |                   | 2       |              |                   | 2        |        | ns   |
| Overvoltage Recovery Time               | 25°C | V     |                   | 1.5     |              |                   | 1.5      |        | ns   |
| Signal-to-Noise Ratio (SNR)             | 25°C | V     |                   | 44      |              |                   | 43       |        | dB   |
| (Without Harmonics)                     | Full | V     |                   | 43      |              |                   | 42       |        | dB   |
| $f_{IN} = 40.7 \text{ MHz}$             |      |       |                   |         |              |                   |          |        |      |
| Crosstalk                               | Full | V     |                   | 55      |              |                   | 55       |        | dBc  |
| THERMAL CHARACTERISTIC                  | CS   |       |                   |         |              |                   |          |        |      |
| $\theta_{IC}$ Junction-to-Case          |      |       |                   |         |              |                   |          |        |      |
| Thermal Resistance                      |      | V     |                   | 16      |              |                   | 16       |        | °C/W |
| $\theta_{IA}$ Junction-to-Ambient       |      |       |                   |         |              |                   |          |        |      |
| Thermal Resistance                      |      | V     |                   | 35      |              |                   | 35       |        | °C/W |

NOTES <sup>1</sup>VCO Range = 10, Charge Pump Current = 110, PLL Divider = 1693. <sup>2</sup>DATACK Load = 15 pF, Data Load = 5 pF.

Specifications subject to change without notice.

#### **ABSOLUTE MAXIMUM RATINGS\***

| V <sub>D</sub> 3.6 V                  |
|---------------------------------------|
| V <sub>DD</sub> 3.6 V                 |
| Analog Inputs V <sub>D</sub> to 0.0 V |
| VREF IN $\ldots$ VD to 0.0 V          |
| Digital Inputs 5 V to 0.0 V           |
| Digital Output Current                |
| Operating Temperature –25°C to +85°C  |
| Storage Temperature                   |
| Maximum Junction Temperature 150°C    |
| Maximum Case Temperature 150°C        |

\*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

### **EXPLANATION OF TEST LEVELS**

## Test Level

- I. 100% production tested.
- II. 100% production tested at 25°C and sample tested at specified temperatures.
- III. Sample tested only.
- IV. Parameter is guaranteed by design and characterization testing.
- V. Parameter is a typical value only.
- VI. 100% production tested at 25°C; guaranteed by design and characterization testing.

#### **ORDERING GUIDE**

| Model          | Temperature<br>Range | Package<br>Description     | Package<br>Option |
|----------------|----------------------|----------------------------|-------------------|
| AD9883AKST-140 | 0°C to 70°C          | Thin Plastic Quad Flatpack | ST-80             |
| AD9883AKST-110 | 0°C to 70°C          | Thin Plastic Quad Flatpack | ST-80             |
| AD9883A/PCB    | 25°C                 | Evaluation Board           |                   |

#### CAUTION\_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9883A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



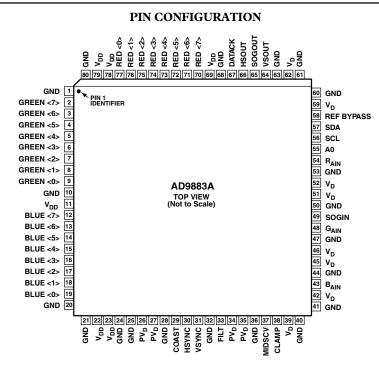



Table I. Complete Pinout List

| Pin<br>Type  | Mnemonic                                                                                              | Function                                                                                                                                                                                                                                                                                    | Value                                                                                                                                      | Pin<br>Number                                                                                                            |
|--------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Inputs       | R <sub>AIN</sub><br>G <sub>AIN</sub><br>B <sub>AIN</sub><br>HSYNC<br>VSYNC<br>SOGIN<br>CLAMP<br>COAST | Analog Input for Converter R<br>Analog Input for Converter G<br>Analog Input for Converter B<br>Horizontal SYNC Input<br>Vertical SYNC Input<br>Input for Sync-on-Green<br>Clamp Input (External CLAMP Signal)<br>PLL COAST Signal Input                                                    | 0.0 V to 1.0 V<br>0.0 V to 1.0 V<br>0.0 V to 1.0 V<br>3.3 V CMOS<br>3.3 V CMOS<br>0.0 V to 1.0 V<br>3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS | 54<br>48<br>43<br>30<br>31<br>49<br>38<br>29                                                                             |
| Outputs      | Red [7:0]<br>Green [7:0]<br>Blue [7:0]<br>DATACK<br>HSOUT<br>VSOUT<br>SOGOUT                          | Outputs of Converter "Red," Bit 7 is the MSB<br>Outputs of Converter "Green," Bit 7 is the MSB<br>Outputs of Converter "Blue," Bit 7 is the MSB<br>Data Output Clock<br>HSYNC Output (Phase-Aligned with DATACK)<br>VSYNC Output (Phase-Aligned with DATACK)<br>Sync-on-Green Slicer Output | 3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS                                             | 70-77<br>2-9<br>12-19<br>67<br>66<br>64<br>65                                                                            |
| References   | REF BYPASS<br>MIDSCV<br>FILT                                                                          | Internal Reference Bypass<br>Internal Midscale Voltage Bypass<br>Connection for External Filter Components for Internal PLL                                                                                                                                                                 | 1.25 V                                                                                                                                     | 58<br>37<br>33                                                                                                           |
| Power Supply | V <sub>D</sub><br>V <sub>DD</sub><br>PV <sub>D</sub><br>GND                                           | Analog Power Supply<br>Output Power Supply<br>PLL Power Supply<br>Ground                                                                                                                                                                                                                    | 3.3 V<br>3.3 V<br>3.3 V<br>0 V                                                                                                             | 39, 42,<br>45, 46, 51, 52,<br>59, 62<br>11, 22, 23, 69,<br>78, 79<br>26, 27, 34, 35<br>1, 10, 20, 21,<br>24, 25, 28, 32, |
| Control      | SDA<br>SCL<br>A0                                                                                      | Serial Port Data I/O<br>Serial Port Data Clock (100 kHz Maximum)<br>Serial Port Address Input 1                                                                                                                                                                                             | 3.3 V CMOS<br>3.3 V CMOS<br>3.3 V CMOS                                                                                                     | 24, 25, 26, 52,         36, 40, 41, 44,         47, 50, 53, 60,         61, 63, 68, 80         57         56         55  |

| Pin Name                     | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTPUTS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HSOUT                        | Horizontal Sync Output<br>A reconstructed and phase-aligned version of the Hsync input. Both the polarity and duration of this output can be<br>programmed via serial bus registers. By maintaining alignment with DATACK and Data, data timing with respect to<br>horizontal sync can always be determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VSOUT                        | Vertical Sync Output<br>A reconstructed and phase-aligned version of the video Vsync. The polarity of this output can be controlled via a<br>serial bus bit. The placement and duration in all modes is set by the graphics transmitter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SOGOUT                       | Sync-On-Green Slicer Output<br>This pin outputs either the signal from the Sync-on-Green slicer comparator or an unprocessed but delayed version<br>of the Hsync input. See the Sync Processing Block Diagram (Figure 12) to view how this pin is connected.<br>(Note: Besides slicing off SOG, the output from this pin gets no other additional processing on the AD9883A.<br>Vsync separation is performed via the sync separator.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SERIAL POR                   | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2-Wire)<br>SDA<br>SCL<br>A0 | Serial Port Data I/O<br>Serial Port Data Clock<br>Serial Port Address Input 1<br>For a full description of the 2 wire serial register and how it works, refer to the 2 Wire Serial Control Port section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | For a full description of the 2-wire serial register and how it works, refer to the 2-Wire Serial Control Port section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DATA OUTP<br>RED             | Data Output, RED Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GREEN<br>BLUE                | Data Output, ICLD Channel<br>Data Output, GREEN Channel<br>Data Output, BLUE Channel<br>The main data outputs. Bit 7 is the MSB. The delay from pixel sampling time to output is fixed. When the sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | time is changed by adjusting the PHASE register, the output timing is shifted as well. The DATACK and HSOUT outputs are also moved, so the timing relationship among the signals is maintained. For exact timing information, refer to Figures 7 and 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DATA CLOC                    | K OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DATACK                       | Data Output Clock<br>This is the main clock output signal used to strobe the output data and HSOUT into external logic. It is produced by the<br>internal clock generator and is synchronous with the internal pixel sampling clock. When the sampling time is changed<br>by adjusting the PHASE register, the output timing is shifted as well. The Data, DATACK, and HSOUT outputs are all<br>moved, so the timing relationship among the signals is maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| INPUTS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| R <sub>AIN</sub>             | Analog Input for RED Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G <sub>AIN</sub>             | Analog Input for GREEN Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B <sub>AIN</sub>             | Analog Input for BLUE Channel<br>High impedance inputs that accept the RED, GREEN, and BLUE channel graphics signals, respectively. (The three<br>channels are identical, and can be used for any colors, but colors are assigned for convenient reference.) They<br>accommodate input signals ranging from 0.5 V to 1.0 V full scale. Signals should be ac-coupled to these pins to<br>support clamp operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HSYNC                        | Horizontal Sync Input<br>This input receives a logic signal that establishes the horizontal timing reference and provides the frequency reference<br>for pixel clock generation. The logic sense of this pin is controlled by serial register 0Eh Bit 6 (Hsync Polarity). Only<br>the leading edge of Hsync is active; the trailing edge is ignored. When Hsync Polarity = 0, the falling edge of Hsync is used.<br>When Hsync Polarity = 1, the rising edge is active. The input includes a Schmitt trigger for noise immunity, with a nominal<br>input threshold of 1.5 V.                                                                                                                                                                                                                                                                                                                              |
| VSYNC                        | Vertical Sync Input<br>This is the input for vertical sync.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SOGIN                        | Sync-on-Green Input<br>This input is provided to assist with processing signals with embedded sync, typically on the GREEN channel. The pin is<br>connected to a high speed comparator with an internally generated threshold. The threshold level can be programmed in<br>10 mV steps to any voltage between 10 mV and 330 mV above the negative peak of the input signal. The default voltage<br>threshold is 150 mV. When connected to an ac-coupled graphics signal with embedded sync, it will produce a noninverting<br>digital output on SOGOUT. (This is usually a composite sync signal, containing both vertical and horizontal sync information<br>that must be separated before passing the horizontal sync signal to Hsync.) When not used, this input should be left<br>unconnected. For more details on this function and how it should be configured, refer to the Sync-on-Green section. |

| Pin Name        | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLAMP           | External Clamp Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | This logic input may be used to define the time during which the input signal is clamped to ground. It should be exercised when the reference dc level is known to be present on the analog input channels, typically during the back porch of the graphics signal. The CLAMP pin is enabled by setting control bit Clamp Function to 1, (register 0FH, Bit 7, default is 0). When disabled, this pin is ignored and the clamp timing is determined internally by counting a delay and duration from the trailing edge of the Hsync input. The logic sense of this pin is controlled by Clamp Polarity register 0FH, Bit 6. When not used, this pin must be grounded and Clamp Function programmed to 0.                               |
| COAST           | Clock Generator Coast Input (Optional)<br>This input may be used to cause the pixel clock generator to stop synchronizing with Hsync and continue producing a clock at<br>its current frequency and phase. This is useful when processing signals from sources that fail to produce horizontal sync<br>pulses during the vertical interval. The COAST signal is generally <i>not</i> required for PC-generated signals. The logic sense<br>of this pin is controlled by Coast Polarity (register 0FH, Bit 3). When not used, this pin may be grounded and Coast<br>Polarity programmed to 1, or tied HIGH (to $V_D$ through a 10 k $\Omega$ resistor) and Coast Polarity programmed to 0. Coast<br>Polarity defaults to 1 at power-up. |
| REF BYPASS      | Internal Reference BYPASS<br>Bypass for the internal 1.25 V bandgap reference. It should be connected to ground through a 0.1 $\mu$ F capacitor. The<br>absolute accuracy of this reference is $\pm 4\%$ , and the temperature coefficient is $\pm 50$ ppm, which is adequate for most AD9883A<br>applications. If higher accuracy is required, an external reference may be employed instead.                                                                                                                                                                                                                                                                                                                                         |
| MIDSCV          | Midscale Voltage Reference BYPASS<br>Bypass for the internal midscale voltage reference. It should be connected to ground through a 0.1 µF capacitor. The<br>exact voltage varies with the gain setting of the BLUE channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FILT            | External Filter Connection<br>For proper operation, the pixel clock generator PLL requires an external filter. Connect the filter shown in Figure 6 to<br>this pin. For optimal performance, minimize noise and parasitics on this node.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| POWER SUP       | PLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V <sub>D</sub>  | Main Power Supply<br>These pins supply power to the main elements of the circuit. They should be as quiet and filtered as possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V <sub>DD</sub> | Digital Output Power Supply<br>A large number of output pins (up to 25) switching at high speed (up to 110 MHz) generates a lot of power supply transients<br>(noise). These supply pins are identified separately from the $V_D$ pins so special care can be taken to minimize output<br>noise transferred into the sensitive analog circuitry. If the AD9883A is interfacing with lower voltage logic, $V_{DD}$ may be<br>connected to a lower supply voltage (as low as 2.5 V) for compatibility.                                                                                                                                                                                                                                   |
| PV <sub>D</sub> | Clock Generator Power Supply<br>The most sensitive portion of the AD9883A is the clock generation circuitry. These pins provide power to the clock PLL and<br>help the user design for optimal performance. The designer should provide "quiet," noise-free power to these pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GND             | Ground<br>The ground return for all circuitry on chip. It is recommended that the AD9883A be assembled on a single solid<br>ground plane, with careful attention to ground current paths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**PIN FUNCTION DESCRIPTIONS (continued)** 

### **DESIGN GUIDE**

#### **General Description**

The AD9883A is a fully integrated solution for capturing analog RGB signals and digitizing them for display on flat panel monitors or projectors. The circuit is ideal for providing a computer interface for HDTV monitors or as the front end to high performance video scan converters.

Implemented in a high performance CMOS process, the interface can capture signals with pixel rates up to 110 MHz.

The AD9883A includes all necessary input buffering, signal dc restoration (clamping), offset and gain (brightness and contrast) adjustment, pixel clock generation, sampling phase control, and output data formatting. All controls are programmable via a 2-wire serial interface. Full integration of these sensitive analog functions makes system design straightforward and less sensitive to the physical and electrical environment.

With a typical power dissipation of only 500 mW and an operating temperature range of  $0^{\circ}$ C to  $70^{\circ}$ C, the device requires no special environmental considerations.

#### **Digital Inputs**

All digital inputs on the AD9883A operate to 3.3 V CMOS levels. However, all digital inputs are 5 V tolerant. Applying 5 V to them will not cause any damage.

#### Input Signal Handling

The AD9883A has three high impedance analog input pins for the Red, Green, and Blue channels. They will accommodate signals ranging from 0.5 V to 1.0 V p-p.

Signals are typically brought onto the interface board via a DVI-I connector, a 15-pin D connector, or via BNC connectors. The AD9883A should be located as close as practical to the input connector. Signals should be routed via matched-impedance traces (normally 75  $\Omega$ ) to the IC input pins.

At that point the signal should be resistively terminated (75  $\Omega$  to the signal ground return) and capacitively coupled to the AD9883A inputs through 47 nF capacitors. These capacitors form part of the dc restoration circuit.

In an ideal world of perfectly matched impedances, the best performance can be obtained with the widest possible signal bandwidth. The ultrawide bandwidth inputs of the AD9883A (300 MHz) can track the input signal continuously as it moves from one pixel level to the next, and digitize the pixel during a long, flat pixel time. In many systems, however, there are mismatches, reflections, and noise, which can result in excessive ringing and distortion of the input waveform. This makes it more difficult to establish a sampling phase that provides good image quality. It has been shown that a small inductor in series with the input is effective in rolling off the input bandwidth slightly, and providing a high quality signal over a wider range of conditions. Using a Fair-Rite #2508051217Z0 High-Speed Signal Chip Bead inductor in the circuit of Figure 1 gives good results in most applications.

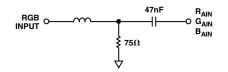



Figure 1. Analog Input Interface Circuit

### Hsync, Vsync Inputs

The interface also takes a horizontal sync signal, which is used to generate the pixel clock and clamp timing. This can be either a sync signal directly from the graphics source, or a preprocessed TTL or CMOS level signal.

The Hsync input includes a Schmitt trigger buffer for immunity to noise and signals with long rise times. In typical PC-based graphic systems, the sync signals are simply TTL-level drivers feeding unshielded wires in the monitor cable. As such, no termination is required.

### Serial Control Port

The serial control port is designed for 3.3 V logic. If there are 5 V drivers on the bus, these pins should be protected with 150  $\Omega$  series resistors placed between the pull-up resistors and the input pins.

### **Output Signal Handling**

The digital outputs are designed and specified to operate from a 3.3 V power supply ( $V_{DD}$ ). They can also work with a  $V_{DD}$  as low as 2.5 V for compatibility with other 2.5 V logic.

## Clamping

## **RGB** Clamping

To properly digitize the incoming signal, the dc offset of the input must be adjusted to fit the range of the on-board A/D converters.

Most graphics systems produce RGB signals with black at ground and white at approximately 0.75 V. However, if sync signals are embedded in the graphics, the sync tip is often at ground and black is at 300 mV. Then white is at approximately 1.0 V. Some common RGB line amplifier boxes use emitterfollower buffers to split signals and increase drive capability. This introduces a 700 mV dc offset to the signal, which must be removed for proper capture by the AD9883A.

The key to clamping is to identify a portion (time) of the signal when the graphic system is known to be producing black. An offset is then introduced which results in the A/D converters producing a black output (code 00h) when the known black input is present. The offset then remains in place when other signal levels are processed, and the entire signal is shifted to eliminate offset errors.

In most PC graphics systems, black is transmitted between active video lines. With CRT displays, when the electron beam has completed writing a horizontal line on the screen (at the right side), the beam is deflected quickly to the left side of the screen (called horizontal retrace) and a black signal is provided to prevent the beam from disturbing the image.

In systems with embedded sync, a blacker-than-black signal (Hsync) is produced briefly to signal the CRT that it is time to begin a retrace. For obvious reasons, it is important to avoid clamping on the tip of Hsync. Fortunately, there is virtually always a period following Hsync called the back porch where a good black reference is provided. This is the time when clamping should be done.

The clamp timing can be established by simply exercising the CLAMP pin at the appropriate time (with External Clamp = 1). The polarity of this signal is set by the Clamp Polarity bit.

A simpler method of clamp timing employs the AD9883A internal clamp timing generator. The Clamp Placement register is programmed with the number of pixel times that should pass after the trailing edge of HSYNC before clamping starts. A second register (Clamp Duration) sets the duration of the clamp. These are both 8-bit values, providing considerable flexibility in clamp generation. The clamp timing is referenced to the trailing edge of Hsync because, though Hsync duration can vary widely, the back porch (black reference) always follows Hsync. A good starting point for establishing clamping is to set the clamp placement to 09h (providing 9 pixel periods for the graphics signal to stabilize after sync) and set the clamp duration to 14h (giving the clamp 20 pixel periods to reestablish the black reference).

Clamping is accomplished by placing an appropriate charge on the external input coupling capacitor. The value of this capacitor affects the performance of the clamp. If it is too small, there will be a significant amplitude change during a horizontal line time (between clamping intervals). If the capacitor is too large, then it will take excessively long for the clamp to recover from a large change in incoming signal offset. The recommended value (47 nF) results in recovering from a step error of 100 mV to within 1/2 LSB in 10 lines with a clamp duration of 20 pixel periods on a 60 Hz SXGA signal.

## **YUV Clamping**

YUV graphic signals are slightly different from RGB signals in that the dc reference level (black level in RGB signals) can be at the midpoint of the graphics signal rather than the bottom. For these signals it can be necessary to clamp to the midscale range of the A/D converter range (80h) rather than bottom of the A/D converter range (00h).

Clamping to midscale rather than ground can be accomplished by setting the clamp select bits in the serial bus register. Each of the three converters has its own selection bit so that they can be clamped to either midscale or ground independently. These bits are located in register 10h and are Bits 0–2. The midscale reference voltage that each A/D converter clamps to is provided on the MIDSCV pin, (Pin 37). This pin should be bypassed to ground with a 0.1  $\mu$ F capacitor, (even if midscale clamping is not required).

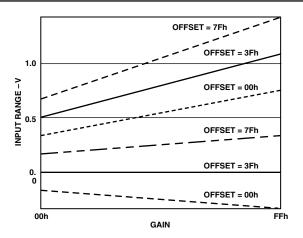



Figure 2. Gain and Offset Control

#### **Gain and Offset Control**

The AD9883A can accommodate input signals with inputs ranging from 0.5 V to 1.0 V full scale. The full-scale range is set in three 8-bit registers (Red Gain, Green Gain, and Blue Gain).

Note that *increasing* the gain setting results in an image with *less* contrast.

The offset control shifts the entire input range, resulting in a change in image brightness. Three 7-bit registers (Red Offset, Green Offset, Blue Offset) provide independent settings for each channel.

The offset controls provide a  $\pm 63$  LSB adjustment range. This range is connected with the full-scale range, so if the input range is doubled (from 0.5 V to 1.0 V) then the offset step size is also doubled (from 2 mV per step to 4 mV per step).

Figure 2 illustrates the interaction of gain and offset controls. The magnitude of an LSB in offset adjustment is proportional to the full-scale range, so changing the full-scale range also changes the offset. The change is minimal if the offset setting is near midscale. When changing the offset, the full-scale *range* is not affected, but the full-scale *level* is shifted by the same amount as the zero scale level.

### Sync-on-Green

The Sync-on-Green input operates in two steps. First, it sets a baseline clamp level off of the incoming video signal with a negative peak detector. Second, it sets the sync trigger level to a programmable level (typically 150 mV) above the negative peak. The Sync-on-Green input must be ac-coupled to the Green analog input through its own capacitor as shown in Figure 3. The value of the capacitor must be 1 nF  $\pm$  20%. If Sync-on-Green is not used, this connection is not required. Note: The Sync-on-Green signal is always negative polarity.

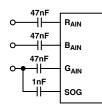



Figure 3. Typical Clamp Configuration

### **Clock Generation**

A phase locked loop (PLL) is employed to generate the pixel clock. In this PLL, the Hsync input provides a reference frequency. A voltage controlled oscillator (VCO) generates a much higher pixel clock frequency. This pixel clock is divided by the PLL divide value (registers 01H and 02H) and phase compared with the Hsync input. Any error is used to shift the VCO frequency and maintain lock between the two signals.

The stability of this clock is a very important element in providing the clearest and most stable image. During each pixel time, there is a period during which the signal is slewing from the old pixel amplitude and settling at its new value. Then there is a time when the input voltage is stable, before the signal must slew to a new value (Figure 4). The ratio of the slewing time to the stable time is a function of the bandwidth of the graphics DAC and the bandwidth of the transmission system (cable and termination). It is also a function of the overall pixel rate. Clearly, if the dynamic characteristics of the system remain fixed, then the slewing and settling time is likewise fixed. This time must be subtracted from the total pixel period, leaving the stable period. At higher pixel frequencies, the total cycle time is shorter, and the stable pixel time becomes shorter as well.

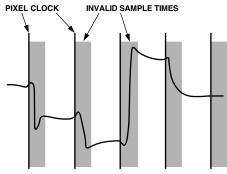



Figure 4. Pixel Sampling Times

Any jitter in the clock reduces the precision with which the sampling time can be determined, and must also be subtracted from the stable pixel time.

Considerable care has been taken in the design of the AD9883A's clock generation circuit to minimize jitter. As indicated in Figure 5, the clock jitter of the AD9883A is less than 5% of the total pixel time in all operating modes, making the reduction in the valid sampling time due to jitter negligible.

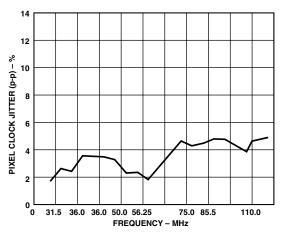
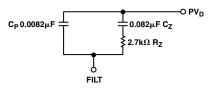




Figure 5. Pixel Clock Jitter vs. Frequency

The PLL characteristics are determined by the loop filter design, by the PLL Charge Pump Current and by the VCO range setting. The loop filter design is illustrated in Figure 6. Recommended settings of VCO range and charge pump current for VESA standard display modes are listed in Table V.



#### Figure 6. PLL Loop Filter Detail

Four programmable registers are provided to optimize the performance of the PLL. These registers are:

- 1. The 12-Bit Divisor Register. The input Hsync frequencies range from 15 kHz to 110 kHz. The PLL multiplies the frequency of the Hsync signal, producing pixel clock frequencies in the range of 12 MHz to 110 MHz. The Divisor Register controls the exact multiplication factor. This register may be set to any value between 221 and 4095. (The divide ratio that is actually used is the programmed divide ratio plus one.)
- 2. The 2-Bit VCO Range Register. To improve the noise performance of the AD9883A, the VCO operating frequency range is divided into three overlapping regions. The VCO Range Register sets this operating range. The frequency ranges for the lowest and highest regions are shown in Table II.

| Та | ble | II. | VCO | Frequency | Ranges |
|----|-----|-----|-----|-----------|--------|
|----|-----|-----|-----|-----------|--------|

| PV1 | PV0 | Pixel Clock Range<br>(MHz) | K <sub>VCO</sub> Gain<br>(MHz/V) |
|-----|-----|----------------------------|----------------------------------|
| 0   | 0   | 12–32                      | 150                              |
| 0   | 1   | 32-64                      | 150                              |
| 1   | 0   | 64–110                     | 150                              |
| 1   | 1   | 110-140                    | 180                              |

3. The 3-Bit Charge Pump Current Register. This register allows the current that drives the low pass loop filter to be varied. The possible current values are listed in Table III.

| Table III. Charge Pump Current/Control Bit | Table III. | Charge | Pump | Current/ | Control | Bits |
|--------------------------------------------|------------|--------|------|----------|---------|------|
|--------------------------------------------|------------|--------|------|----------|---------|------|

| Ip2 | Ip1 | Ip0 | Current (µA) |
|-----|-----|-----|--------------|
| 0   | 0   | 0   | 50           |
| 0   | 0   | 1   | 100          |
| 0   | 1   | 0   | 150          |
| 0   | 1   | 1   | 250          |
| 1   | 0   | 0   | 350          |
| 1   | 0   | 1   | 500          |
| 1   | 1   | 0   | 750          |
| 1   | 1   | 1   | 1500         |

4. The 5-Bit Phase Adjust Register. The phase of the generated sampling clock may be shifted to locate an optimum sampling point within a clock cycle. The Phase Adjust Register provides 32 phase-shift steps of 11.25° each. The Hsync signal with an identical phase shift is available through the HSOUT pin.

The COAST pin is used to allow the PLL to continue to run at the same frequency, in the absence of the incoming Hsync signal or during disturbances in Hsync (such as equalization pulses). This may be used during the vertical sync period, or any other time that the Hsync signal is unavailable. The polarity of the COAST signal may be set through the Coast Polarity Register. Also, the polarity of the Hsync signal may be set through the Hsync Polarity Register. If not using automatic polarity detection, the Hsync and COAST Polarity bits should be set to match the respective polarities of the input signals.

#### **Power Management**

The AD9883A uses the activity detect circuits, the active interface bits in the serial bus, the active interface override bits, and the power-down bit to determine the correct power state. There are three power states, full-power, seek mode, and power-down. Table IV summarizes how the AD9883A determines what power mode to be in and what circuitry is powered on/off in each of these modes. The power-down command has priority and then the automatic circuitry.

| Mode       | Inputs<br>Power-<br>Down <sup>1</sup> | Sync<br>Detect <sup>2</sup> | Powered On or<br>Comments                                       |
|------------|---------------------------------------|-----------------------------|-----------------------------------------------------------------|
| Full-Power | 1                                     | 1                           | Everything                                                      |
| Seek Mode  | 1                                     | 0                           | Serial Bus, Sync<br>Activity Detect, SOG,<br>Band Gap Reference |
| Power-Down | 0                                     | X                           | Serial Bus, Sync<br>Activity Detect, SOG,<br>Band Gap Reference |

NOTES

<sup>1</sup>Power-down is controlled via Bit 1 in serial bus register 0Fh.

<sup>2</sup>Sync detect is determined by OR-ing Bits 7, 4, and 1 in serial bus register 14h.

| Standard | Resolution         | Refresh<br>Rate | Horizontal<br>Frequency | Pixel Rate  | VCORNGE | Current |
|----------|--------------------|-----------------|-------------------------|-------------|---------|---------|
| VGA      | $640 \times 480$   | 60 Hz           | 31.5 kHz                | 25.175 MHz  | 00      | 110     |
|          |                    | 72 Hz           | 37.7 kHz                | 31.500 MHz  | 00      | 110     |
|          |                    | 75 Hz           | 37.5 kHz                | 31.500 MHz  | 00      | 110     |
|          |                    | 85 Hz           | 43.3 kHz                | 36.000 MHz  | 01      | 100     |
| SVGA     | $800 \times 600$   | 56 Hz           | 35.1 kHz                | 36.000 MHz  | 01      | 100     |
|          |                    | 60 Hz           | 37.9 kHz                | 40.000 MHz  | 01      | 100     |
|          |                    | 72 Hz           | 48.1 kHz                | 50.000 MHz  | 01      | 101     |
|          |                    | 75 Hz           | 46.9 kHz                | 49.500 MHz  | 01      | 101     |
|          |                    | 85 Hz           | 53.7 kHz                | 56.250 MHz  | 01      | 101     |
| XGA      | $1024 \times 768$  | 60 Hz           | 48.4 kHz                | 65.000 MHz  | 10      | 101     |
|          |                    | 70 Hz           | 56.5 kHz                | 75.000 MHz  | 10      | 100     |
|          |                    | 75 Hz           | 60.0 kHz                | 78.750 MHz  | 10      | 100     |
|          |                    | 80 Hz           | 64.0 kHz                | 85.500 MHz  | 10      | 101     |
|          |                    | 85 Hz           | 68.3 kHz                | 94.500 MHz  | 10      | 101     |
| SXGA     | $1280 \times 1024$ | 60 Hz           | 64.0 kHz                | 108.000 MHz | 10      | 110     |
|          |                    | 75 Hz           | 80.0 kHz                | 135.000 MHz | 11      | 110     |

#### Timing

The following timing diagrams show the operation of the AD9883A.

The output data clock signal is created so that its rising edge always occurs between data transitions, and can be used to latch the output data externally.

There is a pipeline in the AD9883A, which must be flushed before valid data becomes available. This means four data sets are presented before valid data is available.

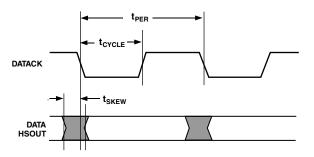



Figure 7. Output Timing

#### Hsync Timing

Horizontal Sync (Hsync) is processed in the AD9883A to eliminate ambiguity in the timing of the leading edge with respect to the phase-delayed pixel clock and data.

The Hsync input is used as a reference to generate the pixel sampling clock. The sampling phase can be adjusted, with respect to Hsync, through a full 360° in 32 steps via the Phase Adjust Register (to optimize the pixel sampling time). Display systems use Hsync to align memory and display write cycles, so it is important to have a stable timing relationship between Hsync output (HSOUT) and data clock (DATACK).

Three things happen to Horizontal Sync in the AD9883A. First, the polarity of Hsync input is determined and will thus have a known output polarity. The known output polarity can be programmed either active high or active low (register 0EH, Bit 5). Second, HSOUT is aligned with DATACK and data outputs. Third, the duration of HSOUT (in pixel clocks) is set via register 07H. HSOUT is the sync signal that should be used to drive the rest of the display system.

#### **Coast Timing**

In most computer systems, the Hsync signal is provided continuously on a dedicated wire. In these systems, the COAST input and function are unnecessary, and should not be used and the pin should be permanently connected to the inactive state.

In some systems, however, Hsync is disturbed during the Vertical Sync period (Vsync). In some cases, Hsync pulses disappear. In other systems, such as those that employ Composite Sync (Csync) signals or embedded Sync-on-Green (SOG), Hsync includes equalization pulses or other distortions during Vsync. To avoid upsetting the clock generator during Vsync, it is important to ignore these distortions. If the pixel clock PLL sees extraneous pulses, it will attempt to lock to this new frequency, and will have changed frequency by the end of the Vsync period. It will then take a few lines of correct Hsync timing to recover at the beginning of a new frame, resulting in a "tearing" of the image at the top of the display.

The COAST input is provided to eliminate this problem. It is an asynchronous input that disables the PLL input and allows the clock to free-run at its then-current frequency. The PLL can free-run for several lines without significant frequency drift.

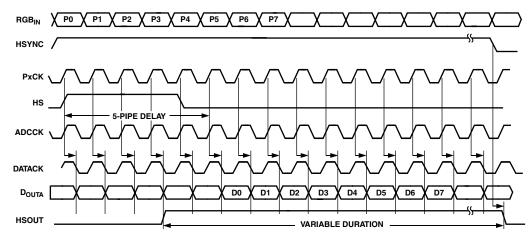



Figure 8. 4:4:4 Mode (For RGB and YUV)

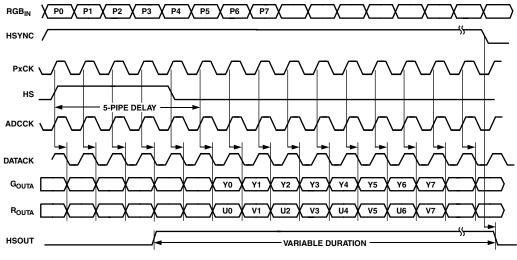



Figure 9. 4:2:2 Mode (For YUV Only)

### 2-Wire Serial Register Map

The AD9883A is initialized and controlled by a set of registers, which determine the operating modes. An external controller is employed to write and read the control registers through the two-line serial interface port.

| Hex<br>Address | Write and<br>Read or<br>Read Only | Bits | Default<br>Value    | Register<br>Name           | Function                                                                                                                                                                                                                                                                     |  |
|----------------|-----------------------------------|------|---------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00H            | RO                                | 7:0  |                     | Chip Revision              | An 8-bit register that represents the silicon revision level.<br>Revision $0 = 0000 0000$ .                                                                                                                                                                                  |  |
| 01H*           | R/W                               | 7:0  | 01101001            | PLL Div MSB                | This register is for Bits [11:4] of the PLL divider. Larger values mean<br>the PLL operates at a faster rate. This register should be loaded first<br>whenever a change is needed. This will give the PLL more time to<br>lock.                                              |  |
| 02H*           | R/W                               | 7:4  | 1101****            | PLL Div LSB                | Bits [7:4] LSBs of the PLL divider word.                                                                                                                                                                                                                                     |  |
| 03H            | R/W                               | 7:3  | 01*****<br>**001*** |                            | Bits [7:6] VCO Range. Selects VCO frequency range. (See PLL description).<br>Bits [5:3] Charge Pump Current. Varies the current that drives the low pass filter. (See PLL description.)                                                                                      |  |
| 04H            | R/W                               | 7:3  | 10000***            | Phase Adjust               | ADC Clock Phase Adjustment. Larger values mean more delay.<br>(1 LSB = $T/32$ )                                                                                                                                                                                              |  |
| 05H            | R/W                               | 7:0  | 10000000            | Clamp<br>Placement         | Places the Clamp signal an integer number of clock periods after the trail-<br>ing edge of the Hsync signal.                                                                                                                                                                 |  |
| 06H            | R/W                               | 7:0  | 10000000            | Clamp<br>Duration          | Number of clock periods that the Clamp signal is actively clamping.                                                                                                                                                                                                          |  |
| 07H            | R/W                               | 7:0  | 00100000            | Hsync Output<br>Pulsewidth | Sets the number of pixel clocks that HSOUT will remain active.                                                                                                                                                                                                               |  |
| 08H            | R/W                               | 7:0  | 10000000            | Red Gain                   | Controls ADC input range (contrast) of each respective channel.<br>Bigger values give less contrast.                                                                                                                                                                         |  |
| 09H            | R/W                               | 7:0  | 1000000             | Green Gain                 |                                                                                                                                                                                                                                                                              |  |
| 0AH            | R/W                               | 7:0  | 1000000             | Blue Gain                  |                                                                                                                                                                                                                                                                              |  |
| 0BH            | R/W                               | 7:1  | 1000000*            | Red Offset                 | Controls dc offset (brightness) of each respective channel. Bigger values decrease brightness.                                                                                                                                                                               |  |
| 0CH            | R/W                               | 7:1  | 1000000*            | Green Offset               |                                                                                                                                                                                                                                                                              |  |
| 0DH            | R/W                               | 7:1  | 1000000*            | Blue Offset                |                                                                                                                                                                                                                                                                              |  |
| 0EH            | R/W                               | 7:0  | 0******<br>*1*****  | Sync Control               | Bit 7 – Hsync Polarity Override. (Logic 0 = Polarity determined by<br>chip, Logic 1 = Polarity set by Bit 6 in register 0Eh.)<br>Bit 6 – Hsync Input Polarity. Indicates polarity of incoming Hsync<br>signal to the PLL. (Logic 0 = Active Low, Logic 1 = Active High.)     |  |
|                |                                   |      | **0****             |                            | Bit 5 – Hsync Output Polarity. (Logic 0 = Logic High Sync, Logic 1 = Logic Low Sync.)                                                                                                                                                                                        |  |
|                |                                   |      | ***0****            |                            | Bit 4 – Active Hsync Override. If set to Logic 1, the user can select<br>the Hsync to be used via Bit 3. If set to Logic 0, the active interface<br>is selected via Bit 6 in register 14H.                                                                                   |  |
|                |                                   |      | ****0***            |                            | Bit 3 – Active Hsync Select. Logic 0 selects Hsync as the active sync. Logic 1 selects Sync-on-Green as the active sync. Note: The indicated Hsync will be used only if Bit 4 is set to Logic 1 or if both syncs are active, (Bits 1, $7 = \text{Logic 1}$ in register 14H). |  |
|                |                                   |      | *****0**            |                            | Bit 2 – Vsync Output Invert. (Logic 1 = No Invert, Logic 0 = Invert)                                                                                                                                                                                                         |  |
|                |                                   |      | *****0*             |                            | Bit 1 – Active Vsync Override. If set to Logic 1, the user can select<br>the Vsync to be used via Bit 0. If set to Logic 0, the active interface<br>is selected via Bit 3 in register 14H.                                                                                   |  |
|                |                                   |      | ******0             |                            | Bit 0 – Active Vsync Select. Logic 0 selects Raw Vsync as the output<br>Vsync. Logic 1 selects Sync Separated Vsync as the output Vsync.<br>Note: The indicated Vsync will be used only if Bit 1 is set to Logic 1.                                                          |  |

| Table VI. Control Register | Map |
|----------------------------|-----|
|----------------------------|-----|

| Hex<br>Address | Write and<br>Read or<br>Read Only | Bits | Default<br>Value    | Register<br>Name            | Function                                                                                                                                                                                                                                    |
|----------------|-----------------------------------|------|---------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0FH            | R/W                               | 7:1  | 0******             |                             | Bit 7 – Clamp Function. Chooses between Hsync for Clamp<br>signal or another external signal to be used for clamping.<br>(Logic 0 = Hsync, Logic 1 = Clamp.)                                                                                |
|                |                                   |      | *1*****             |                             | Bit 6 – Clamp Polarity. Valid only with external Clamp signal.<br>(Logic 0 = Active High, Logic 1 Selects Active Low.)                                                                                                                      |
|                |                                   |      | **0****             |                             | Bit 5 – Coast Select. Logic 0 selects the coast input pins to be used for the PLL coast. Logic 1 selects Vsync to be used for the PLL coast.                                                                                                |
|                |                                   |      | ***0****            |                             | Bit 4 – Coast Polarity Override. (Logic 0 = Polarity determined by chip, Logic 1 = Polarity set by Bit 3 in register 0Fh.)                                                                                                                  |
|                |                                   |      | ****1***            |                             | Bit 3 – Coast Polarity. Changes polarity of external COAST signal.<br>(Logic 0 = Active Low, Logic 1 = Active High.)                                                                                                                        |
|                |                                   |      | ****1**             |                             | Bit 2 – Seek Mode Override. (Logic 1 = allow low-power mode,<br>Logic 0 = Disallow Low Power Mode.)                                                                                                                                         |
|                |                                   |      | *****1*             |                             | Bit $1 - \overline{PWRDN}$ . Full Chip Power-Down, Active Low. (Logic $0 =$ Full Chip Power-Down, Logic $1 =$ Normal.)                                                                                                                      |
| 10H            | R/W                               | 7:3  | 10111***<br>****0** | Sync-on-Green<br>Threshold  | Sync-on-Green Threshold – Sets the voltage level of the Sync-on-<br>Green slicer's comparator.<br>Bit 2 – Red Clamp Select – Logic 0 selects clamp to ground.                                                                               |
|                |                                   |      | *****0*             |                             | Logic 1 selects clamp to midscale (voltage at Pin 37).<br>Bit 1 – Green Clamp Select – Logic 0 selects clamp to ground.<br>Logic 1 selects clamp to midscale (voltage at Pin 37).                                                           |
|                |                                   |      | ******0             |                             | Bit 0 – Blue Clamp Select – Logic 0 selects clamp to ground.<br>Logic 1 selects clamp to midscale (voltage at Pin 37).                                                                                                                      |
| 11H            | R/W                               | 7:0  | 00100000            | Sync Separator<br>Threshold | Sync Separator Threshold – Sets how many internal 5 MHz clock<br>periods the sync separator will count to before toggling high or<br>low. This should be set to some number greater than the maxi-<br>mum Hsync or equalization pulsewidth. |
| 12H            | R/W                               | 7:0  | 0000000             | Pre-Coast                   | Pre-Coast – Sets the number of Hsync periods that Coast becomes active prior to Vsync.                                                                                                                                                      |
| 13H            | R/W                               | 7:0  | 0000000             | Post-Coast                  | Post-Coast – Sets the number of Hsync periods that Coast stays active following Vsync.                                                                                                                                                      |
| 14H            | RO                                | 7:0  |                     | Sync Detect                 | Bit 7 – Hsync detect. It is set to Logic 1 if Hsync is present on the analog interface; otherwise it is set to Logic 0.                                                                                                                     |
|                |                                   |      |                     |                             | Bit 6 – AHS: Active Hsync. This bit indicates which analog Hsync<br>is being used. (Logic 0 = Hsync Input Pin, Logic 1 = Hsync from<br>Sync-on-Green.)                                                                                      |
|                |                                   |      |                     |                             | Bit 5 – Input Hsync Polarity Detect. (Logic 0 = Active Low,<br>Logic 1 = Active High.)                                                                                                                                                      |
|                |                                   |      |                     |                             | Bit 4 – Vsync Detect. It is set to Logic 1 if V sync is present on the analog interface; otherwise it is set to Logic 0.                                                                                                                    |
|                |                                   |      |                     |                             | Bit 3 – AVS: Active Vsync. This bit indicates which analog Vsync<br>is being used. (Logic 0 = Vsync Input Pin, Logic 1 = Vsync from<br>Sync Separator.)                                                                                     |
|                |                                   |      |                     |                             | Bit 2 – Output Vsync Polarity Detect. (Logic 0 = Active Low,<br>Logic 1 = Active High.)                                                                                                                                                     |
|                |                                   |      |                     |                             | Bit 1 – Sync-on-Green Detect. It is set to Logic 1 if sync is present<br>on the Green video input; otherwise it is set to 0.                                                                                                                |
|                |                                   |      |                     |                             | Bit 0 – Input Coast Polarity Detect. (Logic 0 = Active Low, Logic 1 = Active High.)                                                                                                                                                         |

| Hex<br>Address | Write and<br>Read or<br>Read Only | Bits | Default<br>Value | Register<br>Name | Function                                                                                                                       |
|----------------|-----------------------------------|------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 15H            | R/W                               | 7:0  |                  | Test Register    | Bits [7:2] Reserved for future use.<br>Bit 1 – 4:2:2 Output Formatting Mode.<br>Bit 0 – Must be set to 0 for proper operation. |
| 16H            | R/W                               | 7:0  |                  | Test Register    | Reserved for future use.                                                                                                       |
| 17H            | RO                                | 7:0  |                  | Test Register    | Reserved for future use.                                                                                                       |
| 18H            | RO                                | 7:0  |                  | Test Register    | Reserved for future use.                                                                                                       |

NOTE

\*The AD9883A only updates the PLL divide ratio when the LSBs are written to (register 02h).

### 2-WIRE SERIAL CONTROL REGISTER DETAIL CHIP IDENTIFICATION

#### 00 7-0 Chip Revision

An 8-bit register that represents the silicon revision. Revision 0 = 0000 0000, Revision 1 = 0000 0001, Revision 2 = 0000 0010.

#### PLL DIVIDER CONTROL

#### 01 7-0 PLL Divide Ratio MSBs

The 8 most significant bits of the 12-bit PLL divide ratio PLLDIV. (The operational divide ratio is PLLDIV + 1.)

The PLL derives a master clock from an incoming Hsync signal. The master clock frequency is then divided by an integer value, such that the output is phase-locked to Hsync. This PLLDIV value determines the number of pixel times (pixels plus horizontal blanking overhead) per line. This is typically 20% to 30% more than the number of active pixels in the display.

The 12-bit value of the PLL divider supports divide ratios from 2 to 4095. The higher the value loaded in this register, the higher the resulting clock frequency with respect to a fixed Hsync frequency.

VESA has established some standard timing specifications, which will assist in determining the value for PLLDIV as a function of horizontal and vertical display resolution and frame rate (Table V).

However, many computer systems do not conform precisely to the recommendations, and these numbers should be used only as a guide. The display system manufacturer should provide automatic or manual means for optimizing PLLDIV. An incorrectly set PLLDIV will usually produce one or more vertical noise bars on the display. The greater the error, the greater the number of bars produced.

The power-up default value of PLLDIV is 1693 (PLLDIVM = 69h, PLLDIVL = Dxh).

The AD9883A updates the full divide ratio only when the LSBs are changed. Writing to the MSB by itself will not trigger an update.

#### 02 7-4 PLL Divide Ratio LSBs

The 4 least significant bits of the 12-bit PLL divide ratio PLLDIV. The operational divide ratio is PLLDIV + 1.

The power-up default value of PLLDIV is 1693 (PLLDIVM = 69h, PLLDIVL = Dxh).

The AD9883A updates the full divide ratio only when this register is written to.

### CLOCK GENERATOR CONTROL

03 7-6 VCO Range Select

Two bits that establish the operating range of the clock generator.

VCORNGE must be set to correspond with the desired operating frequency (incoming pixel rate).

The PLL gives the best jitter performance at high frequencies. For this reason, in order to output low pixel rates and still get good jitter performance, the PLL actually operates at a higher frequency but then divides down the clock rate afterwards. Table VII shows the pixel rates for each VCO range setting. The PLL output divisor is automatically selected with the VCO range setting.

Table VII. VCO Ranges

| VCORNGE | Pixel Rate Range |
|---------|------------------|
| 00      | 12-32            |
| 01      | 32-64            |
| 10      | 64–110           |
| 11      | 110-140          |

The power-up default value is 01.

03 5-3 CURRENT Charge Pump Current

Three bits that establish the current driving the loop filter in the clock generator.

| Table VIII. | Charge Pump | Currents |
|-------------|-------------|----------|
|-------------|-------------|----------|

| CURRENT | Current (µA) |
|---------|--------------|
| 000     | 50           |
| 001     | 100          |
| 010     | 150          |
| 011     | 250          |
| 100     | 350          |
| 101     | 500          |
| 110     | 750          |
| 111     | 1500         |
|         |              |

CURRENT must be set to correspond with the desired operating frequency (incoming pixel rate).

The power-up default value is CURRENT = 001.

### 04 7-3 Clock Phase Adjust

A 5-bit value that adjusts the sampling phase in 32 steps across one pixel time. Each step represents an  $11.25^{\circ}$  shift in sampling phase.

The power-up default value is 16.

#### **CLAMP TIMING**

### 05 7-0 Clamp Placement

An 8-bit register that sets the position of the internally generated clamp.

When Clamp Function (Register 0Fh, Bit 7) = 0, a clamp signal is generated internally, at a position established by the clamp placement and for a duration set by the clamp duration. Clamping is started (Clamp Placement) pixel periods after the trailing edge of Hsync. The clamp placement may be programmed to any value between 1 and 255.

The clamp should be placed during a time that the input signal presents a stable black-level reference, usually the back porch period between Hsync and the image.

When Clamp Function = 1, this register is ignored.

#### 06 7-0 Clamp Duration

An 8-bit register that sets the duration of the internally generated clamp.

For the best results, the clamp duration should be set to include the majority of the black reference signal time that follows the Hsync signal trailing edge. Insufficient clamping time can produce brightness changes at the top of the screen, and a slow recovery from large changes in the average picture level (APL), or brightness.

When Clamp Function = 1, this register is ignored.

#### Hsync PULSEWIDTH

#### 07 7-0 Hsync Output Pulsewidth

An 8-bit register that sets the duration of the Hsync output pulse.

The leading edge of the Hsync output is triggered by the internally generated, phase-adjusted PLL feedback clock. The AD9883A then counts a number of pixel clocks equal to the value in this register. This triggers the trailing edge of the Hsync output, which is also phase adjusted.

#### **INPUT GAIN**

## 08 7-0 Red Channel Gain Adjust

An 8-bit word that sets the gain of the RED channel. The AD9883A can accommodate input signals with a full-scale range of between 0.5 V and 1.0 V p-p. Setting REDGAIN to 255 corresponds to an input range of 1.0 V. A REDGAIN of 0 establishes an input range of 0.5 V. Note that increasing REDGAIN results in the picture having less contrast (the input signal uses fewer of the available converter codes). See Figure 2.

## 09 7-0 Green Channel Gain Adjust

An 8-bit word that sets the gain of the GREEN channel. See REDGAIN (08).

## 0A 7-0 Blue Channel Gain Adjust

An 8-bit word that sets the gain of the BLUE channel. See REDGAIN (08).

#### **INPUT OFFSET**

#### 0B 7-1 Red Channel Offset Adjust

A 7-bit offset binary word that sets the dc offset of the RED channel. One LSB of offset adjustment equals approximately one LSB change in the ADC offset. Therefore, the absolute magnitude of the offset adjustment scales as the gain of the channel is changed. A nominal setting of 63 results in the channel nominally clamping the back porch (during the clamping interval) to Code 00. An offset setting of 127 results in the channel clamping to Code 64 of the ADC. An offset setting of 0 clamps to Code -63 (off the bottom of the range). Increasing the value of Red Offset *decreases* the brightness of the channel.

#### 0C 7-1 Green Channel Offset Adjust

A 7-bit offset binary word that sets the dc offset of the GREEN channel. See REDOFST (0B).

#### 0D 7-1 Blue Channel Offset Adjust

A 7-bit offset binary word that sets the dc offset of the GREEN channel. See REDOFST (0B).

#### **MODE CONTROL 1**

#### 0E 7 Hsync Input Polarity Override

This register is used to override the internal circuitry that determines the polarity of the Hsync signal going into the PLL.

Table IX. Hsync Input Polarity Override Settings

| Override Bit | Function                          |
|--------------|-----------------------------------|
| 0            | Hsync Polarity Determined by Chip |
| 1            | Hsync Polarity Determined by User |

The default for Hsync polarity override is 0 (polarity determined by chip).

#### 0E 6 HSPOL Hsync Input Polarity

A bit that must be set to indicate the polarity of the Hsync signal that is applied to the PLL Hsync input.

Table X. Hsync Input Polarity Settings

| HSPOL | Function    |
|-------|-------------|
| 0     | Active LOW  |
| 1     | Active HIGH |

Active LOW means the leading edge of the Hsync pulse is negative going. All timing is based on the leading edge of Hsync, which is the falling edge. The rising edge has no effect.

Active high is inverted from the traditional Hsync, with a positive-going pulse. This means that timing will be based on the leading edge of Hsync, which is now the rising edge.

The device will operate if this bit is set incorrectly, but the internally generated clamp position, as established by Clamp Placement (Register 05h), will not be placed as expected, which may generate clamping errors.

The power-up default value is HSPOL = 1.

#### 0E 5 Hsync Output Polarity

One bit that determines the polarity of the Hsync output and the SOG output. Table XI shows the effect of this option. SYNC indicates the logic state of the sync pulse.

#### Table XI. Hsync Output Polarity Settings

| Setting | SYNC                        |
|---------|-----------------------------|
| 0       | Logic 1 (Positive Polarity) |
| 1       | Logic 0 (Negative Polarity) |

The default setting for this register is 0.

#### 0E 4 Active Hsync Override

This bit is used to override the automatic Hsync selection, To override, set this bit to Logic 1. When overriding, the active Hsync is set via Bit 3 in this register.

#### Table XII. Active Hsync Override Settings

| Override | Result                                          |
|----------|-------------------------------------------------|
| 0        | Autodetermines the Active Interface             |
| 1        | Override, Bit 3 Determines the Active Interface |

The default for this register is 0.

#### 0E 3 Active Hsync Select

This bit is used under two conditions. It is used to select the active Hsync when the override bit is set (Bit 4). Alternately, it is used to determine the active Hsync when not overriding but both Hsyncs are detected.

#### Table XIII. Active HSYNC Select Settings

| Select | Result              |
|--------|---------------------|
| 0      | HSYNC Input         |
| 1      | Sync-on-Green Input |

The default for this register is 0.

#### 0E 2 Vsync Output Invert

One bit that can invert the polarity of the Vsync output. Table XIV shows the effect of this option.

#### Table XIV. Vsync Output Invert Settings

| Setting | Vsync Output |
|---------|--------------|
| 0       | Invert       |
| 1       | No Invert    |

The default setting for this register is 0.

#### 0E 1 Active Vsync Override

This bit is used to override the automatic Vsync selection. To override, set this bit to Logic 1. When overriding, the active interface is set via Bit 0 in this register.

#### Table XV. Active Vsync Override Settings

| Override | Result                                      |
|----------|---------------------------------------------|
| 0        | Autodetermine the Active Vsync              |
| 1        | Override, Bit 0 Determines the Active Vsync |

The default for this register is 0.

#### 0E 0 Active Vsync Select

This bit is used to select the active Vsync when the override bit is set (Bit 1).

#### Table XVI. Active Vsync Select Settings

| Select | Result                |
|--------|-----------------------|
| 0      | Vsync Input           |
| 1      | Sync Separator Output |

The default for this register is 0.

#### 0F 7 Clamp Input Signal Source

A bit that determines the source of clamp timing.

#### Table XVII. Clamp Input Signal Source Settings

| <b>Clamp Function</b> | Function                         |
|-----------------------|----------------------------------|
| 0                     | Internally Generated Clamp       |
| 1                     | Externally Provided Clamp Signal |

A 0 enables the clamp timing circuitry controlled by clamp placement and clamp duration. The clamp position and duration is counted from the leading edge of Hsync.

A 1 enables the external CLAMP input pin. The three channels are clamped when the CLAMP signal is active. The polarity of CLAMP is determined by the Clamp Polarity bit (Register 0Fh, Bit 6).

The power-up default value is Clamp Function = 0.

#### 0F 6 Clamp Input Signal Polarity

A bit that determines the polarity of the externally provided CLAMP signal.

#### Table XVIII. Clamp Input Signal Polarity Settings

| <b>Clamp Function</b> | Function    |
|-----------------------|-------------|
| 1                     | Active LOW  |
| 0                     | Active HIGH |

A Logic 1 means that the circuit will clamp when CLAMP is LOW, and it will pass the signal to the ADC when CLAMP is HIGH.

A Logic 0 means that the circuit will clamp when CLAMP is HIGH, and it will pass the signal to the ADC when CLAMP is LOW.

The power-up default value is Clamp Polarity = 1.

#### 0F 5 Coast Select

This bit is used to select the active Coast source. The choices are the Coast Input Pin or Vsync. If Vsync is selected the additional decision of using the Vsync input pin or the output from the sync separator needs to be made (Register 0E, Bits 1, 0).

| Select | Result                 |  |
|--------|------------------------|--|
| 0      | Coast Input Pin        |  |
| 1      | Vsync (See above Text) |  |

#### 0F 4 Coast Input Polarity Override

This register is used to override the internal circuitry that determines the polarity of the coast signal going into the PLL.

### Table XX. Coast Input Polarity Override Settings

| Override Bit | Result                            |
|--------------|-----------------------------------|
| 0            | Coast Polarity Determined by Chip |
| 1            | Coast Polarity Determined by User |

The default for coast polarity override is 0.

#### 0F 3 Coast Input Polarity

A bit to indicate the polarity of the COAST signal that is applied to the PLL COAST input.

#### Table XXI. Coast Input Polarity Settings

| Coast Polarity | Function    |
|----------------|-------------|
| 0              | Active LOW  |
| 1              | Active HIGH |

Active LOW means that the clock generator will ignore Hsync inputs when COAST is LOW, and continue operating at the same nominal frequency until COAST goes HIGH.

Active HIGH means that the clock generator will ignore Hsync inputs when COAST is HIGH, and continue operating at the same nominal frequency until COAST goes LOW.

This function needs to be used along with the COAST polarity override bit (Bit 4).

The power-up default value is 1.

#### 0F 2 Seek Mode Override

This bit is used to either allow or disallow the low power mode. The low power mode (Seek Mode) occurs when there are no signals on any of the Sync inputs.

| Table XXII. | Seek Mode | <b>Override Settings</b> |
|-------------|-----------|--------------------------|
|-------------|-----------|--------------------------|

| Select | Result             |
|--------|--------------------|
| 1      | Allow Seek Mode    |
| 0      | Disallow Seek Mode |

The default for this register is 1.

### 0F 1 PWRDN

This bit is used to put the chip in full power-down. See the section on power management for details of which blocks are actually powered down.

Table XXIII. Power-Down Settings

| Select | Result           |
|--------|------------------|
| 0      | Power-Down       |
| 1      | Normal Operation |

The default for this register is 1.

### 10 7-3 Sync-on-Green Slicer Threshold

This register allows the comparator threshold of the Syncon-Green slicer to be adjusted. This register adjusts it in steps of 10 mV, with the minimum setting equaling 10 mV (11111) and the maximum setting equaling 330 mV (00000).

The default setting is 23 and corresponds to a threshold value of 0.15 V.

#### 10 2 Red Clamp Select

A bit that determines whether the RED channel is clamped to ground or to midscale. For RGB video, all three channels are referenced to ground. For YcbCr (or YUV), the Y channel is referenced to ground, but the CbCr channels are referenced to midscale. Clamping to midscale actually clamps to Pin 37.

| Table XXIV. | Red | Clamp | Select | Settings |
|-------------|-----|-------|--------|----------|
|-------------|-----|-------|--------|----------|

| Clamp | Function                   |
|-------|----------------------------|
| 0     | Clamp to Ground            |
| 1     | Clamp to Midscale (Pin 37) |

The default setting for this register is 0.

#### 10 1 Green Clamp Select

A bit that determines whether the GREEN channel is clamped to ground or to midscale.

#### Table XXV. Green Clamp Select Settings

| Clamp | Function                   |
|-------|----------------------------|
| 0     | Clamp to Ground            |
| 1     | Clamp to Midscale (Pin 37) |

The default setting for this register is 0.

### 10 0 Blue Clamp Select

A bit that determines whether the BLUE channel is clamped to ground or to midscale.

#### Table XXVI. Blue Clamp Select Settings

| Clamp | Function                   |
|-------|----------------------------|
| 0     | Clamp to Ground            |
| 1     | Clamp to Midscale (Pin 37) |

The default setting for this register is 0.

### 11 7:0 Sync Separator Threshold

This register is used to set the responsiveness of the sync separator. It sets how many internal 5 MHz clock periods the sync separator must count to before toggling high or low. It works like a low pass filter to ignore Hsync pulses in order to extract the Vsync signal. This register should be set to some number greater than the maximum Hsync pulsewidth. Note: the sync separator threshold uses an internal dedicated clock with a frequency of approximately 5 MHz.

The default for this register is 32.

### 12 7-0 Pre-Coast

This register allows the coast signal to be applied prior to the Vsync signal. This is necessary in cases where preequalization pulses are present. The step size for this control is one Hsync period.

The default is 0.

#### 13 7-0 Post-Coast

This register allows the coast signal to be applied following to the Vsync signal. This is necessary in cases where post-equalization pulses are present. The step size for this control is one Hsync period.

The default is 0.

### 14 7 Hsync Detect

This bit is used to indicate when activity is detected on the Hsync input pin (Pin 30). If Hsync is held high or low, activity will not be detected.

#### Table XXVII. Hsync Detection Results

| Detect | Function             |
|--------|----------------------|
| 0      | No Activity Detected |
| 1      | Activity Detected    |

The sync processing block diagram shows where this function is implemented.

#### 14 6 AHS – Active Hsync

This bit indicates which Hsync input source is being used by the PLL (Hsync input or Sync-on-Green). Bits 7 and 1 in this register are what determine which source is used. If both Hsync and SOG are detected, the user can determine which has priority via Bit 3 in register 0EH. The user can override this function via Bit 4 in register 0EH. If the override bit is set to Logic 1, then this bit will be forced to whatever the state of Bit 3 in register 0EH is set to.

| Bit 7<br>(Hsync<br>Detect) | Bit 1<br>(SOG<br>Detect) | Bit 4, Reg<br>0EH<br>(Override) | AHS          |
|----------------------------|--------------------------|---------------------------------|--------------|
| 0                          | 0                        | 0                               | Bit 3 in 0EH |
| 0                          | 1                        | 0                               | 1            |
| 1                          | 0                        | 0                               | 0            |
| 1                          | 1                        | 0                               | Bit 3 in 0EH |
| Х                          | Х                        | 1                               | Bit 3 in 0EH |

AHS = 0 means use the Hsync pin input for Hsync. AHS = 1 means use the SOG pin input for Hsync.

The override bit is in register 0EH, Bit 4.

#### 14 5 Detected Hsync Input Polarity Status

This bit reports the status of the Hsync input polarity detection circuit. It can be used to determine the polarity of the Hsync input. The detection circuit's location is shown in the Sync Processing Block Diagram (Figure 12).

| Table XXIX. | . Detected Hsync Input Polarity Status |
|-------------|----------------------------------------|
|-------------|----------------------------------------|

| Hsync Polarity Status | Result                     |  |
|-----------------------|----------------------------|--|
| 0                     | Hsync Polarity Is Negative |  |
| 1                     | Hsync Polarity Is Positive |  |

### 14 4 Vsync Detect

This bit is used to indicate when activity is detected on the Vsync input pin (Pin 31). If Vsync is held high or low, activity will not be detected.

| Detect | Function             |
|--------|----------------------|
| 0      | No Activity Detected |
| 1      | Activity Detected    |

The Sync Processing Block Diagram (Figure 12) shows where this function is implemented.

#### 14 3 AVS - Active Vsync

This bit indicates which Vsync source is being used: the Vsync input or output from the sync separator. Bit 4 in this register determines which is active. If both Vsync and SOG are detected, the user can determine which has priority via Bit 0 in register 0EH. The user can override this function via Bit 1 in register 0EH. If the override bit is set to Logic 1, this bit will be forced to whatever the state of Bit 0 in register 0EH is set.

#### Table XXXI. Active Vsync Results

| Bit 5<br>(Vsync Detect) | Override | AVS          |
|-------------------------|----------|--------------|
| 0                       | 0        | 0            |
| 1                       | 0        | 1            |
| Х                       | 1        | Bit 0 in 0EH |

AVS = 0 means Vsync input.

AVS = 1 means Sync separator.

The override bit is in register 0EH, Bit 1.

#### 14 2 Detected Vsync Output Polarity Status

This bit reports the status of the Vsync output polarity detection circuit. It can be used to determine the polarity of the Vsync output. The detection circuit's location is shown in the Sync Processing Block Diagram (Figure 12).

#### Table XXXII. Detected Vsync Output Polarity Status

| Vsync Polarity Status | Result                        |  |  |
|-----------------------|-------------------------------|--|--|
| 0                     | Vsync Polarity Is Active LOW  |  |  |
| 1                     | Vsync Polarity Is Active HIGH |  |  |

#### 14 1 Sync-on-Green Detect

This bit is used to indicate when sync activity is detected on the Sync-on-Green input pin (Pin 49).

#### Table XXXIII. Sync-on-Green Detection Results

| Detect | Function             |  |  |
|--------|----------------------|--|--|
| 0      | No Activity Detected |  |  |
| 1      | Activity Detected    |  |  |

The Sync Processing Block Diagram (Figure 12) shows where this function is implemented.

#### 14 0 Detected COAST Polarity Status

This bit reports the status of the Coast input polarity detection circuit. It can be used to determine the polarity of the Coast input. The detection circuit's location is shown in the Sync Processing Block Diagram (Figure 12).

| Hsync Polarity Status | Result                  |
|-----------------------|-------------------------|
| 0                     | Coast Polarity Negative |
| 1                     | Coast Polarity Positive |

Table XXXIV. Detected Coast Input Polarity Status

This indicates that Bit 1 of Register 5 is the 4:2:2 Output mode select bit.

#### 15 1 4:2:2 Output Mode Select

A bit that configures the output data in 4:2:2 mode. This mode can be used to reduce the number of data lines used from 24 down to 16 for applications using YUV, VCbCr, or PbPr graphics signals. A timing diagram for this mode is shown in Figure 9.

Recommended input and output configurations are shown in Table XXXV. In 4:2:2 mode, the Red and Blue channels can be interchanged to help satisfy board layout or timing requirements, but the Green channel must be configured for Y.

Table XXXV. 4:2:2 Output Mode Select

| Select | Output Mode |  |  |
|--------|-------------|--|--|
| 0      | 4:2:2       |  |  |
| 1      | 4:4:4       |  |  |

 Table XXXVI.
 4:2:2 Input/Output Configuration

| Channel | Input<br>Connection | Output Format  |
|---------|---------------------|----------------|
| Red     | V                   | U/V            |
| Green   | Y                   | Y              |
| Blue    | U                   | High Impedance |

### 2-WIRE SERIAL CONTROL PORT

A 2-wire serial interface control interface is provided. Up to two AD9883A devices may be connected to the 2-wire serial interface, with each device having a unique address.

The 2-wire serial interface comprises a clock (SCL) and a bidirectional data (SDA) pin. The analog flat panel interface acts as a slave for receiving and transmitting data over the serial interface. When the serial interface is not active, the logic levels on SCL and SDA are pulled high by external pull-up resistors.

Data received or transmitted on the SDA line must be stable for the duration of the positive-going SCL pulse. Data on SDA must change only when SCL is low. If SDA changes state while SCL is high, the serial interface interprets that action as a start or stop sequence. There are five components to serial bus operation:

- Start Signal
- Slave Address Byte
- Base Register Address Byte
- Data Byte to Read or Write
- Stop Signal

When the serial interface is inactive (SCL and SDA are high) communications are initiated by sending a start signal. The start signal is a high-to-low transition on SDA while SCL is high. This signal alerts all slaved devices that a data transfer sequence is coming.

The first 8 bits of data transferred after a start signal comprise a 7-bit slave address (the first 7 bits) and a single  $R/\overline{W}$  Bit (the eighth bit). The  $R/\overline{W}$  Bit indicates the direction of data transfer, read from (1) or write to (0) the slave device. If the transmitted slave address matches the address of the device (set by the state of the SA<sub>1-0</sub> input pins in Table XXXIV, the AD9883A acknowledges by bringing SDA LOW on the 9th SCL pulse. If the addresses do not match, the AD9883A does not acknowledge.

Table XXXVII. Serial Port Addresses

| Bit 7<br>A <sub>6</sub><br>(MSB) | Bit 6<br>A <sub>5</sub> | Bit 5<br>A <sub>4</sub> | Bit 4<br>A <sub>3</sub> | Bit 3<br>A <sub>2</sub> | Bit 2<br>A <sub>1</sub> | Bit 1<br>A <sub>0</sub> |
|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 1                                | 0                       | 0                       | 1                       | 1                       | 0                       | 0                       |
| 1                                | 0                       | 0                       | 1                       | 1                       | 0                       | 1                       |

#### Data Transfer via Serial Interface

For each byte of data read or written, the MSB is the first bit of the sequence.

If the AD9883A does not acknowledge the master device during a write sequence, the SDA remains high so the master can generate a stop signal. If the master device does not acknowledge the AD9883A during a read sequence, the AD9883A interprets this as "end of data." The SDA remains high so the master can generate a stop signal.

Writing data to specific control registers of the AD9883A requires that the 8-bit address of the control register of interest be written after the slave address has been established. This control register address is the base address for subsequent write operations. The base address autoincrements by one for each byte of data written after the data byte intended for the base address. If more bytes are transferred than there are available addresses, the address will not increment and remains at its maximum value of 14h. Any base address higher than 14h will not produce an acknowledge signal.

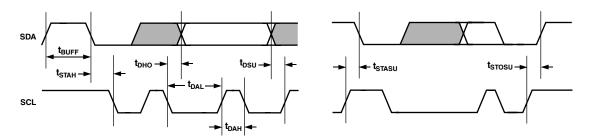



Figure 10. Serial Port Read/Write Timing

Data is read from the control registers of the AD9883A in a similar manner. Reading requires two data transfer operations:

The base address must be written with the  $R/\overline{W}$  Bit of the slave address byte LOW to set up a sequential read operation.

Reading (the  $R/\overline{W}$  Bit of the slave address byte high) begins at the previously established base address. The address of the read register autoincrements after each byte is transferred.

To terminate a read/write sequence to the AD9883A, a stop signal must be sent. A stop signal comprises a low-to-high transition of SDA while SCL is high.

A repeated start signal occurs when the master device driving the serial interface generates a start signal without first generating a stop signal to terminate the current communication. This is used to change the mode of communication (read, write) between the slave and master without releasing the serial interface lines.

#### Serial Interface Read/Write Examples

Write to one control register

- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = LOW)
- ➡ Base Address Byte
- ➡ Data Byte to Base Address
- ➡ Stop Signal

Write to four consecutive control registers

- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = LOW)

- ➡ Base Address Byte
- Data Byte to Base Address
- ➡ Data Byte to (Base Address + 1)
- ➡ Data Byte to (Base Address + 2)
- ➡ Data Byte to (Base Address + 3)
- ➡ Stop Signal

Read from one control register

- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = LOW)
- ➡ Base Address Byte
- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = HIGH)
- ➡ Data Byte from Base Address
- ➡ Stop Signal

Read from four consecutive control registers

- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = LOW)
- ➡ Base Address Byte
- ➡ Start Signal
- Slave Address Byte ( $R/\overline{W}$  Bit = HIGH)
- ➡ Data Byte from Base Address
- ➡ Data Byte from (Base Address + 1)
- ➡ Data Byte from (Base Address + 2)
- ➡ Data Byte from (Base Address + 3)
- ➡ Stop Signal

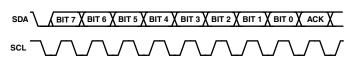



Figure 11. Serial Interface – Typical Byte Transfer

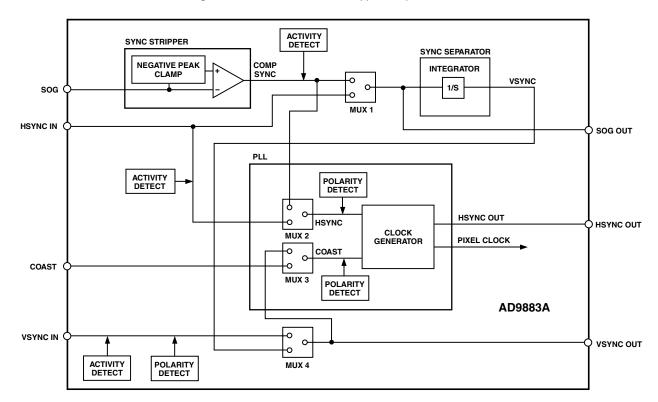



Figure 12. Sync Processing Block Diagram

 Table XXXVIII.
 Control of the Sync Block Muxes via the

 Serial Register
 Image: Control of the Sync Block Muxes via the

| Mux<br>Nos. | Serial Bus<br>Control Bit | Control<br>Bit<br>State | Result                     |
|-------------|---------------------------|-------------------------|----------------------------|
| 1 and 2     | 0EH: Bit 3                | 0                       | Pass Hsync                 |
|             |                           | 1                       | Pass Sync-on-Green         |
| 3           | 0FH: Bit 5                | 0                       | Pass Coast                 |
|             |                           | 1                       | Pass Vsync                 |
| 4           | 0EH: Bit 0                | 0                       | Pass Vsync                 |
|             |                           | 1                       | Pass Sync Separator Signal |

#### Sync Slicer

The purpose of the sync slicer is to extract the sync signal from the Green graphics channel. A sync signal is not present on all graphics systems, only those with Sync-on-Green. The sync signal is extracted from the Green channel in a two-step process. First, the SOG input is clamped to its negative peak (typically 0.3 V below the black level). Next, the signal goes to a comparator with a variable trigger level, nominally 0.15 V above the clamped level. The "sliced" sync is typically a composite sync signal containing both Hsync and Vsync.

#### Sync Separator

A sync separator extracts the Vsync signal from a composite sync signal. It does this through a low pass filter-like or integratorlike operation. It works on the idea that the Vsync signal stays active for a much longer time than the Hsync signal, so it rejects any signal shorter than a threshold value, which is somewhere between an Hsync pulsewidth and a Vsync pulsewidth.

The sync separator on the AD9883A is simply an 8-bit digital counter with a 5 MHz clock. It works independently of the polarity of the composite sync signal. (Polarities are determined elsewhere on the chip.) The basic idea is that the counter counts up when Hsync pulses are present. But since Hsync pulses are relatively short in width, the counter only reaches a value of N before the pulse ends. It then starts counting down eventually reaching 0 before the next Hsync pulse arrives. The specific value of N will vary for different video modes, but will always be less than 255. For example with a 1 µs width Hsync, the counter will only reach 5 (1  $\mu$ s/200 ns = 5). Now, when Vsync is present on the composite sync the counter will also count up. However, since the Vsvnc signal is much longer, it will count to a higher number M. For most video modes, M will be at least 255. So, Vsync can be detected on the composite sync signal by detecting when the counter counts to higher than N. The specific count that triggers detection (T) can be programmed through the serial register (0fh).

Once Vsync has been detected, there is a similar process to detect when it goes inactive. At detection, the counter first resets to 0, then starts counting up when Vsync goes away. Similar to the previous case, it will detect the absence of Vsync when the counter reaches the threshold count (T). In this way, it will reject noise and/or serration pulses. Once Vsync is detected to be absent, the counter resets to 0 and begins the cycle again.

### PCB LAYOUT RECOMMENDATIONS

The AD9883A is a high precision, high speed analog device. As such, to get the maximum performance out of the part it is important to have a well laid out board. The following is a guide for designing a board using the AD9883A.

#### **Analog Interface Inputs**

Using the following layout techniques on the graphics inputs is extremely important.

Minimize the trace length running into the graphics inputs. This is accomplished by placing the AD9883A as close as possible to the graphics VGA connector. Long input trace lengths are undesirable because they will pick up more noise from the board and other external sources.

Place the 75  $\Omega$  termination resistors (see Figure 1) as close to the AD9883A chip as possible. Any additional trace length between the termination resistors and the input of the AD9883A increases the magnitude of reflections, which will corrupt the graphics signal.

Use 75  $\Omega$  matched impedance traces. Trace impedances other than 75  $\Omega$  will also increase the chance of reflections.

The AD9883A has very high input bandwidth (500 MHz). While this is desirable for acquiring a high resolution PC graphics signal with fast edges, it means that it will also capture any high frequency noise present. Therefore, it is important to reduce the amount of noise that gets coupled to the inputs. Avoid running any digital traces near the analog inputs.

Due to the high bandwidth of the AD9883A, sometimes low pass filtering the analog inputs can help to reduce noise. (For many applications, filtering is unnecessary.) Experiments have shown that placing a series ferrite bead prior to the 75  $\Omega$  termination resistor is helpful in filtering out excess noise.

Specifically, the part used was the #2508051217Z0 from Fair-Rite, but each application may work best with a different bead value. Alternately, placing a 100  $\Omega$  to 120  $\Omega$  resistor between the 75  $\Omega$  termination resistor and the input coupling capacitor can also benefit.

#### **Power Supply Bypassing**

It is recommended to bypass each power supply pin with a  $0.1 \ \mu\text{F}$  capacitor. The exception is in the case where two or more supply pins are adjacent to each other. For these groupings of powers/grounds, it is only necessary to have one bypass capacitor. The fundamental idea is to have a bypass capacitor within about 0.5 cm of each power pin. Also, avoid placing the capacitor on the opposite side of the PC board from the AD9883A, as that interposes resistive vias in the path.

The bypass capacitors should be physically located between the power plane and the power pin. Current should flow from the power plane to the capacitor to the power pin. Do not make the power connection between the capacitor and the power pin. Placing a via underneath the capacitor pads, down to the power plane, is generally the best approach.

It is particularly important to maintain low noise and good stability of  $PV_D$  (the clock generator supply). Abrupt changes in  $PV_D$  can result in similarly abrupt changes in sampling clock phase and frequency. This can be avoided by careful attention to regulation, filtering, and bypassing. It is highly desirable to provide separate regulated supplies for each of the analog circuitry groups ( $V_D$  and  $PV_D$ ).

Some graphic controllers use substantially different levels of power when active (during active picture time) and when idle (during horizontal and vertical sync periods). This can result in a measurable change in the voltage supplied to the analog supply regulator, which can in turn produce changes in the regulated analog supply voltage. This can be mitigated by regulating the analog supply, or at least  $PV_D$ , from a different, cleaner power source (for example, from a 12 V supply).

It is also recommended to use a single ground plane for the entire board. Experience has repeatedly shown that the noise performance is the same or better with a single ground plane. Using multiple ground planes can be detrimental because each separate ground plane is smaller, and long ground loops can result.

In some cases, using separate ground planes is unavoidable. For those cases, it is recommended to at least place a single ground plane under the AD9883A. The location of the split should be at the receiver of the digital outputs. For this case it is even more important to place components wisely because the current loops will be much longer (current takes the path of least resistance). An example of a current loop:

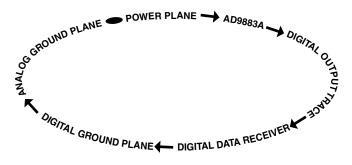



Figure 13. Current Loop

### PLL

Place the PLL loop filter components as close to the FILT pin as possible.

Do not place any digital or other high frequency traces near these components.

Use the values suggested in the data sheet with 10% tolerances or less.

#### **Outputs (Both Data and Clocks)**

Try to minimize the trace length that the digital outputs have to drive. Longer traces have higher capacitance, which requires more current, which causes more internal digital noise.

Shorter traces reduce the possibility of reflections.

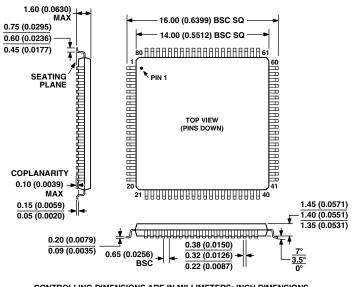
Adding a series resistor of value 50  $\Omega$  to 200  $\Omega$  can suppress reflections, reduce EMI, and reduce the current spikes inside of the AD9883A. If series resistors are used, place them as close to the AD9883A pins as possible (although try not to add vias or extra length to the output trace in order to get the resistors closer).

If possible, limit the capacitance that each of the digital outputs drives to less than 10pF. This can easily be accomplished by keeping traces short and by connecting the outputs to only one device. Loading the outputs with excessive capacitance will increase the current transients inside of the AD9883A creating more digital noise on its power supplies.

### **Digital Inputs**

The digital inputs on the AD9883A were designed to work with 3.3 V signals, but are tolerant of 5.0 V signals. So, no extra components need to be added if using 5.0 V logic.

Any noise that gets onto the Hsync input trace will add jitter to the system. Therefore, minimize the trace length and do not run any digital or other high frequency traces near it.


#### Voltage Reference

Bypass with a 0.1  $\mu F$  capacitor. Place as close to the AD9883A pin as possible. Make the ground connection as short as possible.

#### **OUTLINE DIMENSIONS**

Dimensions shown in millimeters and (inches)

#### 80-Lead Thin Plastic Quad Flatpack [LQFP] (ST-80)



CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

## **Revision History**

Location

#### 5/02-Data Sheet changed from REV. 0 to REV. A. Edits to Table II . . 10 Edits to Clock Generation section Edits to Table VI Edits to Table VII Edits to Table XIV Edits to Clamp Input Signal Polarity section .....

Page



## Silicon Image, Inc

# PanelLink<sup>TM</sup> Technology

EMC Design Application Note LCD Monitor & Notebook Applications Revision B

Silicon Image, Inc.

Revision B April 21, 1998

SiI/AN-0003-B

## TABLE OF CONTENTS

| 1. INTRODUCTION                                       | 4  |
|-------------------------------------------------------|----|
| 2. MECHANICAL CONSTRUCTION                            | 4  |
| 2.1. USING CONDUCTIVE PLASTICS AND COATED PLASTICS    | 4  |
| 2.2. METAL CHASSIS                                    | 6  |
| 2.3. Apertures                                        | 8  |
| 2.4. HINGES (NOTEBOOK PC APPLICATIONS)                | 9  |
| 2.5. SIGNAL CABLES                                    |    |
| 2.6. CONTACT POINTS                                   |    |
| 2.7. SUMMARY                                          | 16 |
| 3. GENERAL ELECTRICAL CONSIDERATIONS                  |    |
| 3.1. CAPACITIVE DECOUPLING                            |    |
| 3.2. GROUND PLANES                                    |    |
| 3.2.1. PCB Layout, Ground Planes and ESD              |    |
| 3.3. POWER PLANES AND POWER LINES                     |    |
| 3.4. FILTERING                                        | 23 |
| 3.5. Ferrites                                         |    |
| 3.6. SUMMARY                                          | 27 |
| 4. PanelLink <sup>TM</sup> APPLICATION CONSIDERATIONS |    |
| 4.1. CAPACITIVE DECOUPLING                            |    |
| 4.2. PARALLEL DATA LINE LOADING                       |    |
| 4.3. POWER DISTRIBUTION AND GROUND PLANES             |    |
| 4.4. SIGNAL CABLE CONFIGURATION                       |    |
| 4.5. FILTERING                                        |    |
| 4.6. ESD PROTECTION                                   |    |
| 4.7. SUMMARY                                          |    |
| 5. EMI TROUBLESHOOTING TIPS AND CONCLUSIONS           | 35 |

## LIST OF FIGURES

| Figure 1: Creating Good Contact and Preventing Leaks with Coated Plastics      | 5  |
|--------------------------------------------------------------------------------|----|
| Figure 2: Overall chassis and shield configuration (Ideal situation)           | 6  |
| Figure 3: Chassis Grounding Scheme                                             | 7  |
| Figure 4: Single Point Grounding for Monitors                                  | 7  |
| Figure 5: Improper Grounding Scheme                                            | 7  |
| Figure 6: Shield aperture comparison                                           | 8  |
| Figure 7: Seam depth and shield leakage                                        | 9  |
| Figure 8: Use of EMI Gaskets                                                   | 9  |
| Figure 9: Signal and return line pairing                                       | 11 |
| Figure 10: Typical coaxial cable                                               | 11 |
| Figure 11: Cable shield termination                                            | 12 |
| Figure 12: Three-layer FPC (flex cable)                                        | 13 |
| Figure 13: Chassis connection points for notebook PCs                          | 14 |
| Figure 14: Broken Ground Planes                                                |    |
| Figure 15: Gapped Ground Plane (see 3.2)                                       | 15 |
| Figure 16: LCD Monitor Example                                                 | 16 |
| Figure 17: Typical Add-in card layout                                          | 17 |
| Figure 18: Capacitive decoupling                                               |    |
| Figure 19: Internal bond wires in integrated circuits                          | 19 |
| Figure 20: Effect of ground plane breaks                                       | 20 |
| Figure 21: Ground Planes Joined by Vias                                        | 21 |
| Figure 22: Equivalent Circuit of Figure 19                                     | 21 |
| Figure 23: Potential Shift after ESD                                           | 22 |
| Figure 24: Illustration of Separate Power Planes and Charge Storage Capacitors |    |
| Figure 25: Common filter configurations                                        |    |
| Figure 26: Filter attenuation curves                                           | 24 |
| Figure 27: Physical placement of filters                                       |    |
| Figure 28: Effect of common-mode chokes                                        |    |
| Figure 29: Ferrite core placement in a notebook PC                             | 27 |
| Figure 30: PanelLink decoupling scheme                                         |    |
| Figure 31: Resistor pack placement on parallel data lines                      | 29 |
| Figure 32: Supplying Power to the chips                                        | 30 |
| Figure 33: Two-layer FPC (flex cable)                                          |    |
| Figure 34: FPC termination and ferrite core placement                          | 32 |
| Figure 35: Twin-ax shield termination                                          |    |
| Figure 36: ESD Protection Diodes                                               | 33 |

# 1. INTRODUCTION

The purpose of this document is to provide you with basic mechanical and PCB layout guidelines to address EMC issues that they apply to LCD flat panel display applications. This document does not guarantee compliance with international emissions standards, but serves as a guideline to help minimize basic design flaws in the initial design. As with any other type of engineering, EMC designs will usually require 2 or more iterations to achieve the final production form. The goal of this document is to help reduce the number of iterations.

This document will go into some detail about electro-magnetics and material properties, but only to the extent necessary to convey the purpose or theory behind a given situation. This document focuses mostly on LCD monitor applications, but has special sections that apply to notebook applications. Basic EMI and ESD system-level design guidelines for PanelLink applications will be covered herein.

# 2. MECHANICAL CONSTRUCTION

LCD monitor designers do not have the extreme size and weight constraints that notebook computer designers do, but they are still limited by the market expectations of a thin, lightweight flat panel display.

Many times the mechanical construction of an electronic device is ignored for EMC purposes since the prevailing belief is that EMI/EMC is strictly an electronic issue. This is simply not the case. In most instances, mechanical design comprises one half of the EMC solutions applied to failing systems. Saving a few pennies here and a few ounces there may seem attractive at first, but if the end results are cost overruns and schedule delays due to EMC issues, the savings are more than canceled out. If you are developing a new product i.e. not a revision of an existing product, it would be better to save the cost in a cost-reduced product after the original is already in production. *Do not overlook the importance of the mechanical design on the system's EMC performance.* 

## 2.1. Using Conductive Plastics and Coated Plastics

Conductive plastics are plastics which have been doped with various materials to make them electrically conductive. Coated plastics are standard plastics that have been coated with conductive coatings or paints applied to their surfaces to make them effective reflectors of low impedance RF energy. Both types are discussed below:

**Conductive Plastics**: Conductive Plastics can be effective shields, *but only in limited cases*. Without going into the details of near field wave analysis, it is important to realize that conductive plastics are only effective against <u>electric fields</u>. This is true because the high wave impedance of an electric field in the near field allows a relatively high impedance material (~100 $\Omega$ / $\Box$ ) such as conductive plastic to act as an effective shield for electric fields. Of course in an assembly this is true only if the different pieces of the enclosure are in good electrical contact with each other. Unfortunately, electric fields are only generated by high voltage, low-current situations which are not prevalent in today's electronics. Furthermore, if conductive plastic is used as a ground path between two assembles, the high surface resistance of the plastic offers too great an impediment to RF currents and creates an RF potential difference between them, usually resulting in enhanced radiation. The high impedance of the plastic can be utilized to reduce the

magnitude of personnel generated ESD currents that occur during use. However, from an high frequency (>1 MHz) electromagnetic standpoint, <u>conductive plastic is not presently useful as a shield and will</u> <u>remain so until the conductive plastic's surface resistance can be reduced to below 0.1 WD</u>.

**Coated Plastics:** Most present-day electronic systems are generally low voltage (3.3-5.0V) high current systems and generate mostly high frequency <u>magnetic fields</u>. For reasonable shielding, a material is required to have a surface resistance that is less than 50 milli- $\Omega/\Box$  at the frequencies of interest and to be at least 0.03 mm thick in order to be effective. Presently there are coatings that meet these criteria. Among them are silver coated copper particle paints that measure less than 50 milli- $\Omega/\Box$  at .03 mm which have successfully been used as RF image planes and shields. They are not useful as heat sinks and have had only limited success as ground paths between assembles separated by more than 3 cm when significant signal return currents (>10 mA) are flowing.

Coated plastics can be quite effective for purposes of magnetic field shielding, but certain precautions must be taken:

- ⇒ The conductive plating should be connected (referenced) to the chassis ground through multiple contact points.
- $\Rightarrow$  The conductive plating should not be directly grounded to a PCB ground plane close to any high speed components. Ideally, the conductive plating should be grounded to the chassis which is then connected to the PCB ground. See Figure 3.
- ⇒ Most plastic enclosures come in several pieces which fit together. Usually the seam joints of these parts make very poor electrical contact with each other due to small imperfections in the plastics. Not only does this create a leaky shield, but it greatly reduces the shielding effectiveness of any isolated pieces. Use copper spring fingers in several places to make good electrical contact between the front and back shells and make sure the seam joints have significant overlap to reduce EMI leaks. See Section 2.3.

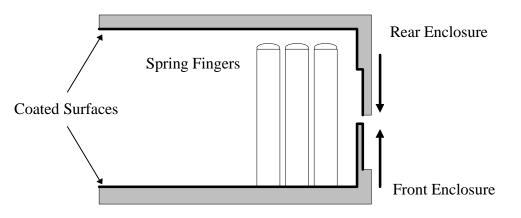



Figure 1: Creating Good Contact and Preventing Leaks with Coated Plastics

**Summary**: For magnetic field emissions (which is probably the main concern for the type of systems discussed in this document), effective shielding is accomplished by allowing the magnetic fields to induce currents in the shielding. <u>Conductive plastics are ill-suited for this role and should not be depended</u> <u>on for shielding or ground contacts due to their high impedance at RF</u>. This is not to say that they cannot be used to minimize ESD currents, but they should not be relied upon as a ground, a shield, or treated as a true metallic conductor. The most effective high frequency shielding material for most purposes is non–ferrous, low resistance (less than 5 milli-ohms per square) metal, preferably copper. The

second most effective high frequency shielding materials are low surface resistance coatings (less than 50 milli-ohm per square at 0.03 mm thick) such as silver coated copper particle paint.

#### 2.2. Metal Chassis

A metal chassis which has good electrical contact to the main ground reference is the best situation to have for shielding and a return path for induced currents. Many times, this role can be "doubled-up" with metal in the system that is used for another purpose, such as heat sinks or mounting plates. The ideal situation would be to create a Faraday cage around the entire system. This can be accomplished through a combination of the main system chassis, the overall cable braid/shield, and the display chassis.

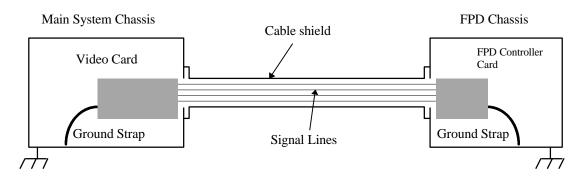



Figure 2: Overall chassis and shield configuration (Ideal situation)

The purpose of this Faraday cage is two-fold. The first is to provide a "cold" RF potential reference for the entire system, i.e. a ground reference for the ground planes. The second is to contain any emissions within the boundaries of the chassis and shield by either reflecting the noise off the metal walls and/or inducing a return current in the shield which flows back to the source, canceling the emission. *It is for both these reasons that the shield/chassis should never intentionally be used as a ground plane or return line for signals*. This is especially true for the cable shield which is the most susceptible to causing radiation. Signal lines in the cable must have their own return lines within the cable bundle. The cable shield must be free of signal related currents since its purpose is to contain common-mode or other uncompensated noise propagating on the internal wires.

Here are some basic guidelines for grounding the shielding and chassis:

- $\Rightarrow$  Never ground the cable shield or connector shell directly to a PCB ground plane. Ground planes can contain a lot of noise currents which will contaminate the shield.
- $\Rightarrow$  The PCB grounds should be terminated to the main chassis at several points making sure that the contact points on the PCB are not too close to any high speed IC's (within ~4cm).
- $\Rightarrow$  The cable shield and connector shells should be terminated to the chassis. The idea behind this is to make the chassis the common RF ground potential to which all circuits are referenced. Choose one chassis to be the MAIN reference (usually the host system chassis) and contact everything else to it through a low impedance path. In the case of the monitor chassis, this is connected back to the main chassis through the cable shielding. If possible, also terminate the monitor chassis to earth ground as well to give it a direct reference to the main chassis reference. This is illustrated in Figure 3 below.

 $\Rightarrow$  Any conductive coatings should be treated as a cable shield, not as a metal chassis. As such, *do not ground any conductively coated plastics directly to the PCB ground planes*. Conductive coatings should be terminated to the chassis as in the case of the cable shields.

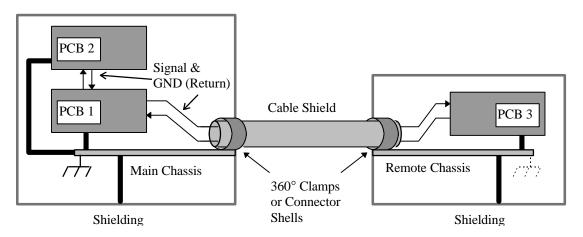



Figure 3: Chassis Grounding Scheme

Note above that every signal must have a return line (GND) and would preferably have more than one to reduce the return line impedance. The reason is that if no low-impedance return line is provided, the signal has no option but to return to the source through the chassis, cable shield, or through the air (radiation). The dark lines above represent ground straps or metal standoffs which provide numerous contacts to the chassis.

In a simplified drawing, the overall scheme should be each electrical component having direct reference to the chassis ground, not through another component:

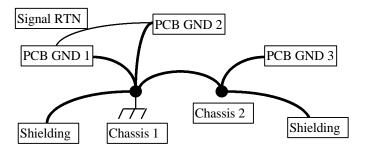



Figure 4: Single Point Grounding for Monitors

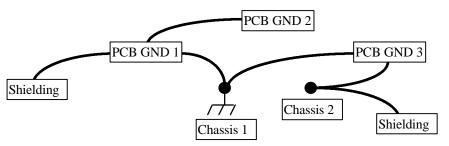



Figure 5: Improper Grounding Scheme

In Figure 4, the grounding scheme assumes that the contact between Chassis 1 and Chassis 2 is low impedance effectively forming a single chassis. A properly terminated cable shield is not zero impedance, but is as good as is practically possible and can be used for this purpose. Also note that the ground RETURN lines for signals between PCBs go directly between the PCBs (not through the chassis) to provide a direct return for signal currents. This minimizes the currents that return through the chassis.

Figure 5 illustrates an improper way of terminating shields and ground planes. The issue with this scheme is that return currents induced in the shield from PCB 2, for example, have to return through PCB 1. This type of situation can cause interference as well as emissions problems.

Finally, it is very common to use the terms "GROUND" and "RETURN" interchangeably when they are in fact not the same thing. They may be both tied to the same DC potential, but their purposes are very different. The chassis GROUND is the absolute potential reference for the system, the signal RETURNS or "grounds" are tied to the ground reference, but their primary function is to provide a current return for signal currents.

#### 2.3. Apertures

The reality is that an ideal Faraday cage is a near impossibility. Real enclosures are not completely sealed and cannot be due to thermal requirements, connector openings, and service accessibility requirements. However, if certain guidelines are followed, a practical EMI enclosure can be constructed and still perform as a very effective shield.

In any practical system enclosure, there must be holes made in the metal to provide ventilation and exit points for I/O connectors. What is important for shield effectiveness is to remember that what makes the shield leaky is the longest *linear* dimension that is open, not the largest area. For example:

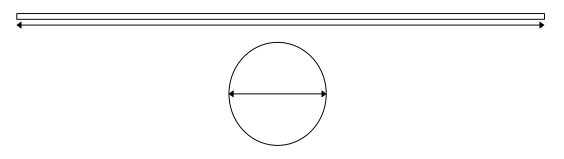



Figure 6: Shield aperture comparison

The aperture shown at the top of Figure 6 is a much more leaky opening than the large circular hole shown at bottom since its longest linear opening is much wider. Therefore, one must be careful of large seams since a poor contact along two long pieces of metal can leave a very large opening.

In the case of a lid for an enclosure, there are generally two ways to seal off the seams: 1) use EMI gaskets, 2) increase the depth of the contact seam. The first option usually involves beryllium-copper spring fingers which can be more expensive and difficult to manufacture. Increasing the seam depth is illustrated below:

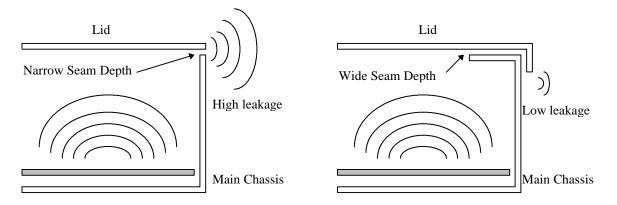



Figure 7: Seam depth and shield leakage

The reason there is much lower leakage from the enclosure on the right is that emissions from the PWB on the inside must pass through the "waveguide" of the folded metal seam. Waves emitted on the inside must reflect back and forth between the lid and main chassis numerous times before exiting the seam. The signal is attenuated with each reflection and is significantly reduced by the time it reaches the opening.

If a very tight EMI seal is required, you can either screw together the lid and chassis at close intervals (2" or less), or you can place EMI gaskets (spring fingers) between the lid and chassis as shown below:

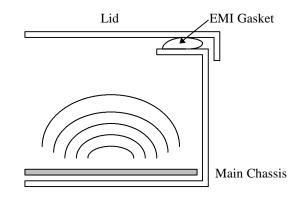



Figure 8: Use of EMI Gaskets

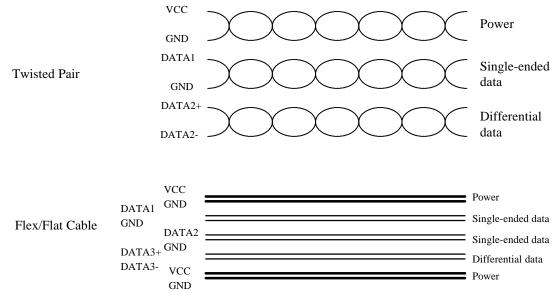
As mentioned earlier, it is the linear dimension, not the area that defines how much radiation escapes the enclosure. Given that, it is better to have many small holes, than one big one. There are two reasons for this. First of all, the obvious reason is that the larger hole will let more radiation out, but the second less obvious reason is that a single large hole requires any return current that happens to be flowing on the chassis to route itself around this opening. The larger the opening, the larger the deviation resulting in a higher impedance. The end result is a significantly less effective shield.

#### 2.4. Hinges (Notebook PC Applications)

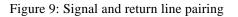
A common problem that is seen in notebook designs is the electrical separation of the flat panel chassis from the main system chassis. Often this separation is unintentional since the designer has assumed

electrical contact through either the hinges and/or the conductive plastic. <u>Neither of these provide</u> <u>acceptable conductivity at high frequencies</u>. Hinges should be treated mainly as a mechanical pivot which allows the display to fold downward and close the notebook computer, <u>not as an electrical connection</u> <u>between the panel and system chassis grounds</u>.

The LCD panel in a notebook should be treated similarly to the LCD monitor as shown in Figures 2-4. The panel chassis and main system chassis should be tied together as well as possible:


- ⇒ Make multiple contact points between the main ground planes of the LCD controller board and main system boards to the metal or conductively coated chassis of each. These contact points should not be near (within 4cm) high speed IC's. This helps insure that induced return currents are given a low impedance return to their sources.
- ⇒ Provide low RF impedance contact between the panel chassis and main system chassis. This low impedance connection should be provided by a low impedance metallic contact (other than the hinges), preferably by a wide strip (1 cm width or more) of copper. It is possible to provide this contact with the shielding of the signal cables routed between the main system and the flat panel display (see section 2.3 Signal Cables).

There are a few special considerations to look out for:


- $\Rightarrow$  Do not use the chassis as the deliberate return path for signals or as a ground plane. Using the chassis as a ground plane introduces this noise onto the chassis ground which may in turn inject this noise onto the cable shielding that is terminated to it. For more details on grounding, see section 3.2 Ground Planes.
- ⇒ Cable shields should be terminated to chassis ground. Do not terminate any of the cable shields to the ground plane of the motherboard. Ground planes are direct return paths for signals and may have significant noise or "ground bounce." Connecting cable shields to this will inject common mode noise onto the shields and cause radiation. Chassis grounds are relatively "cold" grounds which provide return paths for currents induced on shielding.
- $\Rightarrow$  As was noted several times before, hinges and conductive plastic do <u>not</u> make good contact at high frequencies <u>and should not be the sole connection between the flat panel and main system chassis grounds</u>.

#### 2.5. Signal Cables

Signal cables are the most efficient radiators in an electrical system since a cable is very similar to an antenna. Cables need to be used carefully and have their length minimized wherever possible. Many flat panel displays have their controller hardware mounted at the top of the display which is undesirable due to the increased cable length. If possible, locate the panel controller hardware at the bottom of the display to minimize cable length. Also, due to their high radiating efficiency, all cables should be shielded (flat cable and twisted pair) and have space allowances for ferrite beads both in the system enclosure and at the controller. Additionally, the cable should be mechanically constrained to lie as close to the chassis metal (or coating) as possible. This will further reduce the cable's ability to act as an antenna. Refer to sections 3.4 and 3.5.



For every signal and power line in the cable, there should be at least one corresponding return line, as illustrated below:



The +/- data shown above indicates differential signals whereas data coupled with a GND line indicates single-ended signaling.

Wherever possible, there should be multiple parallel power/ground lines to insure that enough current can be supplied to the display, and reduce the return path impedance. <u>If there are any unused pins, connect them to the system/FPD ground reference (NOT chassis ground).</u> All power lines should be filtered before exiting on the cable (See Section 3.4).

Applying shielding to the cable(s) is an important, but somewhat confusing exercise. The designer should be careful to connect each part of the shield to the appropriate location on the system <u>and be careful to not</u> <u>confuse the signal return with a shield</u>. For example, mini-coax is often used for sending signals. Coaxial cable consists of an inner signal conductor, a dielectric surrounding the inner conductor, and an outer braid enclosing that dielectric as shown below:

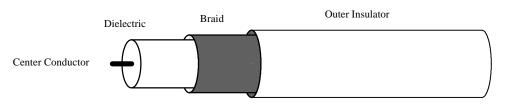



Figure 10: Typical coaxial cable

The braid shown in Figure 10 is a signal return not a shield. Thus you should not consider the above cable to be shielded because:

- $\Rightarrow$  There will be common-mode currents on both the braid and center since the braid will be connected to the ground plane.
- $\Rightarrow$  The braid is likely terminated in a long twisted wire ("pig-tail")" that greatly increases the impedance of the signal return and common-mode noise as well.

Common-mode currents occur very often and need not be very large to cause very high emissions. A common-mode current on the order of a few <u>micro-amperes or less</u> is enough to cause emissions high enough to fail CISPR22 B if left unshielded. "Pig-tail" braid terminations are common in high density signal connectors and are not always avoidable. Therefore it is often (almost always) necessary to have an overall shield that encloses the entire signal cable bundle. A preferred configuration for a cable bundle is illustrated below:

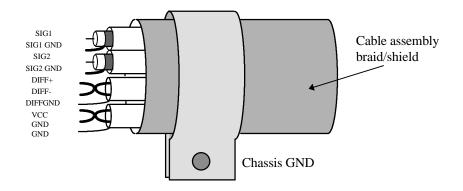



Figure 11: Cable shield termination

This cable assembly should be terminated (RF Bonded) as shown above at both the flat panel and main system chassis. The clamp used to contact the overall shield should have as large a contact area as possible with the chassis and shield, preferably a 360° contact. Using only the fasteners as contact points to the chassis will significantly lower the shielding effectiveness and is NOT recommended. Using a "pig-tail" on the overall exterior shield is NOT recommended. Space should be made for a 360° clamp for the best RF contact. Pig-tails are very inductive and will significantly compromise and most probably will destroy the effectiveness of the shield. In addition, since this overall shield also serves as a low inductance connection between the panel and system chassis grounds, any additional inductance here will further degrade EMI performance by introducing a significant RF potential difference between the two chassis grounds. The pig-tails on the small inner coax lines should be as short as possible or eliminated altogether if special connectors are available. The twisted pair lines may be shielded or non-shielded, but are shown with individual shields just for illustration purposes.

If flat ("flex") cables are used in the system, a similar configuration can be used. It is preferable that <u>copper</u> planes be used to connect the flat panel chassis and the main system chassis and the flat cable shields can be used for this purpose. In order to limit the number of layers in the flat cable to keep flexibility, <u>a three layer design is recommended</u> (if concerns about flex endurance dictate, only the bottom layer of the shield should be used):

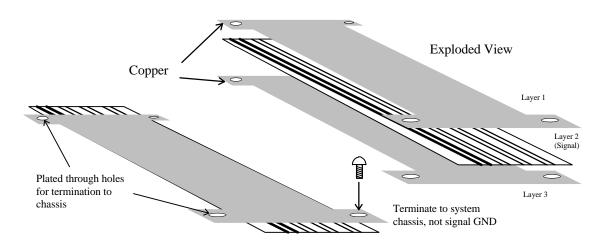



Figure 12: Three-layer FPC (flex cable)

The flat cable has the signal and power lines enclosed between two solid copper layers which comprise the shield of the cable. <u>This shield should NOT be used as a ground for signals carried on the cable</u>. Each signal line should have a closely coupled (i.e. physically close) ground/return line. Also, any power lines carried on the cable should have its ground/return located physically close to it on a separate trace <u>on the signal layer</u>—Note: .065 inch traces on .075 inch centers will have a 25 ohm characteristic impedance. The shield itself should be terminated to the chassis (on both the panel and system ends) and NOT to the ground planes of the panel or system PCBs. Although the ground planes do contact the chassis as mentioned in Section 2.2, connecting the cable shield to the chassis is NOT the same as connecting it to the ground planes directly. This is because there may be noise on the ground planes and connecting the shield to those grounds will contaminate the shield with that noise. By connecting the shield to the chassis, any noise on the power or signal lines induces reverse currents in the shield which return to the source therefore reducing the (common mode) current entering the shield and causing emissions. Depending on the system design, common mode chokes may be needed on the signal and clock lines. Power lines must be filtered at the connector, preferably with a low pass filter and/or a two wire common mode choke. See Section 3.4 Filtering for more detail on filters and CM chokes.

## 2.6. Contact Points

Once a proper shielding configuration has been established for the signal cables, it is important to insure that they are connected to the rest of the system correctly. Although, this has been stated in the previous section, this section will provide examples of how the system chassis grounds, shields, and cables should be connected to one another.

In the case of a system using twisted pair signal lines shielded by an overall braid shield, the signal lines should be connected as shown in the beginning of Section 2.3. The overall system configuration should look something like the following:

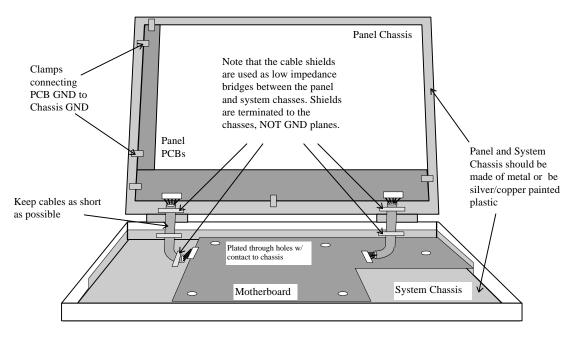



Figure 13: Chassis connection points for notebook PCs

The configuration for a system using flat cables is very similar except that instead of using metal clamps to terminate the shield to the system chassis, the plated-through mounting holes shown in Figure 12 are used to terminate the flat cable shield. Note that this is a direct implementation of the architecture shown in Figures 2-4.

The figure above is the same electrical configuration shown in the LCD monitor example shown in Figure 3, but is illustrated here in a notebook application to show a different arrangement of the same configuration.

The motherboard as well as the panel PCBs must make good ground contact with the chassis through multiple contact points with a few caveats:

- $\Rightarrow$  In notebook designs, the chassis is generally made of light gauge material to save weight so it is very important that the chassis contact points are not near any chips with high speed clocks since this can cause a significant amount of local ground noise. It does not matter if the clocks are not even routed outside the chip since the internal clock can create noise through its ground or power pins.
- ⇒ Any additional shielding (conductive coatings, metalized mylar, etc.) should be terminated to the chassis, NOT a PCB ground plane.

In addition, the designer must be careful to not use the chassis as a ground plane or intentionally route return currents onto the chassis:

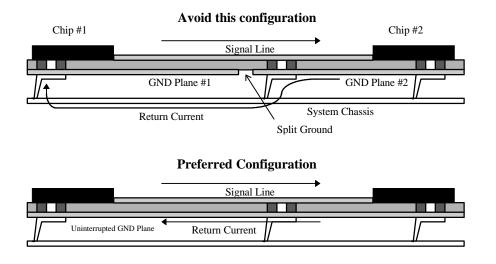
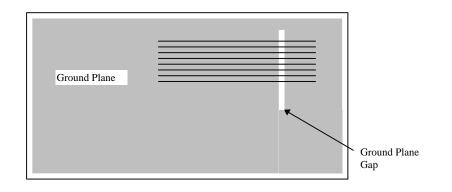
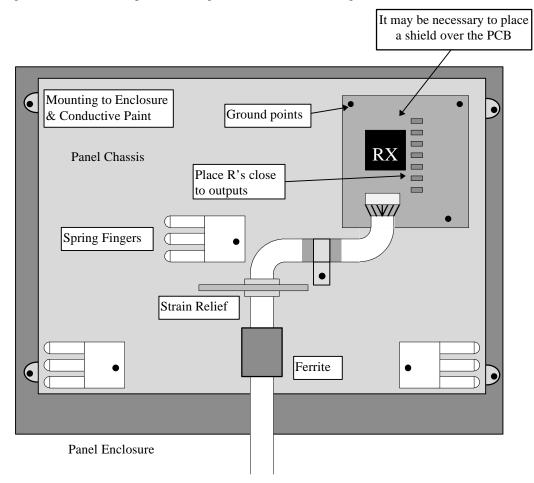
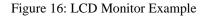



Figure 14: Broken Ground Planes

Although it is sometimes necessary to have separate ground planes, in most cases it is better (and easier) to have a single ground plane. That way it is easy to insure that a signal line is not routed over a break in the ground plane/return path. The mechanical designer should coordinate with the system layout designer to insure that the situation shown at the top of Figure 7 does not occur. Signal return currents inadvertently or deliberately traveling on the chassis may cause it to radiate. For more information on ground planes, see Section 3.2 Ground Planes.



Figure 15: Gapped Ground Plane (see 3.2)

Signal traces run over a gap will cause increased ground bounce and increase common mode current generation at ALL I/O connectors.

#### 2.7. Summary

The figure below is an example illustrating some of the mechanical guidelines described in this section.





Conductive Plastics

⇒ The use of conductive plastic does not hurt, but it should NOT be relied upon as the primary shield or chassis ground. Conductive plastic helps reduce electric field emissions and ESD currents, but it is ineffective for general shielding purposes. Shielding must be metal, preferably copper or a low impedance plastic coating.

Metal chassis and hinges

- $\Rightarrow$  The chassis of the main system and panel should have many contacts to their PCB main ground planes.
- $\Rightarrow$  The hinges should NOT be relied upon to provide electrical contact between the main system and flat panel display chassis. There should be low impedance electrical contacts (flat wide bonds) between the panel and system chassis to reduce the RF potential between them.
- $\Rightarrow$  Cable shields should be terminated to the chassis ground.

 $\Rightarrow$  <u>All</u> metal backings and supports in the display must be RF bonded to its chassis frame, and <u>All</u> metal backings and supports of component assemblies mounted over the counterpoise or image plane of the main chassis must be RF bonded to it.

Signal Cables

- $\Rightarrow$  Each signal should be paired with its appropriate return line as closely as possible to establish maximum mutual inductance. This would be the signal's ground line (if single-ended), or its opposite differential line if double ended.
- $\Rightarrow$  Power lines should be paired with their return line as closely as possible to establish maximum mutual inductance.
- $\Rightarrow$  Cables should be shielded if possible. The cable shield should be terminated to the panel and display chassis at both the panel and system ends and as close to the cable connectors as possible.
- $\Rightarrow$  If shielding is not possible, make sure that a single common mode choke is used on all signal and clock lines and that common mode filtering is also applied to the power lines (see section 3.4 Filtering).

Contact Points

- $\Rightarrow$  As mentioned above, the panel chassis should have a good metallic contact (RF bond) with the main system chassis other than the hinges.
- $\Rightarrow$  Cable shields should directly contact the panel and system chassis near the cable connectors.
- $\Rightarrow$  The motherboard and panel controller PCBs should have good contact with the chassis ground, but not use the chassis grounds as signal return paths.

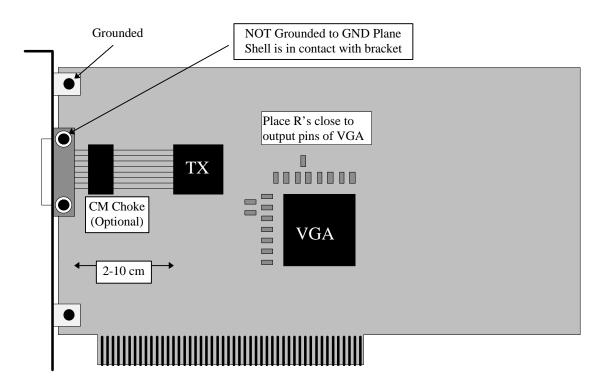



Figure 17: Typical Add-in card layout

## 3. GENERAL ELECTRICAL CONSIDERATIONS

Before addressing application issues specific to PanelLink<sup>™</sup>, there are some general electrical design considerations that need to be taken into account. These design considerations apply to the application of other controller or driver chips as well as the proper implementation of ground planes and filtering.

#### **3.1.** Capacitive Decoupling

All active components such as VGA controllers and driver chips require input power to operate. It is not enough to merely connect these power pins to the closest VCC plane since this can result in radiated emissions due to inadequate charge supply and inductance over power supply traces and vias. <u>All high speed active components should have capacitive decoupling on their supply lines</u>, preferably very close to each power and GND pin:

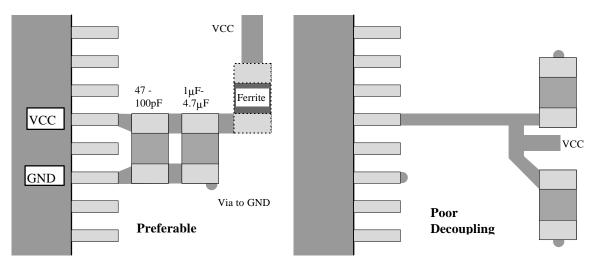



Figure 18: Capacitive decoupling

The ferrite is shown with a dotted line because it is used in special situations where a chip has two or more separate power planes (for noise or performance reasons). If one of the power planes generates a significant amount of noise, a ferrite and properly implemented decoupling capacitors can contain the noise within that local power plane and not allow it to propagate throughout the entire system's power plane, or prevent outside noise from corrupting a sensitive power input.

Note that the capacitors are connected directly to the pins to minimize the lead inductance of the decoupling loop between the power and ground pins. It seems unimportant until you realize the internal structure of an integrated circuit. See Figure 19. The internal bond wires used to connect the silicon contact pads to the pins usually have a characteristic inductance of 4nH which cannot be avoided. Thus any inductance you have on the exterior of the chip adds to this impedance. BGA packages may appear to be better in this respect, but are often the same or worse due to the routing required on the small PCB to the contact balls.

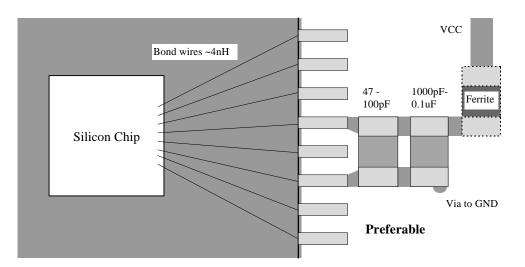
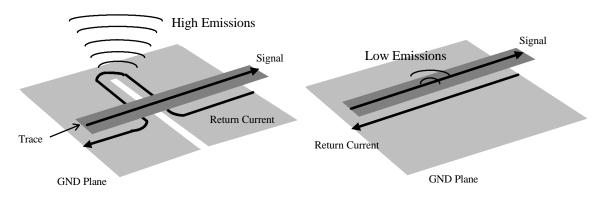



Figure 19: Internal bond wires in integrated circuits

The ground plane is contacted by the vias on the capacitor ground pads. This is for potential reference and current return but is not in the direct decoupling path of VCC and GND. This is because each via has between 1 and 2 nH's of inductance and this circuit avoids their series impedances. These inductances, in series with the inductance of the lead pins and the bonding wires within the IC itself, would seriously degrade the effectiveness of the decoupling capacitors.


Also indicated on the drawing on the left of Figure 18 are the approximate value ranges of the capacitors used in decoupling the power and ground pins. The capacitor on the left is smaller than the one on the right. This is because the smaller value capacitors' will resonate at higher frequencies and can therefore supply higher frequency currents. The "slower" large capacitor on the right is used to store additional charge and hold up the voltage on the power input. The smaller capacitor should be placed closest to the VCC/GND pins. In addition, 10  $\mu$ F electrolytic capacitors should be placed at various points across the PCB's to provide low frequency energy storage. A rule of thumb is to provide 47  $\mu$ F of capacitance for each Ampere of current the PCB uses.

A rule of "Decoupling At The Point Of Use" should be applied wherever possible to avoid high frequency currents flowing over long traces and/or power planes and creating potential noise radiation problems. During the PCB layout phase, care must be taken to allow space for decoupling on any VCC lines to any high speed integrated circuits.

## **3.2.** Ground Planes

Proper use of ground planes within an electronic system is very important with respect to the amount of radiation that system produces. The ground plane serves as a direct return path for signals sent from one part of the system to another and should be as low an impedance as possible. Many times, designers operate under the notion that "a ground is a ground" and route their traces as such. Unfortunately, this is rarely the case in real world applications since a "ground" at one location on the PCB may have a potential difference (i.e. non-negligible impedance) relative to another point on the ground plane. This is due to the intrinsic ground plane inductance of 0.4 nH or more per inch along the plane. The inductive noise spikes caused by fast rise and fall time signal currents traveling down the board create potential differences along the plane and this "ground bounce" acts as a common mode current generator for cables leaving the board. In addition, the board itself resonates at its characteristic frequency as a consequence of

the spikes and also provides RF emissions. The designer's job is to minimize all these effects and reduce the emissions to only the level that results from normal board operation.



When routing signals, the designer should be careful to not route signal lines over breaks in the ground plane:

Figure 20: Effect of ground plane breaks

<u>Breaking the ground plane must be avoided</u> since it will be very easy to create the situation shown on the left. It is better to have a single ground plane and insure a direct return path for all signal currents. Another situation was described earlier in Section 2.4 where a divided ground plane forced a return current to travel through the chassis ground (Figure 7). This is also not recommended because 1) the signal return through the chassis will not be closely coupled to the outbound signal current, and 2) this introduces signal-related currents on the chassis possibly corrupting the chassis with noise. Close coupling with the original signal is important since it creates a lower inductance path for the return current (due to magnetic coupling), and the opposing fields tend to cancel thus reducing emissions.

In general, ferrites should not be placed between ground planes or on ground pins. This is because this places an RF potential between a returning signal current (and its reference plane) and the main Reference plane. The two planes form an antenna and radiate at the noise frequencies generated across the ferrite.

As mentioned in an earlier section, one must be careful to not terminate cable shields to the ground plane but instead terminate them to the chassis. There can be significant "ground bounce" due to current transitions of circuits using the ground plane. If this ground plane is then connected to a cable shield the noise will generate common mode current that will in turn cause the cable to radiate. The designer should remember that:

- $\Rightarrow$  The braid surrounding the signal line of a coaxial cable is not a shield. It is primarily the return line for the signal. It should be terminated to the ground plane.
- $\Rightarrow$  The external shield over the coaxial and/or twisted pair signal lines should be terminated to the chassis ground at both ends. If there is no external shield over the signal lines, it is highly recommended that common mode chokes or filters be applied to those signal lines and their return lines and a ferrite be placed on the cable at the source (typically the system) end and possibly the display end.

#### 3.2.1. PCB Layout, Ground Planes and ESD

During an ESD event, a large positive or negative voltage pulse is imparted on the electronic system. Since most semiconductor devices are fairly sensitive to such discharges, it is up to the system designer to make sure that such devices are properly protected.

The most effective way to combat ESD events is to bypass potential entry points and design the system so that the pulse is dispersed as quickly as possible. One major source of ESD problems comes from improper layout of the PCB and ground planes. With high power analog systems such as CRTs, it is possible to use two layer PCBs and relatively slow bypass mechanisms such as spark gaps to protect these systems. However, with the static-sensitive integrated circuits used today, it is necessary to take additional measures.

First of all, unless all signal routing can be done on the top layer, it is recommended that a 4 layer PCB be used. This is so that there can be at least one *solid* ground plane. Using a two layer PCB with dual-sided signal routing usually results in narrow ground traces and smaller ground islands linked together by vias. Not only is this a problem for EMI, but the high impedance between the different sections of the "ground" prevents any fast transient voltage spikes from dissipating evenly throughout the system. The result is a localized high voltage area that tends to destroy integrated circuits. For example:

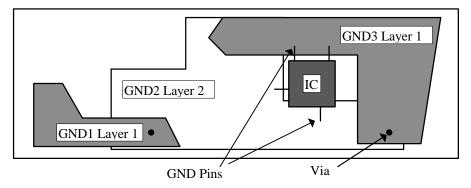



Figure 21: Ground Planes Joined by Vias

The example shown in Figure 21 is typical of a two-layer PCB ground design. At DC, the separate ground planes appear to be the same potential so not much attention is paid to the layout. However, at higher frequencies, the following is an equivalent circuit:

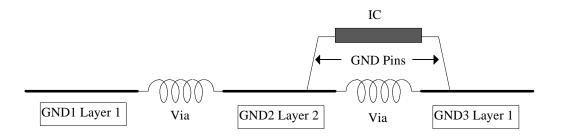



Figure 22: Equivalent Circuit of Figure 19

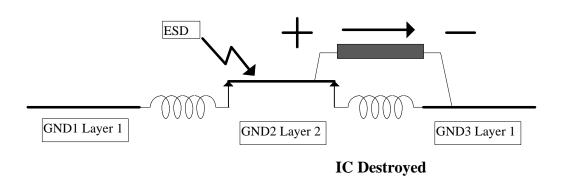



Figure 23: Potential Shift after ESD

Since the inductance of the vias prevents the discharge from dispersing evenly throughout the ground system, the local ground which has direct contact with the discharge rises very rapidly in potential with respect to the other "ground planes". This in turn causes a large potential difference within the integrated circuit. The large internal currents caused by this potential difference destroys the integrated circuit.

Thus, with a solid ground plane, the voltage spike is dispersed quickly and evenly improving ESD survivability of the system.

Capacitive and diode bypassing is also important for ESD protection. A power plane may be subject to a static discharge as well as a ground plane. This is why there should be capacitive bypassing provided between the power planes and the ground plane since the capacitors will bypass the pulse to the ground plane and disperse the pulse (assuming that you have not split the ground plane as in Figure 21).

Signal lines that are accessible to the external environment are subject to static discharges and may also need to be protected. Typically, this is done with fast, low-capacitance diodes that are placed on the signal lines. Usually, each signal line has one diode to VCC and one to GND. Make sure that these diodes are placed near the signal lines and wide traces are used. If there is too much inductance in the traces or vias to the diodes, their effectiveness is greatly reduced. Refer to Section 4.6 for PanelLink implementation.

## **3.3.** Power Planes and Power Lines

Obviously, no active circuit can operate without power and proper distribution is important to the performance of the system as well as the radiation it produces. In general, it is better and easier to have a large overall power plane (usually digital VCC) that supplies power to all the active components. If a special segregated power supply plane is required, it can be derived from this main power plane using decoupling capacitors and series ferrite as shown in Figure 18 in Section 3.1. If a large separate power plane is required, it also can be isolated from the main power plane with a ferrite, but the ground plane must remain common to both power planes. Since it is possible for a power plane to serve as a return path for AC signals, there should also be allowances made for small bypass capacitors between each power plane and the ground plane.

Insure that all power planes have adequate charge storage capacitors placed on them so that current drawn on one power plane does not require excessive current from any other planes coupled to it. Charge storage capacitors (for example, 47µF electrolytic capacitors) should be evenly distributed throughout each power plane so that charge storage is more uniformly distributed on that power plane. The purpose of these large storage capacitors is to provide low frequency currents and hold up the voltage on the power plane from any lower frequency voltage fluctuations.

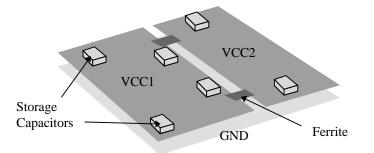



Figure 24: Illustration of Separate Power Planes and Charge Storage Capacitors

As mentioned in the previous section, allowances should be made for numerous smaller bypass capacitors between power and ground for ESD protection.

Sending power over a cable usually increases emissions, but is often necessary, especially in flat panel displays. Power planes (and their grounds) are often quite noisy due to all the circuits that are drawing current from them. In general they generate varying levels of common mode currents. Remembering that only a very small amount of common-mode current is necessary to fail most emissions standards (<15  $\mu$ A at 30 MHz flowing through a 1 meter cable), the designer should be very careful to not let common mode voltages drive unshielded cables. To prevent common-mode noise on cables due to power distribution, filters need to be placed on the power lines as close as possible to the connector. See the next section, 3.4 Filtering.

#### 3.4. Filtering

Filters selectively attenuate certain ranges of frequencies and are usually composed of inductors (or ferrites) and capacitors arranged in various configurations. Ideally, a filter will block unwanted frequencies while leaving desired signals unaffected. In reality, a filter will always affect all signals flowing though it, but if correctly chosen for the application, will reject only the required frequencies. There are both passive and active filters, but active filters cannot handle the frequencies that are of interest for EMI, and introduce noise and heat themselves due to the active components involved. Passive filters utilize only inductors, ferrites, capacitors and resistors and are used in numerous applications. This discussion will be restricted to passive filters.

Filters can be constructed from discrete components or can be purchased as self-contained surface mount packages. Two commonly used filter configurations are shown below:

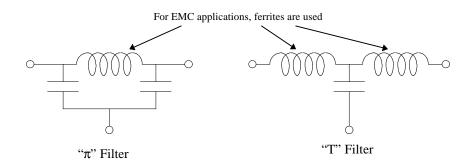



Figure 25: Common filter configurations

Both of these filters are low pass filters, i.e. they pass frequencies up to the cutoff point and attenuate frequencies beyond that. The " $\pi$ " filter has a steeper cutoff characteristic and is better suited for use on signal lines although they can be used on power lines as well. Due to their simplicity, "T" filters are popular for use on low frequency lines or power lines. "T" filters have a long gradual cutoff and will probably affect any signals sent through that filter. Thus, "T" filters are generally used on power lines where good frequency response is not necessary. The cutoff curves for each type look similar to the following graphs:

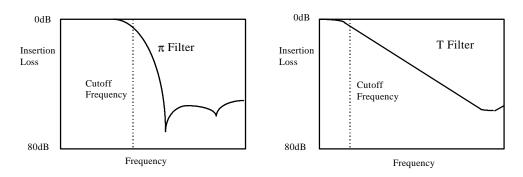
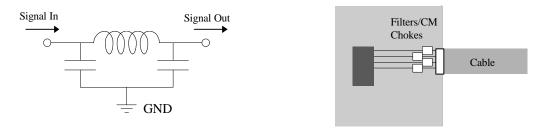




Figure 26: Filter attenuation curves

In general, ferrite beads are used in these noise filters as opposed to inductors. This is because a ferrite is a dissipative element and converts electromagnetic energy to heat, whereas inductors largely reflect this energy and may cause other problems. An other useful property of ferrites is their zero voltage drop for DC currents.

Filters are utilized as shown on the diagram below. The signal enters one of the top terminals and exits the other. The bottom terminal is connected to a reference, usually signal ground. The filter itself must be placed near the connector where the signal/power line exits the board to a cable.



#### Figure 27: Physical placement of filters

As far as component values are concerned, typical available ferrite impedances lie in the range of 30 to  $600\Omega$ . Basically, the higher the impedance, the greater the attenuation at high frequencies. In general, changing the capacitance value moves the cutoff frequency for the filter. A reduction in capacitance moves the cutoff point to a higher frequency. An increase in capacitance moves the cutoff point to a lower frequency.

In the case of differential signals the signal is on two lines, each carrying an equal but opposite polarity current or voltage. In this case, the filters described above are difficult to implement and in addition may adversely affect signal flow. This is of no importance since seldom is differential noise generation on balanced pairs a problem. However, a major concern for these signal lines is common-mode noise. This is noise that is generated by currents of the same polarity flowing along both of the signal lines simultaneously. As has been pointed out elsewhere in this document, very low values of common mode current cause very high emissions so the matter must be given great attention. Further, these currents are usually not related to the signals on the lines affected but are generated elsewhere in the system as explained in the introduction to section 3.2. In either case, a method of common mode attenuation is needed. Fortunately, common-mode chokes exist that act as impediments to common mode currents. Even more fortunately, the filters do not affect differential signals. Their operation is explained below.

As an illustration, a common-mode choke is shown below that has two wires wound around a magnetic core such that the induced flux fields within the core caused by differential currents (i.e. the signal) subtract from each other and the flux adds to zero. In this case, since the signal does not create an inductive reactance, the signal passes through unchanged. However, the induced fields caused by currents flowing simultaneously in the same direction (i.e. common-mode noise) add to each other. Since inductance is defined to be proportional to flux generated by a current, a considerable amount of inductance is created and its reactance impedes the signal. This creates the favorable situation where signals encounter a low impedance and pass through, while common-mode current encounter a high impedance and is reduced.

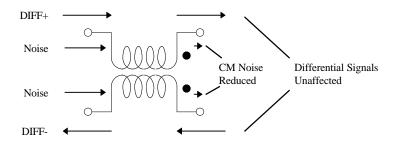



Figure 28: Effect of common-mode chokes

Common-mode (CM) chokes should be located similarly to the single-ended filters, i.e. near the connector where the signal(s) exit the board onto the cable. Also as with single-ended filters, common-mode chokes are available as self-contained surface mount packages.

During layout, space should be allotted near the connector for filters and/or common-mode chokes on all signal and power lines that enter or exit onto the cable, especially if the cable is unshielded. In general, common-mode chokes should be applied to signal lines (and their returns if single-ended), and filters applied to the power lines. The reason common-mode chokes are applied to single-ended signals is that if the topology shown in Figure 28 is used, the signal and its return current are in effect differential. A CM choke is also less likely to affect the signal adversely or introduce unpredictable phase effects.

#### 3.5. Ferrites

Ferrites are sometimes thought of as some magical cure for EMI, frequently not well understood and sometimes misapplied. Ferrites can be small surface mount beads, or large toroids, A ferrite bead is similar to an inductor in that it presents a high impedance to high frequencies, but is different in that the impedance is mostly dissipative. Thus, ferrites dissipate a significant portion of the frequencies they impede as heat. An inductor stores the offending frequency in its magnetic flux field and releases it later to the adjacent circuitry, e.g., "ringing" (this characteristic is not useful for filters dealing with abruptly changing currents). Because of their dissipative nature, ferrites are much more suitable for high frequency filtering.

As such, ferrites may appear to "absorb EMI" but are actually high frequency resistors and serve as attenuators that reduce high frequencies in the circuits where they are placed. With this in mind, it should be reiterated <u>that ferrites should NOT be placed on grounds or the ground pins of integrated circuits</u>. If this is done, the ferrite beads will not "absorb" the noise on the ground plane, but will instead develop noise voltage across the ferrite proportional to its magnitude and the IC or ground plane will radiate. To mitigate against noisy grounds, remedies are:

- $\Rightarrow$  Better capacitive decoupling on integrated circuits
- $\Rightarrow$  More charge storage on the power plane(s)

There are typically two applications of ferrites, 1) ferrite chip beads, and 2) ferrite cores. Ferrite chips should generally be applied to power lines in conjunction with capacitors to form filters (See section 3.4). They can also be used with decoupling capacitors to isolate a power plane on an integrated circuit (See Figure 8). Ferrite cores are larger ferrites that are placed around the entire cable, i.e., sleeves. A ferrite core placed over a cable assembly in effect creates a large common-mode choke for the entire cable. Thus, any common-mode current that is present on all lines of a cable will be reduced because the ferrite presents a high common-mode impedance. The attenuation of the noise can be increased by increasing the impedance of the choke. This is accomplished by either increasing the impedance properties of the ferrite material, or winding the cable through the ferrite multiple times. The addition of more ferrite cores will also increase noise attenuation slightly. Unfortunately, the most important cable properties are its length and capacitance to nearby objects, i.e. the cable's behavior as an antenna.

If possible, a ferrite core should be placed at both the system end and at the panel display end of display cables. This way any common-mode currents generated by either the system or the display will see an impedance in the common-mode current and its consequential radiation will be reduced. Whenever a cable is utilized, common-mode currents will flow and can cause high RF emissions. If possible, <u>space</u> should be allowed for placement of ferrites on the display cable to reduce its ability to act as an antenna.

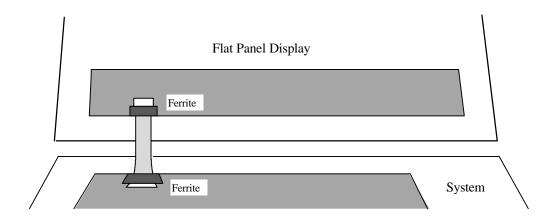



Figure 29: Ferrite core placement in a notebook PC

#### 3.6. Summary

In summary, a designer should make sure they take the following electrical design points into consideration:

- $\Rightarrow$  Insure that there is adequate capacitive decoupling on the power pins of all high speed integrated circuits.
- $\Rightarrow$  Avoid dividing ground planes whenever possible and never route signal lines over breaks in the ground plane.
- $\Rightarrow$  Do not place ferrites on grounds or ground pins.
- $\Rightarrow$  Different power planes may be separated by ferrites, but make sure that adequate charge storage and capacitive bypassing is provided on each power plane.
- $\Rightarrow$  Make space in the layout for common-mode chokes and filters at the cable connectors.
- $\Rightarrow$  Leave room in the enclosure for placement of ferrite sleeves or clamp-ons on display and signal cables.

# 4. PanelLink<sup>™</sup> APPLICATION CONSIDERATIONS

Now that general design considerations for flat panel displays/monitors have been discussed, there are some electrical and mechanical design considerations that are specific to the application of the PanelLink transmitter and receiver. Proper implementation of the PanelLink parts can prevent the conduction of radiating currents from the main system onto the PanelLink display cable and the system signal cable(s). Improper implementation of the PanelLink parts can cause increased levels of high frequency currents propagating through the system and negate any positive effects of the special PanelLink transition minimization encoding scheme.

#### 4.1. Capacitive Decoupling

Like the VGA controller and other high speed integrated circuits, the PanelLink transmitter and receiver chips also need to have proper capacitive decoupling. The PanelLink chip pair has several separate power planes such as VCC, PVCC, and AVCC. The TX also has an IVCC which supplies current to the core logic, and the RX has OVCC which supplies power to the output data buffers. The AVCC/AGND pins provide power to the high speed differential lines and should have adequate decoupling to provide fast currents and minimize this current loop. Because of this, the following configuration is recommended on both the transmitter and receiver:

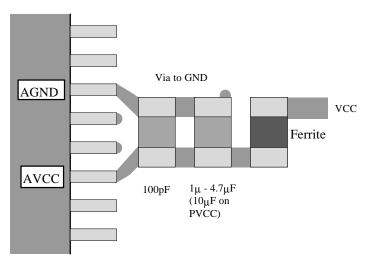



Figure 30: PanelLink decoupling scheme

Since the differential data lines are located between AVCC and AGND, what is typically done is to run the differential signals through a via to the second layer then to the connector. As noted in the Silicon Image "Basic PanelLink Design" applications note, running the differential lines through vias is acceptable due to PanelLink's skew tolerance. However, if vias are used, they should be used sparingly *and applied symmetrically within a* +/- *pair*.

*SPECIAL NOTE*: PVCC/PGND supplies power to the internal PLL and should also be decoupled as above to maximize performance and should have a voltage regulator to filter power line noise. Also, <u>the outer decoupling capacitor for PVCC should be  $10\mu$ F.</u>

IVCC (on TX only) and VCC should have a 1000pF capacitor placed as close to each pin as possible.

OVCC on the RX draws a significant amount of current and it is important to have adequate charge storage on these pins. Place at least a 1000pF capacitor in parallel with a 1 $\mu$ F capacitor close to the OVCC pins to supply current to the data output buffers. Since data-related emissions comprise the majority of emissions from digital video systems, it would preferable to decouple OVCC as in Figure 30.

Make sure that there is a significant amount of decoupling and charge storage on the FPD controller boards. Insufficient charge storage will result in current being drawn from other sources (most likely over the cables) causing radiated noise. Usually, four to six 22-47µF capacitors distributed throughout the PWB are adequate to hold the voltage level.

## 4.2. Parallel Data Line Loading

Through the course of various EMI experiments and scans it has been determined by Silicon Image, Inc. that the parallel data lines feeding the TX and coming out of the RX create a significant amount of radiated emissions. This is largely due to the fact that both the VGA controller and the RX were designed to drive unknown loads and as such are capable of sourcing large amounts of abruptly changing currents. Although the VGA controller in a notebook typically feeds directly into the TX over a very short distance, the excessive digital current driving the system ground plane's inductance produces significant amounts of "board bounce" voltage near the display cable connector. This in turn causes common mode currents to be generated on the display cable and the cable and the display radiate with data-related RF emissions. Similarly, the RX typically feeds directly into the flat panel controller ASIC over a short distance and similarly radiates.

The best solution to this is to place series resistors on the parallel data lines <u>as close to the source as</u> <u>possible</u>. This reduces the currents charging the signal trace and IC capacitance. The reduction of charging currents is sufficient to reduce board bounce and lower emissions substantially. The most effective location of resistors is at the parallel output pins of the VGA controller and the RX chip:

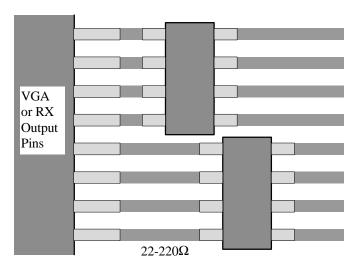



Figure 31: Resistor pack placement on parallel data lines

Even if space is limited on the motherboard, the PWBs should have spaces allocated for resistors on all parallel outputs of the VGA controller to the TX, including the clock line. Generally, flat panel controller PWBs are less space constrained, but should also allow the placement of these resistors. The effect of the

series resistors <u>should not be underestimated</u>. During experiments, Silicon Image confirmed that the current limiting resistors on the parallel data lines reduced emissions by 10-15dB.

The values of the resistors shown above vary from  $22-220\Omega$  and the actual value used will depend on the individual system. The important thing is to insure that the PWB layouts include the solder pads for these components on the VGA and RX outputs so they can be easily added/changed.

#### 4.3. Power Distribution and Ground Planes

Main power to DVCC on the SiI100 (TX) and SiI101 (RX) is supplied by the main system 3.3V power supply plane. Power to AVCC and PVCC are derived from this main power supply through ferrites (to filter noise from the main supply) and decoupling capacitors which provide charge storage for current drawn on those pins. The IVCC and OVCC power source depends on the voltage level of the input and output signals respectively. If the data being fed to the SiI100 is from a 5.0V source, IVCC must be derived from the main 5.0V source on the system. If the input data is 3.3V, DVCC can be used. Likewise, if the FPD controller ASIC is 5.0V, OVCC must be 5.0V. If the FPD controller ASIC is 3.3V, DVCC can be used to supply OVCC.

Therefore, the suggested power distribution configuration for a 3.3V system is illustrated as follows:

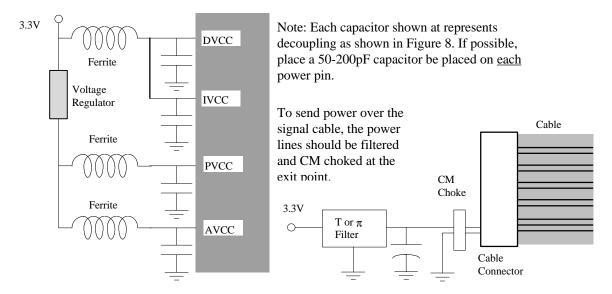



Figure 32: Supplying Power to the chips

Thus at the PWB level, PVCC and AVCC are not separate power planes themselves, but are derived from the main power. PVCC and AVCC may need to be regulated in noisy power environments such as motherboards with some bypass and charge storage capacitors. The ferrites block excessive high frequency noise from entering PVCC and AVCC, and also serve to contain any noise that may be generated by PVCC and AVCC so that it will not permeate throughout the main power plane. The main 3.3V power plane should be distributed throughout the motherboard and FPD (via the cables) and all other VCCs are derived from it on the both the transmitter and receiver side.

In most cases, power to the FPD hardware must be supplied from the main system by a cable. Before power is sent over the cable, it should be filtered so that any high frequency currents generated by the system are blocked from entering the cable and radiating. A final electrolytic capacitor is placed after the

filter to hold up the DC voltage level followed by a common mode choke to keep the board bounce off of the display cable. On the receiving side, the power lines should be similarly filtered to prevent any noise generated by the FPD hardware from getting on the cable, and an electrolytic capacitor placed before the filter to hold up the voltage on the receiver side.

Although there are separate DGND, PGND, OGND and AGND pins on the transmitter and receiver chips, <u>it is highly recommended that a large common ground be used on the PWB</u>. This is because the high speed circuits in the transmitter/receiver can induce significant ringing in small separate ground planes and cause radiation. <u>This is especially true if the separate grounds are sent over a cable since this will essentially create a dipole antenna with the two oscillating ground planes as a source</u>. This applies not just to PanelLink, but to any high speed integrated circuit. The best and simplest solution is to have one large common ground plane on the PWB that is tied to a chassis ground at multiple contact points.

The signal cable typically carries the differential clock and data pairs as well as the power lines to the FPD logic. For suggested configurations for the signal cable, see the next section.

#### 4.4. Signal Cable Configuration

Most notebook designers that use flat cables (FPCs) will generally prefer to use a 2-layer flex circuit as opposed to the 3-layer design shown in Figure 12 due to flexibility reasons. Therefore, in order to meet this requirement, a suggested 2-layer configuration for the signal cable is illustrated below:

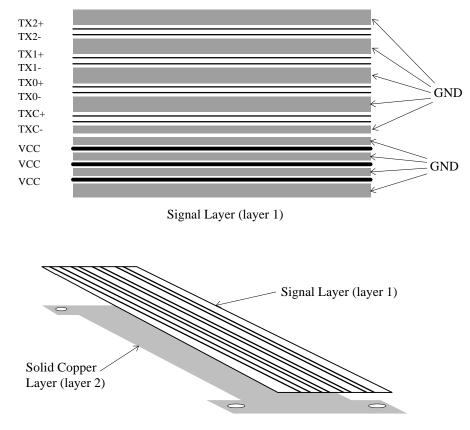
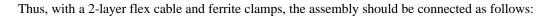




Figure 33: Two-layer FPC (flex cable)

The solid copper second layer serves as a partial shield for the cable (since it will most likely be looped over itself a few times in the hinge) and also serves as an RF contact between the flat panel chassis and the main system chassis. Terminate this second layer to the <u>chassis</u> on each side of the cable, <u>not</u> the ground plane on the PWBs.



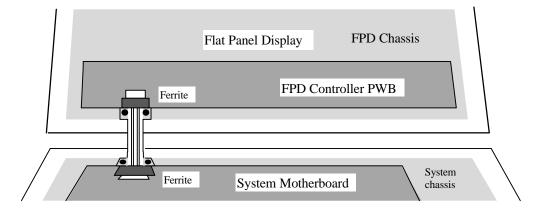



Figure 34: FPC termination and ferrite core placement

For twisted pair cables, it is recommended that individually shielded twisted pairs be used. If possible, an external overall shield is also recommended to contain any common-mode noise on the twisted pairs and to RF bond the display to the system. The twisted pair lines should be connected to each differential pair and the "shield" connected to AGND. The individual shield of each pair serves as a close-coupled return path for the signal currents. If there are any common-mode currents on both the shield and signal lines, the overall external shield will serve to contain those emissions. The shielded twisted pair cable should look something like this:

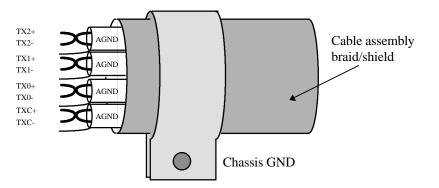
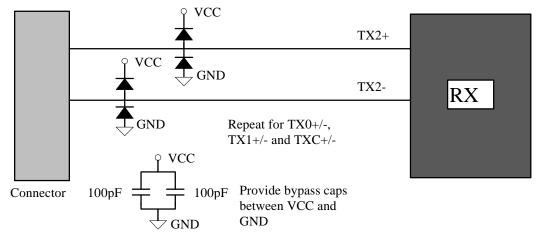



Figure 35: Twin-ax shield termination

If there are power lines being sent as well, the power lines should be paired with lines tied to their associated ground planes. Power should be sent over several pairs (3 or 4 pairs) to take advantage of parallel impedance in the lines.

If non-twin-ax twisted pair is used, <u>be sure to include several extra pairs of wires to serve as return lines</u> <u>for the signals</u>. Tie these extra lines to the ground plane on both the transmitter and receiver sides. These return lines are not the same as the chassis ground that the external overall shield is tied to. If these lines are not included, return currents are forced to return by the shield/chassis possibly corrupting the entire chassis with noise. The non-shielded configuration is not as ideal as the shielded twisted pair arrangement since the return lines will not be as closely coupled to the signal lines. In this case the use of ferrite sleeves at both ends of the cable may be crucial.

### 4.5. Filtering


When utilizing a common mode choke fix on unshielded or partially shielded signal cable, it is <u>highly</u> <u>recommended</u> that all signal and clock lines utilize the same choke core to avoid skew problems. The common mode choke should be installed near the point where the cable exits the system (as illustrated in Figure 13). It is more likely that the main system will produce higher levels of common mode and differential noise since there are many more active components operating on that PWB.

Power lines should be filtered at the exit point as shown in Figure 17 since the power plane can have a significant amount of noise, especially if the VGA controller or other high speed IC's are improperly decoupled. At a minimum, bypass capacitors and a common mode choke should be placed at the exit point of the power lines.

## 4.6. ESD Protection

Because the differential lines are exposed to the external environment, it may be necessary to apply special protection against ESD. The devices to use for this purpose are low-capacitance, fast diodes. Diodes with capacitance of 2-4pF are readily available and can be used for this purpose.

The diodes should be placed in shunt between each signal line and the power and ground plane as shown below:





These diodes should be placed as close to the signal lines as possible to minimize trace inductances. Protection diodes on the transmitter may also be needed IF there will be direct discharge tests done on the pins of the output connector. Typically, this is not necessary since tests on the host usually involve air discharges which the system chassis provides protection for.

#### 4.7. Summary

In summary, it is important that certain application details of the PanelLink<sup>™</sup> system not be overlooked. Although an electronic system may be completely functional, addressing EMC issues after the design is complete can lead to time consuming troubleshooting and retesting. Ensure that all high speed IC's have adequate decoupling on their power pins and that spaces for filters, CM chokes, and ferrites are allowed for. If they are found to be unnecessary, they can always be removed later as a cost cutting measure after production has begun, schedules have been met and controlled retesting and component evaluation can be performed.

When designing with the PanelLink<sup>™</sup> system make sure that the following items are addressed adequately:

- $\Rightarrow$  There is sufficient capacitive decoupling on all power pins on both the TX and RX.
- $\Rightarrow$  There are current reduction resistors placed on the parallel lines at the outputs of the VGA controller and the RX. These should be placed as close to the output pins as possible.
- $\Rightarrow$  PVCC and AVCC should be derived from the main 3.3V supply, but should be isolated by filters to contain any noise generated by those lines, and keep out noise from the main supply.
- ⇒ Differential <u>and common mode</u> filters should be placed on all power lines at their exit point nearest the display cable connector.
- $\Rightarrow$  A <u>shared</u> common-mode choke (to reduce skew problems) should be placed at the signal exit points nearest the display cable connector.
- $\Rightarrow$  Closely couple any signal or power line with its return line(s) on the cable, i.e. place them physically close to each other.
- ⇒ If only a two-layer FPC cable is feasible, place the close-coupled signals on the top layer and a second solid copper layer on the bottom. The the copper layer to the chassis on <u>both sides and at both ends of the cable</u>.
- ⇒ Leave room for a small ferrite core on <u>any</u> cable used in the system (not just the PanelLink<sup>™</sup> signal cable).
- $\Rightarrow$  Terminate braided shields with a 180° metal clamp with a wide contact area. <u>DO NOT</u> terminate braided shields in a twisted wire ("pig-tail") configuration.
- ⇒ Provide a good low impedance contact between the panel and main system chassis. The cable shield (braid or solid copper plane) can be used as this contact as long it is terminated properly. Hinges and conductive plastics are not suitable for this purpose.

# 5. EMI TROUBLESHOOTING TIPS AND CONCLUSIONS

Too often, when a product is found to be out of compliance with agency regulations, the first reaction is to begin applying fixes in the hopes that they will eliminate those emissions. Unless one is very experienced with the behavior of a particular system, this is usually the wrong thing to do and can lead to a lot of confusion.

EMC is not too much unlike other fields of engineering in that in order to apply an effective fix, the source of the problem must be first found. If an integrated circuit has a bug, designers do not begin blindly applying fixes in the hopes that one of them works. The source, or at least the characteristics of the bug are determined first before the fixes are found and applied.

With this in mind, one should determine (as best as is possible) the source and characteristics of the emissions before the fixes are applied. Since the motherboard is the origin of all signals, one should start at the far end of the signals and work back to the main system. This will allow you to better isolate the radiation point of the problem emissions. Remember that just because you know that an emission is from a certain subsystem it does not mean that it is radiating from there. The source may be deep within the main system, but actually radiating through the ground lines of a peripheral. Analyzing frequency harmonics tells you the *source*, disconnecting cables and powering down peripheral systems tells you where the *radiation point* is. Often the two are at very different locations.

In the case of PanelLink<sup>TM</sup>, the power down pins are particularly useful. Perform an EMI scan between each of the steps below. The following steps are usually very helpful in determining the contribution of various sub-systems to the emissions levels of the entire assembly:

- ⇒ In the case of the 141 and 151, tie the PDO pin low. This shuts down the parallel data lines and shows the contribution of the video data. These signals will be present regardless of whether you use PanelLink, LVDS or straight parallel data since this is the ultimate format that the panel controller requires. PanelLink and LVDS drive these signals the exact same way.
- ⇒ Tie the PD pin of the RX low. In effect, this disables all active signaling on the FPD sub-system. A scan at this point will tell you the contribution of all the panel circuitry.
- ⇒ Power down the TX by tying its PD pin low. With the RX in PD, the TX is still actively signaling. A scan at this point will tell you the contribution of the TX chip
- ⇒ Disconnect the signal cable at the RX board. Scanning at this point will determine the level of emissions generated by the display cable, the FPD PWB and the FPD chassis.
- $\Rightarrow$  Disconnect the signal cable at the TX. By comparing to the previous reading above, one can determine what emissions are generated by the cable and which are generated by the main system board.
- $\Rightarrow$  Power down the VGA controller if possible.

PanelLink<sup>TM</sup> is an advanced, high-speed data transmission scheme but misapplication can lead to problems as with any complex system. It is important to follow good general electrical design guidelines and apply the recommendations explained in this document as much as possible. EMC is an overall system design issue more than it is a component-level issue, EMC design requires designers to consider more than just making sure point A is connected to point B or thinking "a ground is a ground". Although tweaking certain components can improve emissions (or immunity), it is the initial system layout and

design that often determines how hard or easy it will be to bring a system into emission and immunity compliance.

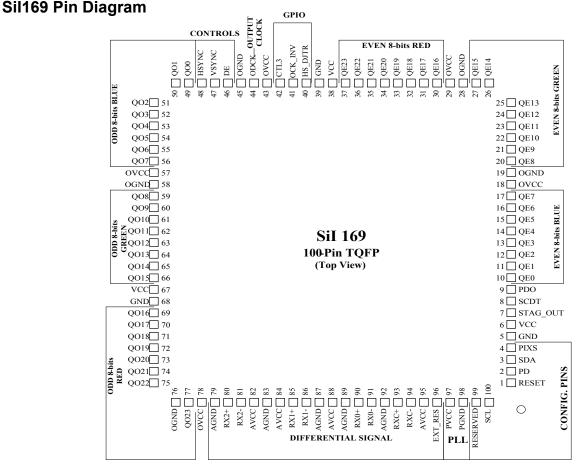
It is important to realize the value of good trace routing and component placement. Although a digital multi-meter may register a short circuit between a ground pin and the main ground plane, at high frequencies, a long, thin trace is essentially an open circuit. Thus, at high frequencies the inductance of traces and other leads can not be ignored. For example, a via from the bottom layer to the top layer of a 1/8" thick PWB when compared to initial capacitor lead inductance increases the inductance between the capacitor and IC by more than 50%. Thus, if the traces between the capacitor and power pin are too long, the excessive series inductance will negate most positive high frequency benefits of the decoupling capacitor.

Also, when a signal is sent from one point to another, it is important to realize that the electrons do not just disappear—they must return to their source. Controlling the loop and its size is a critical part of good EMC design. The more this return path is impeded or convoluted, the higher the emissions will be as a consequence. If a signal is sent to the FPD without a direct, low impedance signal return, the resulting emissions will increase.

In conclusion, it should be reiterated that following all the guidelines explained herein will not guarantee that there will not be radiation issues with the overall system. However, the reader will at least avoid some basic design mistakes and be able to concentrate only on issues specific to their system.

# Sil 169 HDCP PanelLink Receiver **Preliminary Datasheet**

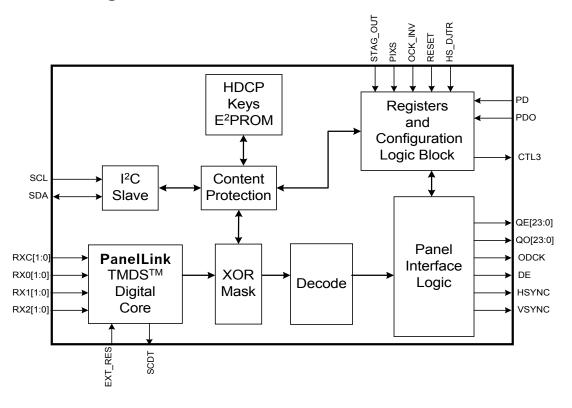



#### **General Description**

The SiI169 Receiver uses PanelLink Digital technology to support digital displays from VGA up to UXGA resolution (25-165 Mega-pixels/sec) with a PanelLink receiver core. It features Highbandwidth Digital Content Protection (HDCP) for secure delivery of high-definition video in consumer electronics. The Sil169 come preprogrammed with integrated HDCP keys, greatly simplifying manufacturing and providing the highest level of security. For improved ease of use, the Sil169 has an enhanced jitter tolerance and a low standby power mode.

PanelLink Digital technology is the world's leading DVI solution, providing a digital interface solution that is easy to implement and low cost. PanelLink further simplifies the display interface design by resolving many of the system level issues associated with high-speed mixed signal circuits.

#### **Features**


- Supports VGA UXGA resolutions •
- 25MHz 165MHz PanelLink core
- Integrated High-bandwidth Digital Content Protection (HDCP)
- Pre-programmed HDCP keys provide highest level of key security, simplifies manufacturing
- Enhanced jitter tolerance
- Time staggered data output for reduced ground bounce
- High Skew Tolerance: 1 full input clock cycle • (6ns at 165MHz)
- Backwards compatible with Sil161B .
- Sync Detect for "Hot Plugging" •
- Flexible low power modes with automatic • power down when input clock is inactive
- Low power 3.3V core operation
- Compliant with DVI 1.0 (DVI is backwards compatible with VESA®  $P&D^{TM}$  and DFP)





Subject to Change Without Notice

# **Functional Block Diagram**



### Absolute Maximum Conditions<sup>1,2</sup>

| Symbol           | Parameter                                   | Min  | Тур | Мах                      | Units |
|------------------|---------------------------------------------|------|-----|--------------------------|-------|
| V <sub>CC</sub>  | Supply Voltage 3.3V                         | -0.3 |     | 4.0                      | V     |
| Vı               | Input Voltage                               | -0.3 |     | V <sub>CC</sub> +<br>0.3 | V     |
| Vo               | Output Voltage                              | -0.3 |     | V <sub>CC</sub> +<br>0.3 | V     |
| T <sub>A</sub>   | Ambient Temperature (with power applied)    | -25  |     | 105                      | °C    |
| T <sub>STG</sub> | Storage Temperature                         | -65  |     | 125                      | °C    |
| $\theta_{JA}$    | Thermal Resistance (Junction to<br>Ambient) |      | TBD |                          | °C/W  |

Notes: <sup>1</sup> Permanent device damage may occur if absolute maximum conditions are exceeded. <sup>2</sup> Functional operation should be restricted to the conditions described under Normal Operating Conditions.

#### **Normal Operating Conditions**

| Symbol           | Parameter                       |     | Тур | Max | Units      |
|------------------|---------------------------------|-----|-----|-----|------------|
| V <sub>CC</sub>  | Supply Voltage                  | 3.0 | 3.3 | 3.6 | V          |
| V <sub>CCN</sub> | Supply Voltage Noise            |     |     | 100 | $mV_{P-P}$ |
| T <sub>A</sub>   | Ambient Temperature (with power | 0   |     | 70  | °C         |
|                  | applied)                        |     |     |     |            |

DC Digital I/O Specifications Under normal operating conditions unless otherwise specified.

| Symbol            | Parameter                            | Conditions              | Min | Тур | Мах        | Units |
|-------------------|--------------------------------------|-------------------------|-----|-----|------------|-------|
| V <sub>IH</sub>   | High-level Input<br>Voltage          |                         | 2.0 |     |            | V     |
| V <sub>IL</sub>   | Low-level Input<br>Voltage           |                         |     |     | 0.8        | V     |
| V <sub>OH</sub>   | High-level Output<br>Voltage         |                         | 2.4 |     |            | V     |
| V <sub>OL</sub>   | Low-level Output<br>Voltage          |                         |     |     | 0.4        | V     |
| V <sub>CINL</sub> | Input Clamp Voltage <sup>1</sup>     | I <sub>CL</sub> = -18mA |     |     | GND -0.8   | V     |
| V <sub>CIPL</sub> | Input Clamp Voltage <sup>1</sup>     | I <sub>CL</sub> = 18mA  |     |     | IVCC + 0.8 | V     |
| V <sub>CONL</sub> | Output Clamp<br>Voltage <sup>1</sup> | I <sub>CL</sub> = -18mA |     |     | GND -0.8   | V     |
| V <sub>COPL</sub> | Output Clamp<br>Voltage <sup>1</sup> | I <sub>CL</sub> = 18mA  |     |     | OVCC + 0.8 | V     |
| I <sub>OL</sub>   | Output Leakage<br>Current            | High<br>Impedance       | -10 |     | 10         | μA    |

Note: <sup>1</sup>Guaranteed by design. Voltage undershoot or overshoot can not exceed absolute maximum conditions for a pulse of greater than 3 ns or one third of the clock cycle.

#### **DC Specifications**

Under normal operating conditions unless otherwise specified.

| Symbol            | Parameter                                            | Conditions                                                                                                                                | Min | Тур | Max  | Units |
|-------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| I <sub>ODC</sub>  | Output Drive Data and                                | V <sub>OUT</sub> = 2.4V                                                                                                                   | TBD | TBD | TBD  | mA    |
|                   | Controls                                             | V <sub>OUT</sub> = 0.8V                                                                                                                   | TBD | TBD | TBD  | mA    |
|                   |                                                      | $V_{OUT} = 0.4V$                                                                                                                          | TBD | TBD | TBD  | mA    |
| l <sub>oc</sub>   | ODCK Drive                                           | $V_{OUT} = 2.4V$                                                                                                                          | TBD | TBD | TBD  | mA    |
|                   |                                                      | V <sub>OUT</sub> = 0.8V                                                                                                                   | TBD | TBD | TBD  | mA    |
|                   |                                                      | $V_{OUT} = 0.4V$                                                                                                                          | TBD | TBD | TBD  | mA    |
| V <sub>ID</sub>   | Differential Input Voltage<br>Single Ended Amplitude |                                                                                                                                           | 75  |     | 1000 | mV    |
| I <sub>PD</sub>   | Power-down Current <sup>2</sup>                      | PD = LOW, RXC± Inactive                                                                                                                   |     |     | TBD  | mA    |
| I <sub>CLKI</sub> | Power-down Current                                   | PD = HIGH, RXC± Inactive                                                                                                                  |     |     | TBD  | mA    |
| I <sub>PDO</sub>  | Power-down Current,<br>Outputs Disabled              | ODCK=82.5MHz,<br>2-pixel/clock mode<br>$C_{LOAD}$ = 10pF<br>$R_{EXT_{SWING}}$ = 510 $\Omega$<br>PDO = LOW<br>Typical Pattern <sup>3</sup> |     |     | TBD  | mA    |
| I <sub>CCR</sub>  | Receiver Supply Current                              | ODCK=82.5MHz,<br>2-pixel/clock mode<br>$C_{LOAD}$ = 10pF<br>$R_{EXT_{SWING}}$ = 510 $\Omega$<br>Typical Pattern, HDCP on <sup>3</sup>     |     |     | TBD  | mA    |
|                   |                                                      | ODCK=82.5MHz,<br>2-pixel/clock mode<br>$C_{LOAD} = 10$ pF<br>$R_{EXT_SWING} = 510\Omega$<br>Worst Case Pattern,<br>HDCP off <sup>4</sup>  |     |     | TBD  | mA    |

Notes:

<sup>1</sup> Guaranteed by design. <sup>2</sup> The transmitter must be in power-down mode, powered off, or disconnected for the current to be under this maximum. <sup>3</sup> The Typical Pattern contains a gray scale area, checkerboard area, and text.

<sup>4</sup> Black and white checkerboard pattern, each checker is two pixel wide.

AC Specifications Under normal operating conditions unless otherwise specified.

| Symbol             | Parameter                                                                                    | Conditions            | Min  | Тур  | Max  | Units            |
|--------------------|----------------------------------------------------------------------------------------------|-----------------------|------|------|------|------------------|
| T <sub>DPS</sub>   | Intra-Pair (+ to -) Differential Input Skew <sup>1</sup>                                     | 165MHz                |      |      | 245  | ps               |
| T <sub>CCS</sub>   | Channel to Channel Differential Input Skew <sup>1</sup>                                      | 165MHz                |      |      | 4    | ns               |
| T <sub>IJIT</sub>  | Worst Case Differential Input Clock Jitter                                                   | 65 MHz                |      |      | 465  | ps               |
|                    | tolerance <sup>2,3</sup>                                                                     | 112 MHz               |      |      | 270  | ps               |
|                    |                                                                                              | 165 MHz               |      |      | 182  | ps               |
| D <sub>LHT</sub>   | Low-to-High Transition Time: Data and Controls<br>(70 °C, 82.5 MHz, 2-pixel/clock, PIXS = 1) | C <sub>L</sub> = 10pF |      |      | TBD  | ns               |
|                    | Low-to-High Transition Time: Data and Controls (70 °C, 165 MHz, 1-pixel/clock, PIXS = 0)     | C <sub>L</sub> = 10pF |      |      | TBD  | ns               |
| D <sub>HLT</sub>   | High-to-Low Transition Time: Data and Controls<br>(70 °C, 82.5 MHz, 2-pixel/clock, PIXS = 1) | C <sub>L</sub> = 10pF |      |      | TBD  | ns               |
|                    | High-to-Low Transition Time: Data and Controls (70 °C, 165 MHz, 1-pixel/clock, PIXS = 0)     | C <sub>L</sub> = 10pF |      |      | TBD  | ns               |
| T <sub>SETUP</sub> | Data, DE, VSYNC, HSYNC, and CTL[3:1] Setup<br>Time to ODCK falling edge (OCK_INV = 0) or to  | C <sub>L</sub> = 10pF | TBD  |      |      | ns               |
|                    | ODCK rising edge (OCK_INV = 1) at 165 MHz                                                    | C <sub>L</sub> = 10pF | TBD  |      |      | ns               |
| T <sub>HOLD</sub>  | Data, DE, VSYNC, HSYNC, and CTL[3:1] Hold<br>Time from ODCK falling edge (OCK_INV = 0) or    | C <sub>L</sub> = 10pF | TBD  |      |      | ns               |
|                    | to ODCK rising edge (OCK_INV = 1) at 165 MHz                                                 | C <sub>L</sub> = 10pF | TBD  |      |      | ns               |
| R <sub>CIP</sub>   | ODCK Cycle Time <sup>1</sup> (1-pixel/clock)                                                 |                       | 6.06 |      | 40   | ns               |
| F <sub>CIP</sub>   | ODCK Frequency <sup>1</sup> (1-pixel/clock)                                                  |                       | 25   |      | 165  | MHz              |
| R <sub>CIP</sub>   | ODCK Cycle Time <sup>1</sup> (2-pixels/clock)                                                |                       | 12.1 |      | 80   | ns               |
| F <sub>CIP</sub>   | ODCK Frequency <sup>1</sup> (2-pixels/clock)                                                 |                       | 12.5 |      | 82.5 | MHz              |
| R <sub>CIH</sub>   | ODCK High Time <sup>4</sup>                                                                  | C <sub>L</sub> = 10pF | TBD  |      |      | ns               |
|                    | (165MHz, 1-pixel/clock, PIXS = 0)                                                            | C <sub>L</sub> = 5pF  | TBD  |      |      | ns               |
| R <sub>CIL</sub>   | ODCK Low Time <sup>4</sup>                                                                   | $C_L = 10 pF$         | TBD  |      |      | ns               |
|                    | (165MHz, 1-pixel/clock, PIXS = 0)                                                            | $C_L = 5pF$           | TBD  |      |      | ns               |
| T <sub>HSC</sub>   | Link disabled (DE inactive) to SCDT low <sup>1</sup>                                         |                       |      | 100  |      | ms               |
|                    | Link disabled (Tx power down) to SCDT low <sup>5</sup>                                       |                       |      |      | 250  | ms               |
| T <sub>FSC</sub>   | Link enabled (DE active) to SCDT high <sup>1</sup>                                           |                       |      | 25   |      | DE<br>edges      |
| T <sub>CLKPD</sub> | Delay from RXC± inactive to high impedance outputs <sup>1</sup>                              | RXC± =<br>25 MHz      |      |      | TBD  | μs               |
| T <sub>CLKPU</sub> | Delay from RXC± active to data active                                                        | RXC± =<br>25 MHz      |      |      | TBD  | μs               |
| T <sub>PDL</sub>   | Delay from PD Low to high impedance outputs <sup>1</sup>                                     |                       |      |      | 10   | ns               |
| T <sub>ST</sub>    | ODCK high to even data output <sup>1</sup>                                                   |                       |      | 0.25 |      | R <sub>CIP</sub> |

Notes:

 <sup>1</sup> Guaranteed by design.
 <sup>2</sup> Jitter defined as per DVI 1.0 Specification, Section 4.6 *Jitter Specification*.
 <sup>3</sup> Jitter measured with Clock Recovery Unit as per DVI 1.0 Specification, Section 4.7 *Electrical Measurement* Procedures.
 <sup>4</sup> Output clock duty cycle is independent of the differential input clock duty cycle and the IDCK duty cycle.

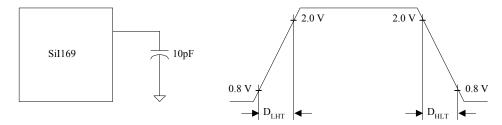
5 Measured when transmitter was powered down (see SiI-AN-0005 "PanelLink Basic Design/Application Guide," Section 2.4).

SiI-DS-0038-0.97

### Setup and Hold Timings for Various Data Rates

The AC measurements listed above are minimum setup and hold timings based on the maximum data rate of 165 MHz. To estimate the setup and hold times for slower data rates (for either different resolutions or 2 pixel per clock mode), the following formulas can be used:

$$T_{\text{SETUP}} (\text{at new frequency}) = T_{\text{SETUP}} (165 \text{MHz}) + \left(\frac{\text{Clock Period at new frequency} - \text{Clock Period at 165 MHz}}{2}\right)$$
$$T_{\text{HOLD}} (\text{at new frequency}) = T_{\text{HOLD}} (165 \text{MHz}) + \left(\frac{\text{Clock Period at new frequency} - \text{Clock Period at 165 MHz}}{2}\right)$$


Table 1 shows the minimum set up and hold times for speeds other than 165 MHz (based on a 10 pF load and standard ODCK [OCK\_INV = 0]).

| Data Rate<br>(MHz) | Clock<br>(ns) | Setup<br>(ns) | Hold<br>(ns) | Resolution | Pixels/<br>Clock |
|--------------------|---------------|---------------|--------------|------------|------------------|
| 165                | 6.06          | TBD           | TBD          | UXGA       | 1                |
| 112                | 8.93          | TBD           | TBD          | SXGA       | 1                |
| 86                 | 11.6          | TBD           | TBD          | XGA        | 1                |
| 82.5               | 12.1          | TBD           | TBD          | UXGA       | 2                |
| 74.25              | 13.5          | TBD           | TBD          | 720p/1080i | 1                |
| 56                 | 17.9          | TBD           | TBD          | SXGA       | 2                |
| 43                 | 23.3          | TBD           | TBD          | XGA        | 2                |
| 27                 | 37.0          | TBD           | TBD          | 480p       | 1                |

#### Table 1. Set-up and Hold Times

#### SiI169 Preliminary

#### **Timing Diagrams**





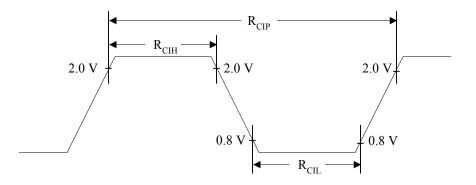
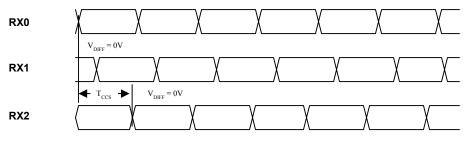
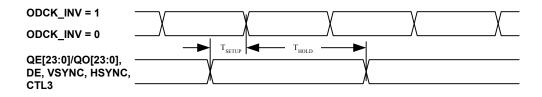
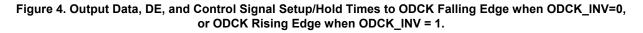
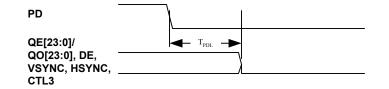
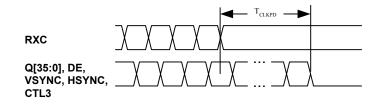



Figure 2. Receiver Clock Cycle/High/Low Times



Figure 3. Channel-to-Channel Skew Timing

#### **Output Timing**






#### Output Timing (continued)









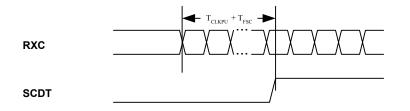
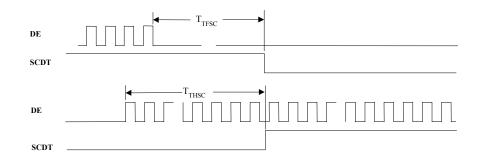
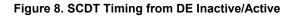





Figure 7. Wake-up on Clock Detect





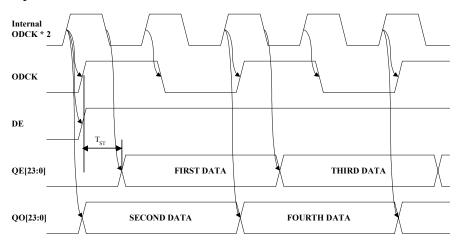



Figure 9. TFT 2-Pixels/Clock Staggered Output Timing Diagram

### **Output Pins Description**

| Pin            | Pin #                            | Туре       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|----------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name           |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| QE23-<br>QE0   | See<br>SiI 169<br>Pin<br>Diagram | Out        | Output Even Data.<br>Output Even Data[23:0] corresponds to 24-bit pixel data for 1-pixel/clock<br>input mode and to the first 24-bit pixel data for 2-pixels/clock mode.<br>Output data is synchronized with output data clock (ODCK).<br>Refer to the TFT Signal Mapping section later in the datasheet that tabulates<br>the relationship between the input data to the transmitter and output data<br>from the receiver.<br>A low level on PD or PDO will put the output drivers into a high impedance<br>(tri atata) mode     |
| QO23-<br>QO0   | See<br>SiI 169<br>Pin<br>Diagram | Out        | (tri-state) mode.Output Odd Data.Output Odd Data[23:0] corresponds to the second 24-bit pixel data for 2-<br>pixels/clock mode.During 1-pixel/clock mode, these outputs are driven low.Output data is synchronized with output data clock (ODCK).Refer to the TFT Signal Mapping section later in the datasheet that tabulates<br>the relationship between the input data to the transmitter and output data<br>from the receiver.A low level on PD or PDO will put the output drivers into a high impedance<br>(tri-state) mode. |
| ODCK           | 44                               | Out        | Output Data Clock.<br>This output can be inverted using the OCK_INV pin. A low level on PD or<br>PDO will put the output driver into a high impedance (tri-state) mode.                                                                                                                                                                                                                                                                                                                                                           |
| DE             | 46                               | Out        | Output Data Enable.<br>This signal qualifies the active data area. A HIGH level signifies active<br>display time and a LOW level signifies blanking time. This output signal is<br>synchronized with the output data. A low level on PD or PDO will put the<br>output driver into a high impedance (tri-state) mode.                                                                                                                                                                                                              |
| HSYNC<br>VSYNC | 48<br>47                         | Out<br>Out | Horizontal Sync control signal.<br>Vertical Sync control signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# **Configuration/HDCP Pin Description**

| Pin Name | Pin # | Туре   | Description                                                                                                                                                                                                                          |
|----------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIXS     | 4     | In     | Pixel Select.<br>A LOW level indicates one pixel (up to 24-bits) per clock mode using<br>QE[23:0]. A HIGH level indicates two pixels (up to 48-bits) per clock<br>mode using QE[23:0] for first pixel and QO[23:0] for second pixel. |
| STAG_OUT | 7     | In     | Staggered Output.<br>A HIGH level selects normal simultaneous outputs on all odd and even<br>data lines. A LOW level selects staggered output drive. This function is<br>only available in 2-pixels per clock mode.                  |
| RESET    | 1     | In     | Power-On Reset for cipher block.                                                                                                                                                                                                     |
|          |       |        | This pin should be connected to an external power-on reset chip. This pin should be tied HIGH for normal operation. This pin should be pulled low for a minimum of TBD ns for proper resetting of the cipher block.                  |
| HS_DJTR  | 40    |        | HSYNC De-Jitter.<br>This pin is used to enable or disable the HSYNC de-jitter circuitry. This circuitry defaults as disabled (tie pin 40 LOW) and may be enabled by tying this pin HIGH.                                             |
| OCK_INV  | 41    |        | Output Clock Invert.                                                                                                                                                                                                                 |
| CTL3     | 42    | Out    | General output control signal 3.<br>This is CTL3, General Output Control Signal 3.                                                                                                                                                   |
| SCL      | 100   | In     | DDC I <sup>2</sup> C Clock.<br>This is the clock for the DDC (I <sup>2</sup> C) bus.                                                                                                                                                 |
| SDA      | 3     | In/Out | DDC I <sup>2</sup> C Data.                                                                                                                                                                                                           |
|          |       |        | This is the data line for the DDC (I <sup>2</sup> C) bus. HDCP KSV, $A_{n_{\rm i}}$ and $R_{\rm i}$ values are exchanged over this I <sup>2</sup> C port during authentication.                                                      |

# **Reserved Pin Description**

| Pin Name | Pin # | Туре | Description                             |
|----------|-------|------|-----------------------------------------|
| RESERVED | 99    | In   | Must be tied HIGH for normal operation. |

# **Power Management Pin Description**

| Pin Name | Pin # | Туре | Description                                                                                                                                                                                                                                                                                                                               |
|----------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCDT     | 8     | Out  | Sync Detect.<br>A HIGH level is outputted when DE is actively toggling indicating that the<br>link is alive. A LOW level is outputted when DE is inactive, indicating the<br>link is down. SCDT can be connected to PDO to power down the<br>outputs when DE is not detected. The SCDT output remains in the active<br>mode at all times. |
| PD       | 2     | In   | Power Down.<br>A HIGH level indicates normal operation and a LOW level indicates<br>power down mode. During power down mode, all output buffers are<br>disabled and brought low, all analog logic is powered down, and all<br>inputs are disabled.                                                                                        |
| PDO      | 9     | In   | Output Driver Power Down.                                                                                                                                                                                                                                                                                                                 |
|          |       |      | A HIGH level indicates normal operation. A LOW level puts all the output drivers (except SCDT) into a high impedance (tri-state) mode. PDO is a sub-set of PD.                                                                                                                                                                            |

# SiI169 Preliminary

# **Differential Signal Data Pin Description**

| Pin Name | Pin # | Туре   | Description                                                                    |
|----------|-------|--------|--------------------------------------------------------------------------------|
| RX0+     | 90    | Analog | TMDS Low Voltage Differential Signal input data pairs.                         |
| RX0-     | 91    | Analog |                                                                                |
| RX1+     | 85    | Analog |                                                                                |
| RX1-     | 86    | Analog |                                                                                |
| RX2+     | 80    | Analog |                                                                                |
| RX2-     | 81    | Analog |                                                                                |
| RXC+     | 93    | Analog | TMDS Low Voltage Differential Signal input data pairs.                         |
| RXC-     | 94    | Analog |                                                                                |
| EXT_RES  | 96    | Analog | Impedance Matching Control.                                                    |
|          |       |        | Resistor value should be approximately ten times the characteristic            |
|          |       |        | impedance of the cable. In the common case of $50\Omega$ transmission line, an |
|          |       |        | external 390 $\Omega$ resistor must be connected between AVCC and this pin.    |

# **Power and Ground Pin Description**

| Pin Name | Pin #          | Туре   | Description                            |
|----------|----------------|--------|----------------------------------------|
| VCC      | 6,38,67        | Power  | Digital Core VCC, must be set to 3.3V. |
| GND      | 5,39,68        | Ground | Digital Core GND.                      |
| OVCC     | 18,29,43,57,78 | Power  | Output VCC, must be set to 3.3V.       |
| OGND     | 19,28,45,58,76 | Ground | Output GND.                            |
| AVCC     | 82,84,88,95    | Power  | Analog VCC must be set to 3.3V.        |
| AGND     | 79,83,87,89,92 | Ground | Analog GND.                            |
| PVCC     | 97             | Power  | PLL Analog VCC must be set to 3.3V.    |
| PGND     | 98             | Ground | PLL Analog GND.                        |

#### **TFT Panel Data Mapping**

The following table shows the output data mapping in one pixel per clock mode for the SiI 169. This output data mapping is dependent upon the SiI PanelLink transmitters having the exact same type of input data mappings. Please refer to the SiI PanelLink transmitter for the specific input data mappings and to the TFT Signal Mapping application note (SiI-AN-0007).

| SiI 169              |           |           |  |  |  |  |
|----------------------|-----------|-----------|--|--|--|--|
| 1-Pixel/Clock Output |           |           |  |  |  |  |
| Data                 | 18bpp     | 24bpp     |  |  |  |  |
| BLUE[7:0]            | QE[7:2]   | QE[7:0]   |  |  |  |  |
| GREEN[7:0]           | QE[15:10] | QE[15:8]  |  |  |  |  |
| RED[7:0]             | QE[23:18] | QE[23:16] |  |  |  |  |

#### Table 2. One Pixel/Clock Mode Data Mapping

| SiI 169<br>2-Pixel/Clock Output |           |           |  |  |  |  |  |
|---------------------------------|-----------|-----------|--|--|--|--|--|
| Data                            | 18bpp     | 24bpp     |  |  |  |  |  |
| BLUE[7:0] - 0                   | QE[7:2]   | QE[7:0]   |  |  |  |  |  |
| GREEN[7:0] – 0                  | QE[15:10] | QE[15:8]  |  |  |  |  |  |
| RED[7:0] – 0                    | QE[23:18] | QE[23:16] |  |  |  |  |  |
| BLUE[7:0] – 1                   | QO[7:2]   | QO[7:0]   |  |  |  |  |  |
| GREEN[7:0] – 1                  | QO[15:10] | QO[15:8]  |  |  |  |  |  |
| RED[7:0] – 1                    | QO[23:18] | QO[23:16] |  |  |  |  |  |

#### Table 3. Two Pixel/Clock Mode Data Mapping

Note: For 18-bit mode, the Flat Panel Timing Controller interfaces to the SiI169 exactly the same as in the 24-bit mode; however, only 6-bits per channel (color) are interfaced instead of the full 8. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB justified.

#### **Power Management**

The Sil 169 includes a number of flexible power management features. There are three power-down modes; Output Power-down, Clock Inactive and Power-down. Pulling the PDO pin LOW disables all the outputs excluding SCDT. If the input Clock signal goes inactive, the Sil 169 will automatically go into power-down with all the internal circuitry powered off except the input clock detect circuitry. Complete power-down is achieved by pulling the PD pin LOW. In this mode, the device goes into full power down reducing total power consumption to less than TBD.

|                                |          | Pin S | tatus |          | Active Circuitry |                  |               | Typical           |
|--------------------------------|----------|-------|-------|----------|------------------|------------------|---------------|-------------------|
| Mode                           | RXC±     | PD    | PDO   | SCDT     | TMDS<br>Core     | Output           | HDCP<br>Logic | Power             |
| Full Power                     | Active   | HIGH  | HIGH  | Active   | ON               | ON               | ON            | I <sub>CCR</sub>  |
| Output<br>Power-<br>down       | Active   | HIGH  | LOW   | Active   | ON               | OFF <sup>2</sup> | ON            | Ipdo              |
| Clock<br>Inactive <sup>1</sup> | Inactive | HIGH  | N/A   | Active   | ON               | OFF              | OFF           | I <sub>CLKI</sub> |
| Power-<br>down                 | Inactive | LOW   | N/A   | Inactive | OFF              | OFF              | OFF           | I <sub>PD</sub>   |

N/A = Not applicable.

Notes: <sup>1</sup> Auto Power Down mode continuously monitors the link activity and is activated automatically when the link is inactive. This mode will automatically re-activate all outputs when the link becomes active again. <sup>2</sup> Excluding SCDT.

#### SiI169 Preliminary

#### **I<sup>2</sup>C Registers**

The SiI169 includes a DDC I<sup>2</sup>C serial interface that is used for HDCP Authentication. This port and the associated registers are described in the HDCP 1.0 Specification (February 2000) in Section 2.6 HDCP **Port.** The I<sup>2</sup>C address for this port is 0x74. Read and Write operations to this port must complete in 100 ms per byte transferred.

| Addr.        | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3                  | Bit 2 | Bit 1 | Bit 0 |
|--------------|-------|-------|-------|-------|------------------------|-------|-------|-------|
| 0x00         |       |       |       | BKS   | SV_1 (RO)              |       |       |       |
| 0x01         |       |       |       | BKS   | SV_2 (RO)              |       |       |       |
| 0x02         |       |       |       | BKS   | SV_3 (RO)              |       |       |       |
| 0x03         |       |       |       | BKS   | SV_4 (RO)              |       |       |       |
| 0x04         |       |       |       |       | SV_5 (RO)              |       |       |       |
| 0x05         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x06         |       |       |       |       | $VD^{3}(RO)$           |       |       |       |
| 0x07         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x08         |       |       |       |       | '_1 (RO)               |       |       |       |
| 0x09         |       |       |       |       | '_2 (RO)               |       |       |       |
| 0x0A         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x0B         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x0C         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x0D         |       |       |       | RS    | VD <sup>3</sup> (RO)   |       |       |       |
| 0x0E         |       |       |       | RS    | VD <sup>3</sup> (RO)   |       |       |       |
| 0x0F         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x10         |       |       |       |       | KSV_1 (WO)             |       |       |       |
| 0x11         |       |       |       |       | KSV_2 (WO)             |       |       |       |
| 0x12         |       |       |       |       | KSV_3 (WO)             |       |       |       |
| 0x13         |       |       |       |       | KSV_4 (WO)             |       |       |       |
| 0x14         |       |       |       |       | KSV_5 (WO)             |       |       |       |
| 0x15         |       |       |       | RS    | $VD^3$ (RO)            |       |       |       |
| 0x16         |       |       |       | RS    | $VD^3$ (RO)            |       |       |       |
| 0x17         |       |       |       |       | VD <sup>3</sup> (RO)   |       |       |       |
| 0x18         |       |       |       |       | AN_1 (WO)              |       |       |       |
| 0x19         |       |       |       |       | AN_2 (WO)              |       |       |       |
| 0x1A         |       |       |       |       | AN_3 (WO)              |       |       |       |
| 0x1B<br>0x1C |       |       |       |       | AN_4 (WO)<br>AN_5 (WO) |       |       |       |
|              |       |       |       |       |                        |       |       |       |
| 0x1D<br>0x1E |       |       |       |       | AN_6 (WO)              |       |       |       |
| 0x1E<br>0x1F |       |       |       |       | AN_7 (WO)              |       |       |       |
| UXIF         |       |       |       | WR_   | AN_8 (WO)              |       |       |       |

I<sup>2</sup>C Register Mapping

Notes: 1 All values are Bit 7 [MSB] and Bit 0 [LSB]. 2 RW = Read/Write register, RO = Read Only register.

3 RSVD = Reserved read only register. All bytes read as 0x00.

4 All registers do not retain their values after a RESET.

| Addr. | Bit 7               | Bit 6    | Bit 5     | Bit 4                 | Bit 3                | Bit 2    | Bit 1            | Bit 0                     |
|-------|---------------------|----------|-----------|-----------------------|----------------------|----------|------------------|---------------------------|
| 0x20  |                     |          |           | RS                    | VD <sup>3</sup> (RO) |          |                  |                           |
| to    |                     |          |           | (32 by                | rtes in size)        |          |                  |                           |
| 0x3F  |                     |          |           |                       |                      |          |                  |                           |
| 0x40  |                     |          |           | Bca                   | aps (RO)             |          |                  |                           |
| 0,40  | RSVD <sup>3</sup> F | REPEATER | RSVD      | FAST                  |                      | R        | SVD <sup>3</sup> |                           |
| 0x41  |                     |          |           | RS                    | VD <sup>3</sup> (RO) |          |                  |                           |
| to    |                     |          |           | (175 b                | ytes in size)        |          |                  |                           |
| 0xFA  |                     |          |           |                       |                      |          |                  |                           |
| 0xFB  |                     | D        | EV_ID (RC | D)                    |                      |          | DEV_REV          | (RO)                      |
| 0xFC  |                     | I        | RSVD (RO  | )                     |                      | PDO (RO) | RSVD             | OCK_INV (RO)              |
| 0xFD  |                     |          |           | RS                    | VR⁴ (RO)             |          |                  |                           |
| 0xFE  |                     |          |           | RS                    | VR <sup>4</sup> (RO) |          |                  |                           |
| 0xFF  |                     |          |           | RSVS(RW) <sup>5</sup> |                      |          |                  | RESET <sup>6,7</sup> (RW) |

Notes: 1 All values are Bit 7 [MSB] and Bit 0 [LSB]. 2 RW = Read/Write register, RO = Read Only register, WO = Write Only register.

3 RSVD = Reserved read only register. All bytes read as 0x00.
4 RSVR = Silicon Image reserved read only register. Value is indeterminate.
5 RSVS = Silicon Image reserved read/write register.

6 The default value for RESET is LOW. Setting RESET to HIGH is the equivalent to asserting the chip's

RESET pin (Pin 1) to LOW.

7 All register values are cleared after a RESET.

| I <sup>2</sup> C Register Defin | ition  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Name                   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BKSV                            | RO     | Video receiver's key selection vector (KSV).<br>This value must always be available for reading, and may be used to determine<br>that the video receiver is HDCP capable. Valid KSVs contain 20 ones and 20<br>zeros, a characteristic that must be verified by the video transmitter hardware<br>before encryption is enabled.                                                                                                                                  |
| Ri'                             | RO     | Link verification response. Updated every $128^{th}$ frame. It is recommended that graphics systems protect against errors in the I <sup>2</sup> C transmission by re-reading this value when unexpected values are received. This value must be available at all times between updates. $R_0$ ' is available a maximum of 100 ms after Aksv is received. Subsequent $R_i$ ' values are available a maximum of 128 pixel clocks following the assertion of CTL3. |
| WR_AKSV                         | WO     | Video transmitter's key selection vector (KSV).<br>Writes to this multi-byte value are written least significant byte first. Five bytes:<br>1 is the LSB, 5 is the MSB. All five should be read from the transmitter and<br>then written here. The final write to 0x14 (byte 5) should be written last and will<br>trigger the authentication process in the receiver.                                                                                           |
| WR_AN                           | WO     | Session random number.<br>A 64-bit pseudo-random value written from the transmitter during<br>authentication process. Alternatively, this value may be generated by software<br>or hardware, and then written here. Eight bytes: 1 is the LSB, 8 is the MSB.<br>This multi-byte value must be written by the graphics system before the KSV is<br>written.                                                                                                       |
| Bcaps                           | RO     | Bit 7:Reserved. Read as 0x00.Bit 6:REPEATER, Video repeater capability. This bit is set to 0 describing the<br>device as a DVI end point.Bit 5:Reserved. Read as TBD.Bit 4:FAST, I <sup>2</sup> C transfers speed. This bit is 0 when 100 KHz is the maximum<br>transfer rate supported and a 1 when 400 KHz is the maximum rate. The<br>Sil169 will always show this register as a 1.Bits 3-0:Reserved. All bytes read as 0x00.                                 |
| DEV_ID                          | RO     | Device ID. (1Bh)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DEV_REV                         | RO     | Revision Number. (1Bh)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDO                             | RO     | Output Power Down.<br>This bit reflects the status of the PDO pin (pin 9). This bit will be set to 1 when<br>the Sil169's outputs are disabled (excluding SCDT and CTL1) and 0 when the<br>outputs are enabled.                                                                                                                                                                                                                                                  |
| OCK_INV                         | RO     | ODCK Invert.<br>This bit reflects the status of the OCK_INV. This bit reflects normal operation<br>when set to 0, inverted ODCK if set to 1.                                                                                                                                                                                                                                                                                                                     |
| DBG                             | RW     | Bits 7-1: RSVS, Silicon Image reserved register. This is available for future use by Silicon Image, Inc.<br>Bit 0: RESET, Software reset. The default value for RESET is LOW. Setting RESET to HIGH is the equivalent to asserting the chip's RESET pin to LOW.                                                                                                                                                                                                  |
| RSVD                            | RO     | Read only reserved register. All bytes read as 0x00.                                                                                                                                                                                                                                                                                                                                                                                                             |

Notes: RW = Read/Write register, RO = Read Only register, WO = Write Only register

#### **HDCP** Operation

HDCP provides a secure method of delivering high-definition content between a host (Set-top Box, DVD, D-VHS) and display (HDTV, Projector, A/V Receiver). Security is maintained by means of an authentication process whereby the host verifies that a valid display is connected. This authentication process is repeated by the host every 128 frames (approximately 2 seconds) to verify that the display has not been replaced with a non-authenticated device. Each and every host and display have a unique set of HDCP 'keys' and Key Selection Vector (KSV) that are licensed from Digital Content Protection, LLC (www.digital-cp.com).

The authentication process involves exchanging calculated values based on the keys and KSV. A software driver running on the host controls the exchange of these values between the host transmitter (Sil170) and display's receiver (Sil907B, Sil169). The KSV and two other values,  $A_n$  and  $R_i$ , are exchanged over DVI's DDC channel (I<sup>2</sup>C bus). Both the transmitter and receiver are slaves on this I<sup>2</sup>C bus. Figure 10 shows a typical HDCP system configuration.




Figure 10. HDCP System Architecture

#### HDCP Authentication


The Sil169 includes an integrated cipher engine that calculates all the required values based on an associated set of keys and KSV. The keys and KSV are stored in the Sil169 and consist of 40 keys of 56bits each and a 40-bit KSV value that is unique to the set of keys. Each host and display will have their own set of keys.

The authentication process is initiated by clearing and then setting the TX\_ANSTOP bit in the host transmitter (Sil170) to generate a pseudo-random value  $A_n$ . Both  $A_n$  and  $A_{KSV}$  are then written to the appropriate register in the receiver (WR\_AN, WR\_AKSV). The receiver register set address space is defined in the HDCP specification so any host driver will work with any HDCP compliant receiver. Writing these values to the receiver causes the receiver to initiate its own calculations that are used to decrypt the incoming video signal. The receiver's  $B_{KSV}$  value is read from and written to the WR\_BKSV register of the transmitter. Using  $B_{KSV}$ , the transmitter will calculate a value  $R_0$ . The host side software driver should read the value  $R_0$  from the transmitter and the corresponding value  $R_0$ ' from the receiver and check for a match. If the values are equivalent, then both the transmitter and receiver are synchronized and

authentication has been successful. The encryption enable bit of the transmitter, ENC\_EN, is then set and the transmitter begins encrypting. Reading  $R_i$  and  $R_i'$  is repeated every 128 frames to ensure that an authenticated link is maintained.

# **Package Dimensions**

100-pin LQFP Package Dimensions





Order Part Number: SiI169CT100

#### Appendix A – Heatsinking for SiI169

#### PCB Thermal Design Options

The Sil 169 is packaged in a thermally enhanced 100 pin LQFP with an exposed metal pad (7.5mm x 7.5 mm) on the package designed for improved thermal dissipation. To improve the heat removal from the package, the exposed thermal pad may be soldered to a thermal landing area on the PCB, as described in the following section, entitled "Implementation Guidelines for Thermal Land Design".

Implementation of the thermal landing area on the PCB can, in some cases, make trace routing and board design complicated. In some applications, it may be desirable to eliminate the thermal landing area on the PCB.

Generally the thermal performance of a package can be represented by the following parameter (JEDEC standard JESD 51-2, 51-6):

 $\theta_{\mathsf{JA}}$  , Thermal resistance from junction to ambient

 $\theta_{JA} = (T_J - T_A) / P_H$ 

Where  $T_J$  is the junction temperature  $T_A$  is the ambient temperature  $P_H$  is the power dissipation

 $\theta_{JA}$  represents the resistance to the heat flows from the chip to ambient air. It is an index of heat dissipation capability. Lower  $\theta_{JA}$  means better thermal performance.

Implementation of the thermal landing area, combined with complete soldering of the package to the landing area results in a  $\theta_{JA}$  of 21°C/W. If the Sil 169 package is assembled to a standard PCB, without the thermal landing area, the  $\theta_{JA}$  increases to 29°C/W. For comparison, the non-thermally enhanced 100 pin LQFP package has a  $\theta_{JA}$  of 53°C/W, so the advantage of the exposed metal pad in the thermally enhanced Sil 169 package is significant, even without a landing area on the PCB.

In order to determine the requirements for soldering the Sil169 to the PCB, the following analysis is insightful. Assuming a worst case scenario, with operation at the maximum ambient temperature of 70°C, at maximum voltage (3.6V) and worst case pattern (TBD) – the junction temperature would be 35°C above ambient, or 105°C. This is still well below the maximum junction temperature of 125°C, providing suitable margin even without requiring the use of solder and a specific landing area on the PCB. For comparison, with the improved thermal dissipation that results from complete soldering of the thermal pad on the chip to a thermal landing area on the PCB, the package temperature would be 23°C above ambient – or roughly 12°C cooler than a chip with no solder.

Based on this analysis, the need for designing a thermal landing area on a PCB for use with the Sil 169 receiver should be considered an optional design choice by the customer, and is not an absolute requirement.

For more information regarding Thermal Design Options, please see Application Note Sil-AN-0045, Enhanced Thermal Packaging Options for Sil 169.

#### Implementation Guidelines for Thermal Land Design:

As described above, a thermal land on the PCB may be incorporated on the PCB to improve the heat removal from the package. An example of this is shown in Figure 14, which depicts the exposed heat pad and Figure 15, which shows a LQFP Thermal Land Design on a PCB. The size of this thermal land can be smaller or larger than the exposed pad on the package. A clearance of at least 0.25 mm should be designed on the PCB between the outer edges of the thermal land and the inner edges of pad pattern for the leads to avoid any shorts.

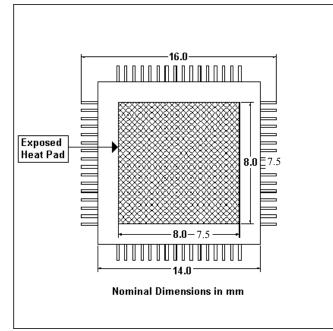
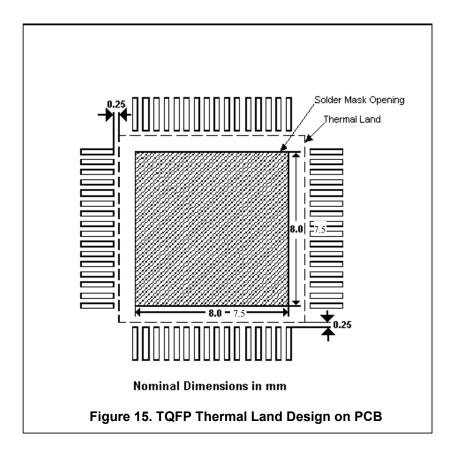




Figure 14. Bottom View of Thermally Enhanced 100-pin TQFP Package



When a thermal land on the PCB is used to provide a means of improved heat transfer from the package to the board through a solder joint, thermal vias are required to remove the heat from the PCB. It is recommended that these vias connect to the ground plane of the PCB. These vias provide a heat transfer path from the top surface of the PCB to the inner layers and the bottom surface of the package. An array of vias should be incorporated in the thermal pad at 1.2 mm pitch grid, as shown in Figure 16. Thermal

#### SiI169 Preliminary

Pad Via Grid. It is also recommended that the via diameter should be around 12 to 13 mils (0.30 to 0.33 mm) and the via barrel should be plated with 1 oz copper to plug the via. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be "tented" with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter.

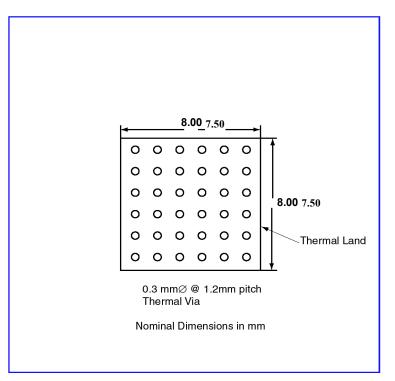



Figure 16. Thermal Pad Via Grid

#### **Board Mounting Guidelines**

The following are general recommendations for mounting exposed pad leadframe devices on the motherboard. This should serve as the starting point in assembly process development and it is recommended that the process should be developed based on past experience in mounting standard, non-thermally enhanced packages.

#### Stencil Design

For improved heat transfer, the exposed pad on the package may be soldered to a thermal land on the PCB. This requires solder paste application not only on the pad pattern for lead attachment but also on the thermal land using the stencil. While for standard (non-thermally enhanced) leadframe based packages the stencil thickness depends on the lead pitch and package coplanarity only, the package standoff also needs to be considered for the thermally enhanced packages to determine the stencil thickness. For a nominal standoff of 0.1 mm, the stencil thickness of 5 to 8 mils (depending upon the pitch) should still provide good solder joint between the exposed pad and the thermal land. The aperture openings should be the same as the solder mask opening on the thermal land. Since a large stencil opening may result in poor release, the aperture opening can be subdivided into an array of smaller openings, similar to the thermal land pattern shown in Figure 17. Recommended Stencil Design. The above guidelines will result in the solder joint area to be about 80 to 90% of the exposed pad area.

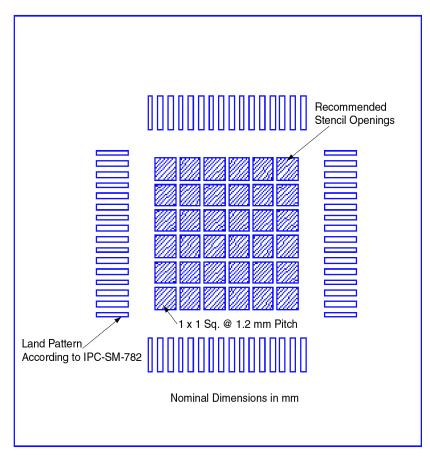



Figure 17. Recommended Stencil Design

#### Appendix B – Designing In SiI169 Using SiI159

The Sil159 is being made available in Engineering Sample form for customers designing in the Sil169. The devices are functionally the same with a few exceptions that are noted here. The main differences are:

- Sil169 Integrated HDCP Keys
- Pin compatibility (pins 40, 41, 84, 100)
- Sil169 HDCP operation over 100MHz
- Sil169 Bandwidth

#### Sil169 Integrated HDCP Keys

The Sil159 uses an external  $E^2PROM$  to store the HDCP keys. In the Sil169 these keys are integrated into the device and pre-programmed with either public or production HDCP keys. The two pins used for the  $I^2C$  interface to the  $E^2PROM$  are replaced and used for configuration pins as described in Table 5.

#### Pin Compatibility

There are a few pin differences between the Sil159 and Sil169. The primary difference is the absence of the master I<sup>2</sup>C interface to the HDCP E<sup>2</sup>PROM as this is now integrated into the Sil169. The Sil169 is intended only for use in HDCP applications so the MODE pin has been eliminated and replaced with AVCC for compatibility with the Sil161B. The OCK\_INV pin has been moved to pin 41. The default setting should tie the pin LOW. The Sil169, like the Sil161B, has an internal HSYNC de-jitter circuit. Pulling pin 40 HIGH turns ON this circuitry. The pin differences are summarized in Table 5.

| Pin<br>Number |             | SiI159                                                              |         | SiI169                                                                |
|---------------|-------------|---------------------------------------------------------------------|---------|-----------------------------------------------------------------------|
| Tumber        | Pin         | Notes                                                               | Pin     | Notes                                                                 |
| 40            | CTL1/KSCL   | I <sup>2</sup> C clock to HDCP<br>E2PROM, CTL1 if MODE =<br>HIGH    | HS_DJTR | Turns on/off HSYNC de-jitter<br>circuitry, tie pin LOW to turn<br>off |
| 41            | CTL2/KSDA   | $I^{2}C$ data to HDCP E2PROM,<br>CTL2 if MODE = HIGH                | OCK_INV | Use to invert the output clock.<br>Default by tying LOW.              |
| 84            | MODE        | Selects HDCP or SiI151B<br>(Receiver only) operation                | AVCC    | Device always in HDCP<br>mode, compatible with<br>SiI161B pinout      |
| 100           | SCL/OCK_INV | SCL required for HDCP use,<br>OCK_INV only usable if<br>MODE = HIGH | SCL     | SCL required for HDCP<br>operation, OCK_INV on pin<br>41              |

| Table 5. Pin Differences Between SiI159 a | and SiI169. |
|-------------------------------------------|-------------|
|-------------------------------------------|-------------|

#### Sil169 HDCP Operation Over 100MHz

The Sil169's HDCP decryption circuitry can operate over the full-range of the receiver core (25-165 MHz). This compares to the Sil159 which HDCP circuitry should not be used above 100 MHz.

#### Sil169 Bandwidth

The SiI169 TMDS receiver core operates over the full DVI bandwidth of 25 - 165 MHz. The SiI159's receiver core is only specified for operation up to 112 MHz.

#### **Application Information**

To obtain the most updated Application Notes and other useful information for your design application, please visit the Silicon Image web site at **www.siimage.com**, or contact your local Silicon Image sales office.

#### **Copyright Notice**

This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the express written permission of Silicon Image, Inc.

#### **Trademark Acknowledgment**

Silicon Image, the Silicon Image logo, PanelLink and the PanelLink Digital logo are trademarks or registered trademarks of Silicon Image, Inc. All other trademarks are the property of their respective holders.

#### Disclaimer

This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

#### **Revision History**

RevisionDateComment0.962/02Initial release of SiI169 datasheet with integrated HDCP keys

© 2002 Silicon Image. Inc. 2/02

Silicon Image, Inc. 1060 E. Arques Avenue Sunnyvale, CA 94086 USA 
 Tel:
 (408) 616-4000, 1-888-PanelLink

 Fax:
 (408) 830-9530

 E-mail:
 salessupport@Silmage.com

 Web:
 www.siimage.com

 www.panellink.com



Customer:

.

Ŧ

| No. | D   | 0300( | )7 ( | 1/ | )  |
|-----|-----|-------|------|----|----|
| Dat | e : | Feb.  | 05,  | 20 | 03 |

SAMSUNG ELECTRONICS CO., LTD.

Attention:

Your ref. No.:

Your Part No.:

# SPECIFICATIONS

ALPS MODEL : TDHU2-004A

Spec. No. :

Sample No.:

| RECEIPT STATUS |
|----------------|
| RECEIVED       |
| By. Date       |
| Signature      |
| Name           |
| Title          |
|                |
|                |
|                |
|                |

# ALPS ELECTRIC CO., LTD.

HEAD OFFICE 1-7, YUKIGAYA OTSUKA-CHO, OHTA-KU, TOKYO. 145-8501 JAPAN PHONE: (3) 3726-1211 FAX : (3) 3728-1741

| DSG'D        | R. Inoue                       |
|--------------|--------------------------------|
|              | $M D_{2} = D =$                |
| <u>APP'D</u> | Jush                           |
| ENG. DEPT.   | COMMUNICATION DEVICES DIVISION |

COMMUNICATION DEVICES DIVISION 1-2-1, OKINOUCHI, SOMA-CITY, FUKUSHIMA-PREF. 976-8501 JAPAN PHONE: (244) 36-5111 FAX : (244) 36-1902

-

| S | a | 1 | e | S |   |
|---|---|---|---|---|---|
|   | _ | _ |   | _ | _ |

• • • • •

ALPS PRODUCT SPECIFICATION

# **TEMPORARY SPECIFICATION**

# **DIGITAL and ANALOGUE FRONT-END MODULE**

# MODEL NUMBER: TDH (8-VSB, QAM, NTSC)

#### CONFIDENTIAL

|       |             |       |       |       |       |          |       | L          |                 |                          |
|-------|-------------|-------|-------|-------|-------|----------|-------|------------|-----------------|--------------------------|
|       |             |       |       |       |       |          |       |            |                 |                          |
|       |             |       |       |       |       |          |       | ſ          |                 |                          |
|       |             |       |       |       |       |          |       |            |                 |                          |
|       |             |       |       |       |       |          |       |            |                 |                          |
|       | <u>-</u>    |       |       |       |       |          |       |            | CUST. MODEL NO. | ALPS MODEL NO.           |
|       |             |       |       |       | DSGD. |          |       |            |                 |                          |
|       |             |       |       |       | CHKD. | ·····    | TITLE | Т          | DHU             | PRODUCT<br>SPECIFICATION |
|       |             |       |       |       | APPD. |          |       |            |                 | (1/14)                   |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. |       | ALPS ELE | ECTH  | <b>R/(</b> | C CO., L        | .TD.                     |

| CONTEN<br>ITEM No. | ITEM                                                                                                                              | PAGE       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 1                  | Technical Specification                                                                                                           |            |
| 1<br>1-1           | Input                                                                                                                             | 4          |
| 1-1<br>1-2         |                                                                                                                                   |            |
|                    | Output                                                                                                                            | 4          |
| 1-3                | Control format                                                                                                                    | 4          |
| 1-4                | Power Supply Voltage                                                                                                              | 4          |
| 1-5                | Current Consumption                                                                                                               | 5          |
| 1-6                | Environmental specifications                                                                                                      | 5          |
| 1-6-1              | Temperature                                                                                                                       | 5          |
| 1-6-2              | Humidity                                                                                                                          | 5          |
| 2                  | Standard Test Conditions                                                                                                          |            |
| 2-1                | Ambient Conditions                                                                                                                | 6          |
| 2-1<br>2-2         |                                                                                                                                   | 6          |
| 2-2                | Power Supply                                                                                                                      | 0          |
| 3                  | Absolute Maximum Voltage                                                                                                          | 6          |
| 4                  | Electrical Specifications                                                                                                         |            |
| 4-1                | RF Input Specification                                                                                                            |            |
| 4-1-1              | ANT Input Return Loss                                                                                                             | 7          |
| <b>4</b> -1-2      | ANT Leakage                                                                                                                       | 7          |
| 41-3               | LO Phase Noise                                                                                                                    | 7          |
| 4-2                | Digital output Specification ATSC (8-VSB)                                                                                         |            |
| 42-1               | Input Sensitivity                                                                                                                 | 8          |
| 4-2-2              | Dynamic range                                                                                                                     | 8          |
| 4-2-3              | Image NTSC Interference Protection Ratio                                                                                          | 8          |
| 4-2-3<br>4-2-4     | Adjacent NTSC Interference Protection Ratio                                                                                       | 8          |
|                    |                                                                                                                                   |            |
| 4-2-5              | Co-Channel NTSC Interference Protection Ratio                                                                                     | 8          |
| 4-2-6              | Active White Gaussian Noise Condition                                                                                             | 8          |
| 4-2-7              | Static Multipath                                                                                                                  | 8          |
| 4-2-8              | Dynamic Multipath                                                                                                                 | 8          |
| 4-2-9              | Acquisition time                                                                                                                  | 8          |
| 4-3                | Digital output Specification FAT (QAM / ITU-J.83B)                                                                                |            |
| 4-31               | Input Level Range                                                                                                                 | 9          |
| 4-3-2              | Active White Gaussian Noise Condition                                                                                             | 9          |
| 4-3-3              | Inter Modulation                                                                                                                  | 9          |
|                    | · · · · · · · · · · · · · · · · · · ·                                                                                             |            |
|                    | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division |            |
|                    |                                                                                                                                   | <u>1</u>   |
|                    |                                                                                                                                   |            |
| _                  | TITLE                                                                                                                             | PRODUCT    |
|                    | TDHU                                                                                                                              | SPECIFICAT |
|                    |                                                                                                                                   | ( 2/14     |
|                    |                                                                                                                                   | ( 6/ 19    |

| CONTEN<br>TEM No.                     | ПЕМ                                                                                                                                                                    | PAGE                                 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                        |                                      |
| 4                                     | Electrical Specifications                                                                                                                                              |                                      |
| 4-4                                   | Analog output Specification                                                                                                                                            |                                      |
| 441                                   | · · · ·                                                                                                                                                                | 10                                   |
| 4-4-2                                 |                                                                                                                                                                        | 10                                   |
| 4-4-3                                 | Noise Limiting Sensitivity                                                                                                                                             | 10                                   |
| 444                                   |                                                                                                                                                                        | 10                                   |
| 4-4-5                                 |                                                                                                                                                                        | 11                                   |
| 446                                   |                                                                                                                                                                        | 11                                   |
| 4-4-7                                 | •                                                                                                                                                                      | 11                                   |
| 4-4-8                                 |                                                                                                                                                                        | 11                                   |
| 4-4-9                                 |                                                                                                                                                                        | 11                                   |
| 4-4-10                                | SIF Output Level                                                                                                                                                       | 11                                   |
| 5                                     | Mechanical Information                                                                                                                                                 |                                      |
| 5-1                                   | Module Pin Information                                                                                                                                                 | 12                                   |
| 5-2                                   | Appearance Structure                                                                                                                                                   | 13                                   |
| 5-3                                   | RF Input Connector Form                                                                                                                                                | 13                                   |
| 5-4                                   | Weight                                                                                                                                                                 | 13                                   |
|                                       |                                                                                                                                                                        |                                      |
| 6                                     | Appendix                                                                                                                                                               |                                      |
|                                       |                                                                                                                                                                        |                                      |
|                                       | Program Tuner PLL Channel Change.<br>TIAL<br>AUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           |                                      |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           |                                      |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           |                                      |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           |                                      |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           |                                      |
| This N                                | TIAL<br>IUST NOT be copied or disclosed to a third party without approval of                                                                                           | 14                                   |
| This N                                | TTIAL<br>AUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division                                     |                                      |
| This N                                | TTIAL<br>AUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division                                     | PRODUCT<br>PHU SPECIFICAT            |
| This N                                | TTIAL<br>AUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division                                     | PRODUCT<br>PRODUCT<br>OHU SPECIFICAT |
| This N                                | TTIAL<br>AUST NOT be copied or disclosed to a third party without approval of<br>ELECTRIC CO., LTD. Communication Devices Division                                     | PRODUCT<br>PHU SPECIFICAT<br>( 3/14  |

| <b>TECHNICA</b>            | L SPECIFICATION                                                                                         |                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM No.                   | ПЕМ                                                                                                     | Condition                                                                                                                                                                                                                                                                                                                              |
| 1-1                        | Input<br>• Input Frequency Range<br>• Channel Bandwidth<br>• Channel Assignment<br>• Input Signal Level | 54MHz to 864MHz<br>6MHz<br>US Standard<br>-80dBm to -20dBm (8-VSB)<br>-15dBmv to +15dBmv (64 QAM)<br>-12dBmv to +15dBmv (256 QAM)                                                                                                                                                                                                      |
|                            | <ul> <li>Input Impedance</li> <li>Modulation Modes</li> </ul>                                           | 75 ohms nominal<br>8VSB / 64QAM / 256QAM / NTSC                                                                                                                                                                                                                                                                                        |
| 1-2                        | Output<br>• Output Format                                                                               | Digital ch. : MPEG-2 Transport Stream in serial<br>All Digital Outputs are 3.3V CMOS levels<br>Refer to the NXT2004 Data Sheet and API Manual.<br>Analogue ch. : CVBS, AF Audio output                                                                                                                                                 |
|                            | · Output Impedance                                                                                      | and 2nd SIF output (4.5MHz)<br>Analogue ch. : Video output load : 10k ohms                                                                                                                                                                                                                                                             |
|                            |                                                                                                         | : S-IF output load : 100k ohms                                                                                                                                                                                                                                                                                                         |
| 1-3                        | Control format                                                                                          | IIC Compatible Interface<br>NXT2004 Slave core, whose I/O operates at 3.3V or 5V tolerant.<br>Refer to the NXT2004 Data Sheet and API Manual.<br>(Appendix, "Program Tuner PLL Channel Change")<br>The reference frequency step of the Tuner section PLL is 62.5kHz.<br>X'tal: 4MHz, Reference divider: 64, IF center frequency: 44MHz |
| 1-4                        | Power Supply Voltages                                                                                   | Pin Number         Operating Supply Voltages           3/B2(+5V)         +5.0V±0.25V DC           5/B3(+32V)         +32V±1.6V DC           12/B4(+3.3V)         +3.3V±0.3V DC           14/B5(+2.5V)         +2.5V±0.25V DC           15/B6(+1.2V)         +1.2V±0.12V DC                                                             |
| CONFIDEN<br>This M<br>ALPS | AUST NOT be copied or disc                                                                              | losed to a third party without approval of<br>ommunication Devices Division                                                                                                                                                                                                                                                            |
| -                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                                        |
|                            |                                                                                                         | TITLE PRODUCT<br>TDHU SPECIFICATI                                                                                                                                                                                                                                                                                                      |
|                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                        |
|                            |                                                                                                         | (4/14)                                                                                                                                                                                                                                                                                                                                 |

|              | Condi | tion           |  |
|--------------|-------|----------------|--|
| Pin Number   | Тур.  | Max.           |  |
| 3/B2(+5V)    | 240mA | 360mA          |  |
| 5/B3(+32V)   | —     | 2mA            |  |
| 12/B4(+3.3V) | 17mA  | 60mA           |  |
| 14/B5(+2.5V) | 150mA | 2 <b>60</b> mA |  |

250mA

170mA

Less than 80 % RH(at40°C)

Less than 95 % RH(at40°C)

#### CONFIDENTIAL

1. TECHNICAL SPECIFICATION

ITEM

**Environmental Specifications** 

Temperature

Humidity

Current Consumption

ITEM No.

1-5

1-6

1-6-1

1-6-2

This MUST NOT be copied or disclosed to a third party without approval of ALPS ELECTRIC CO., LTD. Communication Devices Division

15/B6(+1.2V)

Operating

Operating

Storage

Storage

0 to +60°C

-10 to +70°C

|       |             |       |       |       |                    | PRODUCT       |
|-------|-------------|-------|-------|-------|--------------------|---------------|
|       |             |       |       |       |                    | SPECIFICATION |
|       |             |       |       |       |                    | (5/14)        |
|       |             |       |       |       | ALPS ELECTRIC CO., |               |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | ALFS ELECTRIC CO., | LID.          |

/

F

### 2. Standard Test Conditions

Test for electrical specification shall be performed at following at following condition unless the otherwise specified.

| ITEM No. | ПЕМ                | CONDITION                            |  |
|----------|--------------------|--------------------------------------|--|
| 2-1      | Ambient Conditions | Temperature 25±2 deg C               |  |
|          |                    | Humidity 65±5% RH                    |  |
| 2-2      | Power Supply       | Pin Number Operating Supply Voltages |  |
|          |                    | $3/B2 (+5V) +5.0V \pm 0.1V DC$       |  |
|          |                    | $5/B3(+32V) + 32V \pm 0.1V DC$       |  |
|          |                    | 12/B4(+3.3V) +3.3V ±0.1V DC          |  |
|          |                    | $14/B5(+2.5V) +2.5V \pm 0.1V DC$     |  |
|          |                    | $15/B6(+1.2V) +1.2V \pm 0.1V DC$     |  |

#### 3. Absolute Maximum Voltage

| ITEM No. | ПЕМ                      | CONDITION                   |  |
|----------|--------------------------|-----------------------------|--|
| 3        | Absolute Maximum Voltage | Pin Number Maximum Voltages |  |
|          |                          | 3/B2 (+5V) +5.5V DC         |  |
|          |                          | 5 / B3 (+32V) +34V DC       |  |
|          |                          | 12/B4(+3.3V) +3.6V DC       |  |
|          |                          | 14/B5 (+2.5V) +2.75V DC     |  |
|          | 1                        | 15 / B6 (+1.2V) +1.32V DC   |  |

#### CONFIDENTIAL

This MUST NOT be copied or disclosed to a third party without approval of ALPS ELECTRIC CO., LTD. Communication Devices Division

|       |             |       |       |       |   |        | TITLE | тони      | PRODUCT<br>SPECIFICATION |
|-------|-------------|-------|-------|-------|---|--------|-------|-----------|--------------------------|
|       |             |       |       |       |   |        |       |           | (6/14)                   |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | A | LPS EL | ECTR  | IC CO., I | LTD.                     |

/

| Electrical Specifications |        |        |      |        |                          |
|---------------------------|--------|--------|------|--------|--------------------------|
| ITEM                      | SPECIF | CATION |      |        | CONDITION                |
|                           | MIN.   | TYP.   | MAX. | UNIT   | -                        |
| 4-1                       |        |        |      |        |                          |
| RF Input Specification    |        |        |      |        |                          |
| 4-1-1                     |        |        |      |        |                          |
| ANT Input Return Loss     |        | 6      |      | dB     | 50 to 864MHz             |
| 4-1-2                     |        |        |      |        | Other terminal should be |
| ANT Leakage               |        |        |      |        | Termination (75ohms)     |
| -                         |        |        | 46   | dB     | 30 - 950MHz              |
|                           |        |        | 54   | dB     | 950 - 1750MHz            |
| 4-1-3                     |        |        |      |        |                          |
| LO Phase Noise            |        | 90     |      | dBc/Hz | @ 10kHz offset           |

#### CONFIDENTIAL

|       |             |       |       |       |   |         | T1T1 F |          |         |
|-------|-------------|-------|-------|-------|---|---------|--------|----------|---------|
|       |             |       |       |       |   |         | TITLE  | TDHU     | PRODUCT |
|       |             |       |       |       |   |         | ]      |          | (7/14)  |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | A | LPS ELI | ECTRIC | C CO., I | LTD.    |

| MIN.         TYP.         MAX.         UNIT           42         Digital Output Specification<br>ATSC (8-VSB )         Note: All item is judged by<br>TOV           42:1         Input Sensitivity         -80         dBm           4:2:2         Digital Cutput Specification<br>Rate         -80         dB           4:2:3         Input Sensitivity         -80         dB           4:2:4         Generation Rate         -45         dB         Desire input Level           4:2:4         Adjacent NTSC Interference         -37         dB         (N-1)         @-88dBm           4:2:5         Cachanel NTSC         2         dB         Desire input Level         -48dBm           4:2:6         Addiagent NTSC         15.4         dB         @-48dBm         -42:6           Are:0         Addiagent NTSC         15.4         dB         @-48dBm         -42:6           Are:1         1.0         dB         @ 14.8                                                                                                                                                                                                               | Electrical Specifications                                                                                                                                                                  | SPECIF                                          | ICATION                                    | · · · · · · · · · · · · · · · · · · · |               | CONDITION                                       |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|---------------------------------------|---------------|-------------------------------------------------|---------------|
| Digital Cutput Specification       Note: All liken is judged by TOV         ATSC (B-VSB)       TOV         Imput Sensitivity       -80         d-2-2       Dynamic range         Dynamic range       90         d-2-2       Desire Input Level         mage NTSC Interference       -45         Protection Ratio       -37         d-2-4       dB         Adjacent NTSC Interference       -37         Protection Ratio       -37         d-2-4       dB         Adjacent NTSC Interference       -37         d-2-4       dB         Adjacent NTSC Interference       -37         d-2-5       dB         Co-Channel NTSC       2         d-2-6       dB         WGN Condition       15.4         d-2-7       dB         Static Multipath       1.0         dB       @ 1 µ S         @ 15 µ S       @ 15 µ S         d-2-8       0         MYGN Condition       1.4         dB       @ 1 µ S         @ 15 µ S       @ 15 µ S         d-2-8       0         MYGN Condition       1.4         dB       @ 1 µ S                                                                                                                                          |                                                                                                                                                                                            |                                                 |                                            | MAX.                                  | UNIT          | -                                               |               |
| Input Sensitivity     -80     dBm       4-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Digital Output Specification<br>ATSC (8-VSB)                                                                                                                                               |                                                 |                                            |                                       |               |                                                 | s judged by   |
| Dynamic range     90     dB       +2-3     Desire input Level       +2-3     dB       Protection Ratio     -37       +2-4     ddB       Adjacent NTSC Interference     -37       Protection Ratio     -37       +2-5     dB       Co-Channel NTSC     2       dB     -84dBm       +2-5     dB       Co-Channel NTSC     2       dB     -44dBm       +2-7     dB       Satio Multipath     15.4       +2-7     15.5       Batte Multipath     1.0       +2-7     dB       Satio Multipath     1.0       +2-7     dB       Satio Multipath     1.4       1.3     @15 µ S       +2-8     Dynamic Multipath       1.4     dB       @14 µ S     @5 Hz       +2-9     ms       Channel data and MPI       DATA Output.       Typ. time is the average of times.       COTE: measurement condition       -Desired signal discription>       Input Discription : 8-VSB       -Quested signal discription>       Input Discription : 8-VSB       -Quested signal discription>       Input Discription : 8-VSB       -Quested signal discrip                                                                                                                   |                                                                                                                                                                                            |                                                 | -80                                        |                                       | dBm           |                                                 |               |
| mage NTSC Interference       -45       dB       -68dBm         22-4       Adjacent NTSC Interference       -37       dB       (N-1) @-68dBm         7rotection Ratio       -37       dB       (N-1) @-68dBm         12-4       Adjacent NTSC Interference       -37       dB       (N+1) @-68dBm         12-5       Decire Input Level       -46       dB       @e48dBm         12-7       15.5       @e68dBm       -46         12-8       WGN Condition       15.4       dB       @e68dBm         12-7       1.0       dB       @e14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dynamic range                                                                                                                                                                              |                                                 | 90                                         |                                       | dB            |                                                 |               |
| Adjacent NTSC Interference       -37       -37       dB       (N-1) @-68dBm         2-37       -37       dB       (N+1) @-68dBm         2-2-5       Connel NTSC       2       dB       -48dBm         2-2-6       dB       -48dBm       -48dBm         2-2-7       15.5       @-68dBm         2-2-7       15.5       @-68dBm         2-2-7       15.5       @-68dBm         2-2-7       1.0       dB       @ 1 \mu S         2-2-7       1.3       @15 \mu S          2-2-7       1.3       @15 \mu S          2-2-7       1.3       @15 \mu S          2-2-7       1.4       dB       @1 \mu S          2-2-7       1.3        @15 \mu S          2-2-8       ynamic Multipath       1.4       dB       @1 \mu S       @5 Hz         4-2-9         This time is between send channel data and MPI DATA Output.       DATA Output.       Typ. time is the average o times.         Input Discription : 8-VSB           The way and discription> (ITEM 4-2-1,3~6)       TOV(BER of 3 × 10° at TS output)       FM sound : 400Hz tone (evel P/                                                                                                         | mage NTSC Interference<br>Protection Ratio                                                                                                                                                 |                                                 | -45                                        |                                       | dB            |                                                 | evel          |
| Co-Channel NTSC     2     dB     48dBm       nerference Ratio     15.4     dB     @-48dBm       12-6     15.5     dB     @-68dBm       WGN Condition     15.5     dB     @-68dBm       12-7     1.0     dB     @ 1 µ S       212-7     1.8     @15 µ S       22-8     WGN Multipath     1.4     dB     @ 1 µ S       12-7     1.8     @15 µ S       2-8     ynamic Multipath     1.4     dB     @ 1 µ S       2-9     mS     This time is between send channel data and MPI DATA Output.<br>Typ. time is the average o times.       OOTE : measurement condition     -     -     -       -2-9     -     MS     channel data and MPI DATA Output.<br>Typ. time is the average o times.       otorter: measurement condition     -     -     -       -2-9     -     -     -     -       -2-9     -     -     -     -       -2-10     -     -     -     -     -       -2-2-9     -     -     -     -     -       -2-3     -     -     -     -     -     -       -2-10     -     -     -     -     -     -       -2-10     - <t< td=""><td>Adjacent NTSC Interference</td><td></td><td></td><td></td><td>dB</td><td></td><td></td></t<>                  | Adjacent NTSC Interference                                                                                                                                                                 |                                                 |                                            |                                       | dB            |                                                 |               |
| WGN Condition       15.4       dB       @-48dBm         12-7       15.5       @-68dBm         22-7       1.0       dB       @ 1 \nu S         22-7       1.8       @15 \nu S         22-8       Dynamic Multipath       1.4       dB       @ 1 \nu S       @ 5 \nu S         22-9       Acquisition time       200       mS       This time is between send channel data and MPI DATA Output. Typ. time is the average of times.         OTE : measurement condition<br>-Desired signal discription><br>Input Discription : 8-VSB<br>- Undesired signal discription><br>- Undesired signal discription><br>- NTSC : Video 75% color bars<br>- The judge point>(TEM 4-2-3~5)<br>. NTSC : Video 75% color bars<br>- The judge point>(TEM 4-2-1,3~6)<br>TOV(BER of 3 × 10° at TS output)       FM sound : 400Hz tone (level P/S : 7dB, ±25kHz deviation)<br>. TDE upper of 3 × 10° at TS output)         CONFIDENTIAL<br>This MUST NOT be copied or disclosed to a third party without approval of<br>ALPS ELECTRIC CO., LTD. Communication Devices Division         CONFIDENTIAL<br>TITL       TITLE       PRODUCT<br>T D H U       PRODUCT<br>T D H U | Co-Channel NTSC<br>nterference Ratio                                                                                                                                                       |                                                 | 2                                          |                                       | dB            |                                                 | evel          |
| Static Multipath       1.0       dB       @ 1 µ S         1-2-8       Opnamic Multipath       1.4       dB       @ 1 µ S       @ 5 Hz         P-2-9       This time is between send channel data and MPI DATA Output.       Typ. time is the average of times.       This time is between send channel data and MPI DATA Output.         OTE : measurement condition       200       mS       This time is the average of times.         IOTE : measurement condition       -       -       -       -         - Outleside signal discription> (ITEM 4-2-3~5)       NTSC : Video 75% color bars       FM sound : 400Hz tone (level P/S : 7dB, ± 25kHz deviation)         - The judge points (ITEM 4-2-1,3~6)       TOV(BER of 3×10° at TS output)       -         200       This MUST NOT be copied or disclosed to a third party without approval of ALPS ELECTRIC CO., LTD.       Communication Devices Division         CONPIDENTIAL       TITLE       PRODUCT       T D H U       SPECIFIC                                                                                                                                                        | AWGN Condition                                                                                                                                                                             |                                                 |                                            |                                       | dB            |                                                 |               |
| 1.4       dB       @ 1 μ S @ 5Hz         1.2-9       mS       This time is between send channel data and MPI DATA Output.<br>Typ. time is the average o         IOTE : measurement       condition         ∠Desired signal discription>       THE H-2-3~5)<br>MTSC : Video 75% color bars         NTSC : Video 75% color bars       FM sound : 400Hz tone (level P/S : 7dB, ±25kHz deviation)<br>< The judge poin> (ITEM 4-2-3~5)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                 |                                            |                                       | dB            |                                                 |               |
| Acquisition time       200       mS       channel data and MPI<br>DATA Output.<br>Typ. time is the average o<br>times.         OTE : measurement condition<br><desired discription="" signal=""><br/>Input Discription : 8-VSB<br/><undesired discription="" signal="">(ITEM 4-2-3~5)<br/>NTSC : Video 75% color bars<br/><the judge="" point="">(ITEM 4-2-3~5)<br/>NTSC : Video 75% color bars<br/><the judge="" point="">(ITEM 4-2-1,3~8)<br/>TOV(BER of 3 × 10<sup>6</sup> at TS output)       FM sound : 400Hz tone (level P/S : 7dB, ± 25kHz deviation)<br/><the judge="" point="">(ITEM 4-2-1,3~8)<br/>TOV(BER of 3 × 10<sup>6</sup> at TS output)         CONFIDENTIAL<br/>This MUST NOT be copied or disclosed to a third party without approval of<br/>ALPS ELECTRIC CO., LTD.       Communication Devices Division</the></the></the></undesired></desired>                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                 | 1.4                                        |                                       | dB            |                                                 | Hz            |
| <desired discription="" signal="">         Input Discription : 8-VSB         <undesired discription="" signal="">(ITEM 4-2-3~5)         NTSC : Video 75% color bars       FM sound : 400Hz tone (level P/S : 7dB, ±25kHz deviation)         <the judge="" point="">(ITEM 4-2-1,3~8)         TOV(BER of 3 × 10° at TS output)         CONFIDENTIAL         This MUST NOT be copied or disclosed to a third party without approval of         ALPS ELECTRIC CO., LTD.         Communication Devices Division</the></undesired></desired>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                 | 200                                        |                                       | mS            | channel data<br>DATA Output.<br>Typ. time is th | and MPEG2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input Discription : 8-VSB<br><undesired signa<br="">NTSC : Video<br/><the judge="" point<br="">TOV(BER of 3×10<sup>6</sup> at TS<br/>CONFIDENTIAL<br/>This MUST NOT be a</the></undesired> | al discriptic<br>75% cok<br>(ITEM 4-<br>output) | orbars Fi<br>2-1,3~8)<br>isclosed to a thi | M sound : 40                          | thout approva |                                                 | Hz deviation) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                 |                                            |                                       |               |                                                 | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                 |                                            |                                       | TITIE         |                                                 |               |
| (8/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                 |                                            |                                       |               | TDHU                                            | PRODUCT       |

| ITEM.                                                          | SPECIFI | CATION |      |      | CONDITION              |  |
|----------------------------------------------------------------|---------|--------|------|------|------------------------|--|
|                                                                | MIN.    | TYP.   | MAX. | UNIT | -                      |  |
| 4-3<br>Digital Output Specification<br>FAT ( QAM / ITU-J.83B ) |         |        |      |      |                        |  |
| 4-3-1<br>Input Level Range                                     | -15     |        | +15  | dBmV |                        |  |
| 4-3-2<br>AWGN Condition                                        |         | 23.0   |      | dB   | C/N for TOV<br>Note 1. |  |
| 4-3-3<br>Inter Modulation condition                            |         | 23.5   |      | dB   | C/N for TOV<br>Note 2. |  |

/

#### Note 1.

Channel assumption:

1 desired digital 64 QAM channel at RF input level of +10  $\mathrm{dBmV}$ 

#### Note 2.

)

Channel assumption: 1 desired digital 64 QAM channel at RF input level of +10 dBmV, and 135 undesired analogue AM-VSB cannels at RF input level of +15 dBmV.

#### CONFIDENTIAL

|       |             |       |       |       | TITLE<br>T D H U | PRODUCT<br>J 2 SPECIFICATION |
|-------|-------------|-------|-------|-------|------------------|------------------------------|
|       |             |       |       |       |                  | (9/14)                       |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | ALPS ELECTRIC    | CO., LTD.                    |

| ITEM                                        |             |      | SPECIFIC                | CATION |            | NOTE                                                                                                                                                  |
|---------------------------------------------|-------------|------|-------------------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |             | MIN. | TYP.                    | MAX.   | UNIT       |                                                                                                                                                       |
| 4-4<br>Analogue Output<br>Specification     | t           |      |                         |        |            |                                                                                                                                                       |
| 4-4-1<br>Video Output Leve                  | ÷           | 0.80 | 1.00                    | 1.20   | Vр-р       | Standard color bar : 87.5 % mod.<br>RF inputlevel : 70dB $\mu$ V<br>P/S level : 6dB                                                                   |
| 4-4-2<br>Video S/N                          |             | 42.0 |                         |        | dB         | 100 % white signal<br>87.5 % modulation<br>Subcarrier trap : ON<br>HPF : 100 Khz , LPF : 4.2 MHz<br>ANT input level : 70dB $\mu$ V<br>P/S level : 6dB |
| 4-4-3<br>Noise Limiting Ser                 | nsitivity   |      |                         | 50.0   | dBµ∨       | 100 % white signal<br>87.5 % modulation<br>Subcarrier trap : ON<br>HPF : 100 kHz , LPF : 4.2 MHz<br>Video S/N = 30 dB<br>P/S level : 6dB              |
| 4-4-4<br>Video Frequency<br>Characteristics |             |      |                         |        |            |                                                                                                                                                       |
| [CH:12]                                     |             |      |                         |        |            | Full sweep : 87.5 % mod.<br>Based on 100 kHz                                                                                                          |
| 1.0 MHz                                     |             |      | 0                       | +      | -          | Input Level: 70dB $\mu$ V                                                                                                                             |
| 2.0 MHz                                     |             |      | 0                       |        |            | P/S level : 6dB                                                                                                                                       |
| 3.0 MHz                                     |             |      | 0                       |        | dB         |                                                                                                                                                       |
| 3.58 MHz                                    |             |      | -1.0                    |        | ļ          | 4                                                                                                                                                     |
|                                             |             |      |                         |        |            |                                                                                                                                                       |
| CONFIDENTIA<br>This MUS                     |             |      | sclosed to a<br>Communi |        |            | t approval of<br>sion                                                                                                                                 |
| CONFIDENTIA<br>This MUS                     | ST NOT be c |      |                         |        |            |                                                                                                                                                       |
| CONFIDENTIA<br>This MUS                     | ST NOT be c |      |                         |        | vices Divi |                                                                                                                                                       |
| CONFIDENTIA<br>This MUS                     | ST NOT be c |      |                         |        | vices Divi | Sion<br>TITLE PRODUCT                                                                                                                                 |

|                                        |                                     | SPECIFIC     |      | NOTE                      |                                                                                                                                                      |  |  |
|----------------------------------------|-------------------------------------|--------------|------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                        | MIN.                                | TYP.         | MAX. | UNIT                      |                                                                                                                                                      |  |  |
| 4-4-5<br>Differential Gain             | -10                                 |              | +10  | %                         | 10 stair-steps: 87.5 % mod.<br>Set modulation at the peak of                                                                                         |  |  |
| 4-4-6<br>Differential Phase            | -10                                 |              | +10  | deg                       | 10 th chroma signal.<br>Input level : 70dBμV                                                                                                         |  |  |
| 4-4-7<br>Audio Ostput Level            |                                     | 480          |      | mVrms                     | 400 Hz / $\pm$ 25 kHz Dev.<br>Standard color bar : 87.5 % mod.<br>De-emphasis : ON<br>RF input level : 70dB $\mu$ V<br>P/S level : 6dB               |  |  |
| 4-4-8<br>Audio Distortion              |                                     |              | 2    | %                         | 400 Hz / $\pm$ 25 kHz Dev.<br>Black burst signal : 87.5 % mod.<br>De-emphasis : ON<br>RF input level : 70dB $\mu$ V<br>P/S level : 6dB               |  |  |
| 4-4-9<br>Audio S/N                     |                                     | 55           |      | dB                        | 400 Hz / $\pm$ 25 kHz Dev.<br>Standard color bar : 87.5 % mod.<br>De-emphasis : ON<br>P/S = 6 dB<br>RF input level : 70dB $\mu$ V<br>P/S level : 6dB |  |  |
| 4-4-10<br>SIF output level<br>(4.5MHz) |                                     |              |      |                           | Video Standard color bar : 87.5% m<br>Audio : No modulation<br>RF input level : 70dB μ V<br>P/S level : 6dB                                          |  |  |
| (4.5MHZ)                               |                                     | 360          |      | mVp-p                     | $ n r $ input level . Touch $\mu$ v                                                                                                                  |  |  |
| CONFIDENTIAL                           | OT be copied or di<br>RIC CO., LTD. |              |      | rty withou                | P/S level : 6dB                                                                                                                                      |  |  |
| CONFIDENTIAL<br>This MUST NO           |                                     | sclosed to a |      | rty withou<br>vices Divis | P/S level : 6dB                                                                                                                                      |  |  |
| CONFIDENTIAL<br>This MUST NO           |                                     | sclosed to a |      | rty withou<br>vices Divis | P/S level : 6dB                                                                                                                                      |  |  |
| CONFIDENTIAL<br>This MUST NO           |                                     | sclosed to a |      | rty withou<br>vices Divis | P/S level : 6dB                                                                                                                                      |  |  |

### 5. Mechanical Information

# 5-1. Module Pin Information.

| -1. Module Pin Information. |            |                                |                                                                                                                              |  |  |  |  |  |  |  |
|-----------------------------|------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pin No.                     | Definition | Purpose                        | Note                                                                                                                         |  |  |  |  |  |  |  |
| 1                           | N/C        | No connection                  | This terminal MUST be keep OPEN                                                                                              |  |  |  |  |  |  |  |
| 2                           | RF AGC     | rf agc                         | This terminal is used for the monitoring RF AGC voltage.                                                                     |  |  |  |  |  |  |  |
| 3                           | B2 +5V     | Power Supply                   | For the MOPLL IC.                                                                                                            |  |  |  |  |  |  |  |
| 4                           | AFTOUT     | Analogue Output                | AFT S curve output.                                                                                                          |  |  |  |  |  |  |  |
| 5                           | B3 +32V    | Power Supply                   | For the Tuning.                                                                                                              |  |  |  |  |  |  |  |
| 6                           | GND        | GND                            | Tie to GND plane                                                                                                             |  |  |  |  |  |  |  |
| 7                           | RESET      | Module Control                 | Resets the module to default configuration. Active low.                                                                      |  |  |  |  |  |  |  |
| 8                           | ERROROUT   | MPEG-2 Interface               | Transport stream error. The current packet contains uncorrectable error.                                                     |  |  |  |  |  |  |  |
| 9                           | VIDEO      | Analogue Output                | Composite video base band signal output                                                                                      |  |  |  |  |  |  |  |
| 10                          | Ana_SW     | X-TAL ON/OFF                   | Analog function is high                                                                                                      |  |  |  |  |  |  |  |
| 11                          | SIF        | Analogue Output                | 2ndSIF output.                                                                                                               |  |  |  |  |  |  |  |
| 12                          | B4 +3.3V   | Power Supply                   | For I/O of the VSB/QAM demodulator IC                                                                                        |  |  |  |  |  |  |  |
| 13                          | GND        | GND                            | Tie to GND plane                                                                                                             |  |  |  |  |  |  |  |
| 14                          | B5 +2.5V   | Power Supply                   | For Core of the VSB/QAM demodulator IC                                                                                       |  |  |  |  |  |  |  |
| 15                          | B6+1.2V    | Power Supply                   | For Core of the VSB/QAM demodulator IC                                                                                       |  |  |  |  |  |  |  |
| 16                          | PKT SYNC   | MPEG-2 Interface               | Indicates the beginning of a transport package by asserting<br>PSYNC during the sync byte of the message. Active high.       |  |  |  |  |  |  |  |
| 17                          | MD_EN      | MPEG-2 Interface               | MPEG Data Enable out, this signal indicates when the MPEG output data is valid. Active high.                                 |  |  |  |  |  |  |  |
| 18                          | M_DATA_7   | MPEG-2 Interface               | Parallel MPEG Data 7 Output                                                                                                  |  |  |  |  |  |  |  |
| 19                          | M_DATA_6   | MPEG-2 Interface               | Parallel MPEG Data 6 Output                                                                                                  |  |  |  |  |  |  |  |
| 20                          | M_DATA_5   | MPEG-2 Interface               | Parallel MPEG Data 5 Output                                                                                                  |  |  |  |  |  |  |  |
| 21                          | M_DATA_4   | MPEG-2 Interface               | Parallel MPEG Data 4 Output                                                                                                  |  |  |  |  |  |  |  |
| 22                          | M_DATA_3   | MPEG-2 Interface               | Parallel MPEG Data 3 Output                                                                                                  |  |  |  |  |  |  |  |
| 23                          | M_DATA_2   | MPEG-2 Interface               | Parallel MPEG Data 2 Output                                                                                                  |  |  |  |  |  |  |  |
| 24                          | M_DATA_1   | MPEG-2 Interface               | Parallel MPEG Data 1 Output                                                                                                  |  |  |  |  |  |  |  |
| 25                          | M_DATA_0   | MPEG-2 Interface               | Parallel MPEG Data 0 Output                                                                                                  |  |  |  |  |  |  |  |
| 26                          | M_CLOCK    | MPEG-2 Interface               | The clock synchronizes the data stream. The clock signal is<br>pulsed each time a valid data word is output on the DATA 0-7. |  |  |  |  |  |  |  |
| 27                          | SDA        | I <sup>2</sup> C Bus Interface | I <sup>2</sup> C Serial Data Line                                                                                            |  |  |  |  |  |  |  |
| 28                          | SCL        | I <sup>2</sup> C Bus Interface | I <sup>2</sup> C Serial Clock Line                                                                                           |  |  |  |  |  |  |  |

# CONFIDENTIAL

|       |             |       |       |       | ТІТ       | TI C |          | PRODUCT       |
|-------|-------------|-------|-------|-------|-----------|------|----------|---------------|
|       |             |       |       |       |           |      | TDHU     | SPECIFICATION |
|       |             |       |       |       |           |      |          | (12/14)       |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | ALPS ELEC | CTRI | C CO., I | LTD.          |

| ITEM No | ITEM                    | Specification                    |
|---------|-------------------------|----------------------------------|
| 5-2     | Appearance Structure    | Dimensions as mechanical drawing |
| 5-3     | RF Input Connector Form | RCA Type                         |
| 5-4     | Weight                  | 70g Typ.                         |

# CONFIDENTIAL

This MUST NOT be copied or disclosed to a third party without approval of ALPS ELECTRIC CO., LTD. Communication Devices Division

|       |             |       |       |       |   |         | TITLE  | TDHU   | PRODUCT<br>SPECIFICATION |
|-------|-------------|-------|-------|-------|---|---------|--------|--------|--------------------------|
|       |             |       |       |       |   |         |        |        | (13/14)                  |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | Α | LPS ELE | ECTRIC | CO., L | TD.                      |

7

# 6. Appendix

# Program Tuner PLL Channel Change.

|              |     | MSB            |                 |                 |                 |                 |                 |                | LSB            |   |        | Hex. |
|--------------|-----|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|---|--------|------|
| ADDRESS      |     | 1              | 1               | 0               | 0               | 0               | MA1             | MAO            | 0              | • |        |      |
|              | EX) | 1              | 1               | 0               | 0               | 0               | 0               | 1              | 0              | Α | Byte1  | C2   |
| PROGRAMMABLE |     | 1              | 2 <sup>14</sup> | 2 <sup>13</sup> | 2 <sup>12</sup> | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | • | Byte2  |      |
| DMDER        | EX) | 0              | 0               | 1               | 0               | 0               | 0               | 0              | 0              | A |        | 20   |
| PROGRAMMABLE |     | 2 <sup>7</sup> | 2 <sup>6</sup>  | 2 <sup>5</sup>  | 2 <sup>4</sup>  | 2 <sup>3</sup>  | 2 <sup>2</sup>  | 2 <sup>1</sup> | 2 <sup>0</sup> |   | D.v.o  |      |
| DMDER        | EX) | 0              | 1               | 0               | 1               | 0               | 0               | 0              | 0              | A | Byte3  | 50   |
| CONTROL DATA |     | 1              | X               | Х               | AGD             | R3              | R2              | R1             | R0             |   | D to 4 | :    |
|              | EX) | 1              | 0               | 0               | 0               | 0               | 1               | 0              | 1              | Α | Byte4  | 85   |
| CONTROL DATA |     | C1             | Х               | RE              | RST             | BS4             | BS3             | BS2            | BS1            |   | D. 405 |      |
|              | EX) | 0              | 0               | 0               | 0               | 1               | 0               | 0              | 0              | Α | Byte5  | 08   |

EX)

#### Programmable data = (Desired channel center frequency) + 44M / (4M / 64)

= (473(CH14)+44) M/62.5k

= 8272 (Dec.)

= 010 0000 0101 0000 (15 bits)

= 2050 (Hex.)

#### Byte 5 for charge pump current and port setting

| CONTROL DATA  | C1 | X | RE | RST | BS4 | BS3 | BS2 | BS1 | A | Hex. |
|---------------|----|---|----|-----|-----|-----|-----|-----|---|------|
| 54MHz-162MHz  | 0  | 0 | 0  | 0   | 0   | 0   | 0   | 1   |   | 01   |
| 162MHz-426MHz | 0  | 0 | 0  | 0   | 0   | 0   | 1   | 0   |   | 02   |
| 426MHz-TBDMHz | 0  | 0 | 0  | 0   | 1   | 0   | 0   | 0   |   | 08   |
| TBDMHz-864MHz | 1  | 0 | 0  | 0   | 1   | 0   | 0   | 0   |   | 88   |

CONFIDENTIAL

This MUST NOT be copied or disclosed to a third party without approval of ALPS ELECTRIC CO., LTD. Communication Devices Division

|       |             |       |       |       | TITLE           | PRODUCT           |
|-------|-------------|-------|-------|-------|-----------------|-------------------|
|       |             |       |       |       | ТС              | OHU SPECIFICATION |
|       |             |       |       |       |                 |                   |
|       |             |       |       |       |                 | ( 14/14 )         |
|       |             |       |       |       | AL DE EL ECTDIC |                   |
| SYMB. | DATE OR NO. | APPD. | CHKD. | DSGD. | ALPS ELECTRIC ( | JU., LID.         |

1

